# **AXEL ULTRA**

### Solo / Dual / Quad ARM Cortex-A9 MPCore CPU Module

## **ULTRA Line**

### HARDWARE MANUAL



**DAVE Embedded Systems** 

www.dave.eu

info@dave.eu

<Page intentionally left blank>

#### **Table of Contents**

| 1 Preface                                                     |    |
|---------------------------------------------------------------|----|
| 1.1 About this manual                                         |    |
| 1.2 Copyrights/Trademarks                                     | 7  |
| 1.3 Standards                                                 | 7  |
| 1.4 Disclaimers                                               | 7  |
| 1.5 Warranty                                                  |    |
| 1.6 Technical Support                                         |    |
| 1.7 Related documents                                         |    |
| 1.8 Conventions, Abbreviations, Acronyms                      |    |
| 2 Introduction                                                |    |
| 2.1 Product Highlights                                        | 13 |
| 2.2 Block Diagram                                             |    |
| 2.3 Feature Summary                                           |    |
| 3 Design overview                                             |    |
| 3.1 NXP/Freescale i.MX6 application processor                 | 18 |
| 3.2 DDR3 memory bank                                          |    |
| 3.3 NOR flash bank                                            |    |
| 3.4 NAND flash bank                                           | 20 |
| 3.5 Memory Map                                                | 20 |
| 3.6 Power supply unit                                         |    |
| 3.7 CPU module connectors                                     | 20 |
| 4 Mechanical specifications                                   |    |
| 4.1 Board Layout                                              |    |
| 4.2 Connectors                                                | 23 |
| 5 Power, reset and control                                    | 24 |
| 5.1 Power Supply Unit (PSU) and recommended power-up sequence |    |
| 5.1.1 Note on NVCC_AXEL_I/O_3.3V/1.8V (BOARD_PGOOD) usage     |    |
| 5.1.2 Note on NVCC_EIM_EXT                                    | 26 |
| 5.1.3 Power rails and related signals                         |    |
| 5.2 Reset scheme and control signals                          | 29 |
| 5.2.1 CPU_PORn                                                |    |
| 5.2.2 Boot_Mode0/1                                            | 30 |
| 5.3 Voltage monitor                                           | 30 |
| 5.4 System boot                                               |    |
| 5.4.1 Boot modes                                              |    |
| 5.4.2 Default boot configuration                              |    |
| 5.4.3 Boot sequence customization                             | 33 |
| 5.5 Clock scheme                                              | 34 |
| 5.6 Recovery                                                  |    |
| 5.6.1 JTAG Recovery                                           |    |
| 5.6.2 USB Recovery                                            | 34 |
|                                                               |    |

| 5.6.3 SD/MMC Recovery                 |    |
|---------------------------------------|----|
| 5.7 Multiplexing                      | 35 |
| 5.8 RTC                               | 35 |
| 5.9 Watchdog                          | 36 |
| 6 Pinout table                        | 37 |
| 6.1 Carrier board mating connector J1 | 38 |
| 6.2 Carrier board mating connector J2 | 42 |
| 6.3 Carrier board mating connector J3 |    |
| 7 Peripheral interfaces               |    |
| 7.1 Notes on pin assignment           | 51 |
| 7.2 Gigabit Ethernet.                 | 51 |
| 7.3 UŠB                               |    |
| 7.3.1 USB Host                        |    |
| 7.3.2 USB OTG                         |    |
| 7.4 Video Output ports                |    |
| 7.4.1 LVDS                            |    |
| 7.4.1.1LVDS0                          |    |
| 7.4.1.2LVDS1                          |    |
| 7.4.2 HDMI                            |    |
| 7.4.3 Parallel RGB                    |    |
| 7.4.4 MIPI DSI                        |    |
| 7.5 Video Input ports                 |    |
| 7.5.1 Parallel RGB                    |    |
| 7.5.2 MIPI CSI                        |    |
| 7.6 UARTs                             |    |
| 7.6.1 UART1                           |    |
| 7.6.2 UART2                           |    |
| 7.6.3 UART3                           |    |
| 7.6.4 UART4                           |    |
| 7.6.5 UART5                           |    |
| 7.7 SPI                               |    |
| 7.7.1 ECSPI1                          | 61 |
| 7.7.2 ECSPI2                          |    |
| 7.7.3 ECSPI3                          |    |
| 7.7.4 ECSPI4                          | -  |
| 7.7.5 ECSPI5                          |    |
| 7.8 Raw NAND flash controller         |    |
| 7.9 l <sup>2</sup> C                  |    |
| 7.9.1 l <sup>2</sup> C1               |    |
| 7.9.2 l <sup>2</sup> C2               |    |
| 7.9.3 l <sup>2</sup> C3               |    |
| 7.10 CAN                              |    |
|                                       | -  |

| 7.10.1 FLEXCAN1               | 65 |
|-------------------------------|----|
| 7.10.2 FLEXCAN2               | 66 |
| 7.11 JTAG                     |    |
| 7.12 SD/SDIO/MMC              | 67 |
| 7.12.1 MMC/SD/SDIO1           | 68 |
| 7.12.2 MMC/SD/SDIO2           | 69 |
| 7.12.3 MMC/SD/SDIO3           | 70 |
| 7.12.4 MMC/SD/SDIO4           | 71 |
| 7.13 PCI Express              | 72 |
| 7.14 SATA                     | 72 |
| 7.15 Audio interface          | 73 |
| 7.16 Keypad                   |    |
| 7.17 GPIO                     | 73 |
| 8 Operational characteristics |    |
| 8.1 Maximum ratings           | 74 |
| 8.2 Recommended ratings       |    |
| 8.3 Power consumption.        | 74 |
| 8.3.1 Set 1                   |    |
| 8.3.2 Set 2                   | 74 |
| 8.4 Heat Dissipation          | 75 |
| 9 Application notes           | 78 |
|                               |    |

#### Index of Tables

| Tab. 1: Related documents                                       | 9  |
|-----------------------------------------------------------------|----|
| Tab. 2: Abbreviations and acronyms used in this manual          | 9  |
| Tab. 3: CPU, Memories, Buses                                    | 15 |
| Tab. 4: Peripherals                                             | 16 |
| Tab. 5: Electrical, Mechanical and Environmental Specifications | 17 |
| Tab. 6: i.MX6 comparison                                        | 19 |
| Tab. 7: DDR3 specifications                                     | 19 |
| Tab. 8: NOR flash specifications                                | 19 |
| Tab. 9: NAND flash specifications                               | 20 |
| Tab. 10: Power dissipation Vs.Thermal Resistance                | 76 |
| Tab. 11: Ambient Temperature Vs. Thermal Resistance             | 76 |
| Tab. 11: Ambient Temperature Vs. Thermal Resistance             | 76 |

#### **Illustration Index**

| 11 |
|----|
| 13 |
| 21 |
| 22 |
| 23 |
| -  |

| Fig. 6: AXEL – Solo / Dual / Quad core ARM Cortex A96 | 67 |
|-------------------------------------------------------|----|
|-------------------------------------------------------|----|

### **1 Preface**

#### 1.1 About this manual

This Hardware Manual describes the AXEL CPU module design and functions.

Precise specifications for the NXP/Freescale i.MX6 processor can be found in the CPU datasheets and/or reference manuals.

#### 1.2 Copyrights/Trademarks

Ethernet<sup>®</sup> is a registered trademark of XEROX Corporation. All other products and trademarks mentioned in this manual are property of their respective owners. All rights reserved. Specifications may change any time without notification.

#### 1.3 Standards

DAVE Embedded Systems is certified to ISO 9001 standards.

#### 1.4 Disclaimers

**DAVE Embedded Systems** does not assume any responsibility about availability, supplying and support regarding all the products mentioned in this manual that are not strictly part of the AXEL CPU module. AXEL CPU Modules are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. **DAVE Embedded Systems** customers who are using or selling these products for use in such applications do so at their own risk and agree to fully indemnify **DAVE Embedded Systems** for any damage resulting from such improper use or sale.

#### 1.5 Warranty

AXEL is warranted against defects in material and workmanship for the warranty period from the date of shipment. During the warranty period, **DAVE Embedded Systems** will at its discretion decide to repair or replace defective products. Within the warranty period, the repair of products is free of charge as long as warranty conditions are observed. The warranty does not apply to defects resulting from improper or

inadequate maintenance or handling by the buyer, unauthorized modification or misuse, operation outside of the product's environmental specifications or improper installation or maintenance.

**DAVE Embedded Systems** will not be responsible for any defects or damages to other products not supplied by **DAVE Embedded Systems** that are caused by a faulty AXEL module.

#### 1.6 Technical Support

We are committed to making our product easy to use and will help customers use our CPU modules in their systems. Technical support is delivered through email to our valued customers. Support requests can be sent to <u>support-axel@dave.eu</u>.

Software upgrades are available for download in the restricted access download area of **DAVE Embedded Systems** web site:

<u>http://www.dave.eu/reserved-area</u>. An account is required to access this area and is provided to customers who purchase the development kit (please contact <u>support-axel@dave.eu</u> for account requests)..

Please refer to our Web site at <u>http://www.dave.eu/dave-cpu-module-imx6-axel.html</u> for the latest product documentation, utilities, drivers, Product Change Notifications, Board Support Packages, Application Notes, mechanical drawings and additional tools and software.

#### 1.7 Related documents

| Document                                                                      | Location                                                                                                                                                                                |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DAVE Embedded Systems</b><br>Developers Wiki                               | http://wiki.dave.eu/index.php/Main_<br>Page                                                                                                                                             |
| NXP/Freescale i.MX6 Dual/<br>6Quad Applications<br>Processor Reference Manual | http://cache.freescale.com/files/32<br>bit/doc/ref_manual/IMX6DQRM.pdf<br>?fpsp=1&WT_TYPE=Reference<br>%20Manuals&WT_VENDOR=FRE<br>ESCALE&WT_FILE_FORMAT=pdf<br>&WT_ASSET=Documentation |

#### Tab. 1: Related documents

#### **1.8 Conventions, Abbreviations, Acronyms**

| Abbreviation | Definition                                   |
|--------------|----------------------------------------------|
| i.MX6 APRM   | i.MX6 Application Processor Reference Manual |
| IPU          | Image Processing Unit                        |
| GPI          | General purpose input                        |
| GPIO         | General purpose input and output             |
| GPO          | General purpose output                       |
| PCB          | Printed circuit board                        |
| RTC          | Real time clock                              |
| SOM          | System on module                             |
| TRM          | Technical Reference Manual                   |
| XELK         | AXEL Embedded Linux Kit                      |

Tab. 2: Abbreviations and acronyms used in this manual

#### **Revision History**

| Version | Date           | Notes                                                                                      |  |
|---------|----------------|--------------------------------------------------------------------------------------------|--|
| 0.9.0   | October 2013   | First Draft                                                                                |  |
| 1.0.0   | November 2013  | First official release with XELK 1.0.                                                      |  |
| 1.0.1   | January 2014   | Minor fixes                                                                                |  |
| 1.0.2   | August 2014    | Minor fixes<br>Fixed power-up sequence diagram                                             |  |
| 1.0.3   | November 2014  | Minor fixes<br>Released with XELK 2.0.0                                                    |  |
| 1.0.4   | April 2015     | Minor fixes<br>Added BOARD_PGOOD info<br>Notes on NVCC_EIM_EXT<br>Released with XELK 2.1.0 |  |
| 1.0.5   | September 2016 | Minor fixes                                                                                |  |

### **2** Introduction

**AXEL** is the new top-class Solo/Dual/Quad core ARM Cortex-A9 CPU module by **DAVE Embedded Systems**, based on the recent NXP/Freescale i.MX6 application processor.

Thanks to **AXEL**, customers have the chance to save time and resources by using a compact solution that permits to reach scalable performances that perfectly fits the application requirements avoiding complexities on the carrier board.



The use of this processor enables extensive system-level differentiation of new applications in many industry fields, where high-performance and extremely compact form factor (85mm x 50mm) are key factors. Smarter system designs are made possible, following the trends in functionalities and interfaces of the new, state-of-the-art embedded products. **AXEL** offers great computational power, thanks to the rich set of peripherals, the Scalable ARM Cortex-A9 together with a large set of high-speed I/Os (up to 5GHz).

**AXEL** enables designers to create smart products suitable for harsh mechanical and thermal environments, allowing the development of high computing and reliable solutions. Thanks to the tight integration between the ARM Core-based processing system, designers are able to share the application through the multicore platform and/or to divide the task on different cores in order to match with specific application requirements (AMP makes possible the creation of applications where RTOS and Linux work together on different cores).Thanks to **AXEL**, customers are going to save time and resources by using a powerful and scalable compact solution, avoiding complexities on the carrier PCB.

AXEL is designed and manufactured according to **DAVE Embedded Systems ULTRA Line** specifications, in order to guarantee premium quality and technical value for customers who require top performances and flexibility. **AXEL** is suitable for high-end applications such as medical instrumentation, advanced communication systems, critical real-time operations and safety applications.

#### 2.1 **Product Highlights**

- Unmatched performances thanks to Solo / Dual / Quad Core @ 1.2 GHz
- All memories you need on-board
- Boot from NOR for safe applications
- Enabling massive computing applications thanks to wide range DDR3 RAM memory up to 4GB
- Wide range PSU input from 2.8V to 4.5V
- High mechanical retention 100G shock thanks to 3x140pins and 4 screw holes
- Reduced carrier complexity: dual CAN, USB, Ethernet GB, PCIe, SATA and native 3.3V I/O
- Suitable for Asymmetric Multicore Processing
- A timing application thanks to on-board 5ppm RTC



#### 2.2 Block Diagram



#### 2.3 Feature Summary

| Feature       | Specifications                                                                           | Options |
|---------------|------------------------------------------------------------------------------------------|---------|
| CPU           | NXP/Freescale i.MX6<br>ARM Cortex A9 MPCore™ Solo, Dual or Quad<br>core @ 1.2 GHz        |         |
| Cache         | L1: 32Kbyte instruction, 32Kbyte data<br>L2: Unified instruction and data, 1MByte        |         |
| RAM           | DDR3 SDRAM @ 533 MHz<br>Up to 4 GB, x64 data bus width                                   |         |
| Storage       | Flash NOR SPI (8, 16, 32, 64 MB)<br>Flash NAND (all sizes, on request)                   |         |
| Expansion bus | One PCI Express 2.0 lane with integrated PHY (5.0 GT/s Endpoint/Root Complex operations) |         |

#### Tab. 3: CPU, Memories, Buses

| Feature                | Specifications                                                                                                                                                                                   | Options |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Graphics<br>Controller | 16-/24-bit HD Display Port<br>1x HDMI 1.3 channel + DDC<br>1x TFT/RGB output port<br>1x MIPI DSI port<br>2x LVDS output ports                                                                    |         |
| 2D/3D Engines          | GPU2D cores for raster (R2D, Vivante GC320)<br>and vector (V2D, Vivante GC355) graphics<br>acceleration<br>GPU3D core (Vivante GC2000) for<br>OpenGL/OpenGL ES/OpenVG/OpenCL API<br>acceleration |         |
| Video capture          | 1x 20bit video input<br>1x MIPI CSI port                                                                                                                                                         |         |
| Video<br>processing    | High performance, multi-standard VPU<br>Up to 1080p60 H264 decode<br>Up to 1080p30 H264 encode                                                                                                   |         |
| Coprocessors           | Media Processing Engine with NEON™ & VFPv3-D32 Floating-Point Unit                                                                                                                               |         |
| USB                    | 1x USB OTG 2.0 with integrated PHY<br>1x USB Host 2.0 with integrated PHY                                                                                                                        |         |
| UARTs                  | 5x UART ports (1x full, 4x four-wires)                                                                                                                                                           |         |
| GPIO                   | Up to 206 lines, shared with other functions                                                                                                                                                     |         |

| Feature      | Specifications                                                                                                   | Options |
|--------------|------------------------------------------------------------------------------------------------------------------|---------|
|              | (interrupts available)                                                                                           |         |
| Networks     | Gigabit Ethernet 10/100/1000 Mbps with<br>integrated PHY                                                         |         |
| CAN          | 2x CAN 2.0B ports (1x with integrated PHY)                                                                       |         |
| SD/MMC       | 4x SD 3.0 /SDIO 3.0/MMC 4.x compliant controllers                                                                |         |
| Storage      | Serial ATA II 3.0 Gbps with integrated PHY                                                                       |         |
| Serial buses | 5x full-duplex SPI ports with four peripheral<br>chip selects<br>3x master and slave I <sup>2</sup> C interfaces |         |
| Audio        | 3x I2S/SSI/AC97 interfaces                                                                                       |         |
| Timers       | Enhanced Periodic Interrupt Timer<br>General Purpose Timer                                                       |         |
| RTC          | On board, ±3.5ppm (DS3232), external battery powered                                                             |         |
| Watchdog     | On board, configurable timeout (MAX6373)                                                                         |         |
| Debug        | JTAG IEEE 1149.1 Test Access Port<br>CoreSight™ and Program Trace Macrocell<br>(PTM)                             |         |

#### Tab. 4: Peripherals

| Feature                           | Specifications                                         | Options |
|-----------------------------------|--------------------------------------------------------|---------|
| Supply Voltage                    | 2.8-4.5V wide range input, voltage regulation on board |         |
| Active power consumption          | See section 8.3 - Power consumption                    |         |
| Dimensions                        | 85mm x 50mm                                            |         |
| Weight                            | <tbd></tbd>                                            |         |
| MTBF                              | <tbd></tbd>                                            |         |
| Operating<br>temperature<br>range | Commercial: 0°C / +70°C<br>Industrial: -40°C / +85°C   |         |
| Shock                             | 100 G                                                  |         |
| Vibration                         | <tbd></tbd>                                            |         |
| Connectors                        | 3 x 140 pins 0.6mm pitch                               |         |
| Connectors                        | <tbd></tbd>                                            |         |

| Feature                | Specifications | Options |
|------------------------|----------------|---------|
| insertion /<br>removal |                |         |

Tab. 5: Electrical, Mechanical and Environmental Specifications

### **3 Design overview**

The heart of AXEL module is composed by the following components:

- NXP/Freescale i.MX6 Solo / Dual / Quad core SoC application processor
- Power supply unit
- DDR memory banks
- NOR and NAND flash banks
- 3x 140 pin connectors with interfaces signals

This chapter shortly describes the main AXEL components.

#### 3.1 NXP/Freescale i.MX6 application processor

The i.MX6 Solo/Dual/Quad processors feature NXP/Freescale's advanced implementation of the ARM® Cortex®-A9 MPCore, which operates at speeds up to 1.2 GHz. They include 2D and 3D graphics processors, 1080p video processing, and integrated power management. As a result, the i.MX6 devices are able to serve a wide range of applications including:

- Automotive driver assistance, driver information, and infotainment
- Multimedia-centric smart mobile devices
- Instrument clusters, and portable medical devices.
- E-Readers, smartbooks, tablets
- Intelligent industrial motor control, industrial networking, and machine vision
- IP and Smart camera
- Human-machine interfaces
- Medical diagnostics and imaging
- Digital signage
- Video and night vision equipment
- Multimedia-focused products
- Entertainment and gaming appliances

The i.MX6 application processor is composed of the following major functional blocks:

- ARM Cortex-A9 MPCore 2x/4x CPU Processor, featuring:
  - 1 Megabyte unified L2 cache shared by all CPU cores
  - NEON MPE coprocessor
  - General Interrupt Controller (GIC) with 128 interrupt support
  - Snoop Control Unit (SCU)
  - External memories interconnect
- Hardware accelerators, including:
  - VPU -Video Processing Unit
  - Two IPUv3H -Image Processing Unit (version 3H)
  - 2D/3D/Vector graphics accelerators
- Connectivity peripherals, including
  - PCle
  - SATA
  - SD/SDIO/MMC
  - Serial buses: USB, UART, I<sup>2</sup>C, SPI, ...

AXEL can mount three versions of the i.MX6 processor. The following table shows a **comparison** between the processor models, highlighting the differences:

| Processor  | #<br>cores | Clock                       | L2<br>cache | DDR3                | Graphics acceleration                                                                    | IPU | VPU | SATA-<br>II |
|------------|------------|-----------------------------|-------------|---------------------|------------------------------------------------------------------------------------------|-----|-----|-------------|
| i.MX6 Solo | 1          | 800 MHz<br>1 GHz            | 512 KB      | 32 bit @<br>400 MHz | <i>3D</i> : Vivante GC880<br><i>2D</i> : Vivante GC320<br><i>Vector</i> : N.A.           | 1x  | 1x  | N.A.        |
| i.MX6 Dual | 2          | 850 MHz<br>1 GHz<br>1.2 GHz | 1 MB        | 64 bit @<br>533 MHz | <i>3D</i> : Vivante GC2000<br><i>2D</i> : Vivante GC320<br><i>Vector</i> : Vivante GC335 | 2x  | 2x  | Yes         |
| i.MX6 Quad | 4          | 850 MHz<br>1 GHz<br>1.2 GHz | 1MB         | 64 bit @<br>533 MHz | <i>3D</i> : Vivante GC2000<br><i>2D</i> : Vivante GC320<br><i>Vector</i> : Vivante GC335 | 2x  | 2x  | Yes         |

Tab. 6: i.MX6 comparison

#### 3.2 DDR3 memory bank

DDR3 SDRAM memory bank is composed by 4x 16-bit width chips resulting in a 64-bit combined width bank.

The following table reports the SDRAM specifications:

| CPU connection | Multi-mode DDR controller (MMDC) |
|----------------|----------------------------------|
| Size min       | 512 MB                           |
| Size max       | 4 GB                             |
| Width          | 64 bit                           |
| Speed          | 533 MHz                          |

 Tab. 7: DDR3 specifications

#### 3.3 NOR flash bank

NOR flash is a Serial Peripheral Interface (SPI) device. This device is connected to the eCSPI channel 5 and by default it acts as boot memory. The following table reports the NOR flash specifications:

| CPU connection | eCSPI channel 5 |
|----------------|-----------------|
| Size min       | 8 MByte         |
| Size max       | 64 MByte        |
| Chip select    | ECSPI5_SS0      |
| Bootable       | Yes             |

Tab. 8: NOR flash specifications

#### 3.4 NAND flash bank

On board main storage memory is a 8-bit wide NAND flash connected to the CPU's Raw NAND flash controller. Optionally, it can act as boot peripheral.

The following table reports the NAND flash specifications:

| CPU connection | Raw NAND flash controller    |
|----------------|------------------------------|
| Page size      | 512 byte, 2 kbyte or 4 kbyte |
| Size min       | 128 MByte                    |
| Size max       | 2 GByte                      |
| Width          | 8 bit                        |
| Chip select    | NANDF_CS0                    |
| Bootable       | Yes                          |

 Tab. 9: NAND flash specifications

#### 3.5 Memory Map

For detailed information, please refer to chapter 2 "Memory Maps" of the i.MX Applications Processor Reference Manual.

#### 3.6 **Power supply unit**

AXEL, as the other ULTRA Line CPU modules, embeds all the elements required for powering the unit, therefore power sequencing is selfcontained and simplified. Nevertheless, power must be provided from carrier board, and therefore users should be aware of the ranges power supply can assume as well as all other parameters. For detailed information, please refer to Section 5.1.

#### 3.7 CPU module connectors

All interface signals AXEL provides are routed through three 140 pin 0.6mm pitch stacking connectors (named J1, J2 and J3). The dedicated carrier board must mount the mating connectors and connect the desired peripheral interfaces according to AXEL pinout specifications. For mechanical information, please refer to Section 4 (Mechanical specifications). For pinout and peripherals information, please refer to Sections 6 (Pinout table) and 7 (Peripheral interfaces).

### 4 Mechanical specifications

This chapter describes the mechanical characteristics of the AXEL module.



Mechanical drawings are available in DXF format from the AXEL page on DAVE Embedded Systems website (<u>http://www.dave.eu/products/som/freescale/imx6\_axel-ultra</u>).

#### 4.1 Board Layout

The following figure shows the physical dimensions of the AXEL module:



• Board height: 50.8 mm

- Board width: 83.8 mm
- Maximum components height is 2 mm (top) and 4 mm (bottom)
- PCB thickness is 1.9 mm

The following figure highlights the maximum components' heights on AXEL module:



Fig. 4: Board layout - Side view

#### 4.2 Connectors

The following figure shows the AXEL connectors layout:



Fig. 5: Connectors layout

The following table reports connectors specifications:

| Part number          | Hirose FX8C-140S-SV                                                                                                                                                                                                                                                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Height               | 5.1 mm                                                                                                                                                                                                                                                                |
| Length               | 48.6 mm                                                                                                                                                                                                                                                               |
| Depth                | 4.0 mm                                                                                                                                                                                                                                                                |
| Mating<br>connectors | Hirose FX8C-140P-SV (5 mm board-to-board height)<br>Hirose FX8C-140P-SV1 (6 mm board-to-board height)<br>Hirose FX8C-140P-SV2 (7 mm board-to-board height)<br>Hirose FX8C-140P-SV4 (9 mm board-to-board height)<br>Hirose FX8C-140P-SV6 (11 mm board-to-board height) |

### 5 **Power, reset and control**

## 5.1 Power Supply Unit (PSU) and recommended power-up sequence

Implementing correct power-up sequence for i.MX6 processors is not a trivial task because several power rails are involved. AXEL SOM simplifies this task and embeds all the needed circuitry. The following picture shows a simplified block diagram of PSU/voltage monitoring circuitry:



The PSU is composed of two main blocks:

- power management integrated circuit (PMIC, NXP/Freescale PF0100E0 - <u>on request this part is available in automotive grade</u>)
- additional generic power management circuitry that completes PMIC functionalities.

The PSU:

- generates the proper power-up sequence required by i.MX processor and surrounding memories and peripherals
- synchronizes the powering up of carrier board in order to prevent back power
- provides some spare regulated voltages that can be used to power carrier board devices

The typical power-up sequence is the following:

- 1. (optional) PMIC\_LICELL is powered (optional) RTC\_VBAT is powered
- 2. 2V8-4V5 main power supply rail is powered
- 3. CPU\_PORn (active-low) is driven low
- 4. PMIC activates PMIC\_VSNVS power output
- 5. PMIC\_PWRON signal is pulled-up (unless carrier board circuitry keeps this signal low for any reason)
- 6. PMIC transitions from OFF to ON state
- 7. PMIC initiates power-up sequence needed by MX6 processor
- 8. NVCC\_AXEL\_I/O\_3.3V/1.8V signal is raised; this activehigh signal indicates that SoM's I/O is powered. This signal can be used to manage carrier board power up sequence in order to prevent back powering (from SoM to carrier board or vice versa)
- 9. configurable I/O power rails (NVCC\_CSI\_EXT, NVCC\_EIM\_EXT, NVCC\_SD3\_EXT, NVCC\_LCD\_EXT) are powered by carrier board
- 10. PMIC VGEN6 LDO is turned on (this is the last regulator turned on automatically by PMIC)

11. CPU\_PORn is released.

#### 5.1.1 Note on NVCC\_AXEL\_I/O\_3.3V/1.8V (BOARD\_PGOOD) usage

NVCC\_AXEL\_I/O\_3.3V/1.8V is generally used on carrier board to drive loads such as DC/DC enable inputs or switch on/off control signals. Depending on the kind of such loads, NVCC\_AXEL\_I/O\_3.3V/1.8V might not be able to drive them properly. In these cases a simple 2-input AND port can be used to address this issue. The following picture depicts a principle schematic showing this solution. VDD\_SOM denotes the power rail used to power AXEL ULTRA SoM.



#### 5.1.2 Note on NVCC\_EIM\_EXT

<u>If the SPI NOR flash is mounted</u> on the AXEL ULTRA SoM, the NVCC\_EIM\_EXT input signal can't be configured as an extended range voltage, but <u>it must be connected to a +3.3V rail</u> (because the SPI bus used internally for the NOR flash shares some pins of the EIM bank).

#### 5.1.3 Power rails and related signals

The following list describes in detail power rails and power related signals. Please note that PMIC regulators ouput voltages can be changed only if explicitly allowed.

- 2V8-4V5: this is external main power rail. Voltage range is 2.8 -4.5V
- PMIC\_CELL: PMIC's coin cell supply input/output

- RTC\_VBAT: this rail is connected to pin 6 of Maxim DS3232MZ+ RTC
- NVCC\_CSI\_EXT: this rail powers MX6's NVCC\_CSI domain
- NVCC\_EIM\_EXT: this rail powers MX6's NVCC\_EIM0, NVCC\_EIM1 and NVCC\_EIM2 domains
- NVCC\_SD3\_EXT: this rail powers MX6's NVCC\_SD3 domain
- NVCC\_LCD\_EXT: this rail powers MX6's NVCC\_LCD domain
- NVCC\_AXEL\_I/O\_3.3V/1.8V: this output signal is used to indicate when carrier board's circuitry interfacing AXEL's I/Os has to be powered up
- VGEN1: PMIC's VGEN1 regulator output; this regulator is not used by any AXEL's internal load. Output voltage can be selected by user.
- VGEN2: PMIC's VGEN2 regulator output; this regulator is not used by any AXEL's internal load. Output voltage can be selected by user.
- VGEN4\_1V8: PMIC's VGEN4 regulator output; output voltage (1.8V) must not be altered. Up to 150mA can be drawn.
- VGEN6: PMIC's VGEN6 regulator output; this regulator is not used by any AXEL's internal load. Output voltage can be selected by user.
- SW4\_xV/1.8V: PMIC's SW4 regulator output voltage (1.8V). This voltage must not be altered. Up to 500mA can be drawn.
- PMIC\_VSNVS: PMIC's LDO or coin cell output to processor.
   Please refer to PMIC's datasheet for current limit. Please take into account internal loads as depicted in AXEL reset scheme picture.
- PMIC\_SWBST\_SUPPLY: this rail is connected to PMIC's SWBSTIN pad and can be used to power SWBST boost regulator. This regulator is not used by any AXEL's internal load. Output voltage can be selected by user.
- PMIC\_5V: this is output of SWBST boost regulator. This regulator is not used by any AXEL's internal load. Output voltage can be selected by user.
- VDDCORE, VDDSOC, DDR\_1V5, 1V2\_ETH, VDDHIGH\_VPH, VDDSOC\_CAP, VDDPU, VDD\_ARM23\_CAP, VDD\_ARM01\_CAP,

VDGEN5\_2V8, VDD\_BUS\_CAP, VDD\_SNVS\_CAP, VGEN3\_2V5, NVCC\_PLL\_OUT: these signals route power voltage generated by AXEL PSU. These optional signals (in the default configuration, the pins are dedicated to other functions) are meant to enable monitoring of internal voltages by carrier board circuitry. For further details, please refer to pinout table.

For further details, please refer to the PMIC documentation: <u>http://www.freescale.com/webapp/sps/site/prod\_summary.jsp?</u> <u>code=MMPF0100%7CPF0100</u>

#### 5.2 **Reset scheme and control signals**

The following picture shows the simplified block diagram of reset scheme and voltage monitoring.



The available reset signals are described in detail in the following sections.

#### 5.2.1 CPU\_PORn

The following sources can assert this active-low signal:

October, 2016

- PMIC
- multiple-voltage monitor: this device monitors several critical power voltages and triggers a reset pulse in case any of these exhibits a brownout condition
- MRSTn: this signal is connected to the RESET IN input of the voltage monitor. MRSTn is pulled-up to processor's I/O voltage with 2.2 kOhm resistor.
- watchdog timer: even if MX6 processor integrates a watchdog timer (WDT), an external WDT (Maxim MAX6373KA+) is availble to maximize reliability

Since SPI NOR flash can be used as boot device, CPU\_PORn is connected to this device too. This guarantees it is in a known state after reset occurrence.

#### 5.2.2 Boot\_Mode0/1

By default, BOOT\_MODE0 is pulled-down with 10kOhm resistor and BOOT\_MODE1 is pulled-up to PMIC\_VSNVS with 10kOhm resistor. Different configurations are available on request. For further details, please refer to section 5.4.2.

#### 5.3 Voltage monitor

The voltage monitor is a Linear Technology LTC2930 (Configurable Six Supply Monitor with Adjustable Reset Timer, Manual Reset).

#### 5.4 System boot

The boot process begins at Power On Reset (POR) where the hardware reset logic forces the ARM core to begin execution starting from the onchip boot ROM. Boot ROM code uses the state of the internal register BOOT\_MODE[1:0] as well as the state of various eFUSEs and/or GPIO settings to determine the boot flow behavior of the device. The boot ROM:

- determines whether the boot is secure or non-secure
- performs some initialization of the system and clean-ups
- reads the mode pins to determine the primary boot device
- once it is satisfied, it executes the boot code

#### 5.4.1 Boot modes

The boot ROM supports the following boot devices:

- NOR Flash
- NAND Flash
- OneNAND Flash
- SD/MMC
- Serial ATA HDD (only on i.MX6 Dual/Quad)
- Serial (I2C/SPI) NOR Flash and EEPROM

Boot mode is selectable via two mode pins (BOOT\_MODE[1:0]), and 32 boot configuration signals, (BOOT\_CFGx[7:0], x=1,2,3,4). The pins are used as follows:

| Function                                        | Boot signals   | Available options                                                                                                                   |
|-------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Boot mode selection                             | BOOT_MODE[1:0] | 00: Boot from fuses<br>01: Serial downloader<br>10: Internal Boot<br>11: Reserved                                                   |
| L1 I Cache disable<br>bit                       | BOOT_CFG3[7]   | 0: L1 I Cache is enabled by<br>ROM during the boot<br>1: L1 I Cache is disabled by<br>ROM during the boot                           |
| MMU/L1 D<br>Cache/PL310<br>disable bit          | BOOT_CFG3[6]   | 0: MMU/L1 D Cache/PL310<br>is enabled by ROM during<br>the boot<br>1: MMU/L1 D Cache/PL310<br>is disabled by ROM during<br>the boot |
| Frequency<br>Selection                          | BOOT_CFG3[2]   | 0: ARM - 792MHz, DDR -<br>532MHz, AXI - 264MHz<br>1: ARM - 396MHz, DDR -<br>352MHz, AXI - 176MHz                                    |
| Boot<br>Configuration1                          | BOOT_CFG1[7:0] | Specific to selected boot mode                                                                                                      |
| Boot<br>Configuration2                          | BOOT_CFG2[7:0] | Specific to selected boot mode                                                                                                      |
| Infinite Loop<br>Enable at start of<br>boot ROM | BOOT_CFG4[7]   | 0: Disabled<br>1: Enabled                                                                                                           |
| Boot                                            | BOOT_CFG4[6:0] | Specific to selected boot                                                                                                           |

| Function       | Boot signals | Available options |
|----------------|--------------|-------------------|
| Configuration4 |              | mode              |

Boot device selection is specified by BOOT\_CFG1[7:3] pins, as described on the table below:

| Boot device | Boot signals<br>BOOT_CFG[7:3]        | i.MX6 APRM pin map<br>reference |
|-------------|--------------------------------------|---------------------------------|
| EIM         | 00000 – NOR flash<br>00001 - OneNAND | Table 5.4 (page 352)            |
| SATA        | 0010X <sup>1</sup>                   | Table 5.5 (page 354)            |
| Serial ROM  | 0011X <sup>1</sup>                   | Table 5.6 (page 355)            |
| SD/eSD      | 010XX <sup>1</sup>                   | Table 5.7 (page 356)            |
| MMC/eMMC    | 011XX <sup>1</sup>                   | Table 5.8 (page 358)            |
| NAND Flash  | 1XXXX <sup>1</sup>                   | Table 5.9 (page 359)            |

In order to fully understand how boot works on AXEL platform, please refer to chapter 8 ("System boot") of the i.MX6 APRM.

#### 5.4.2 Default boot configuration

Default configuration for AXEL module is to boot from SPI NOR flash, connected to eCSPI5 channel (SS0 chip select) with 3 Byte address mode. This is achieved with the following bit mapping:

- BOOT\_MODE[1:0] = 10b: Internal mode
- BOOT\_CFG1[7:0] = 00110011b:
- BOOT\_CFG2[7:0] = 11011101b
- BOOT\_CFG3[7:0] = 11001000b
- BOOT\_CFG4[7:0] = 01001100b

The boot code performs hardware initialization, loads the U-Boot bootloader image (Program Image) from the chosen boot device and then jumps to an address derived from the Program Image. If any error occurs during internal boot, the boot code jumps to the Serial Downloader (please refer to section 5.6.2).

<sup>1</sup> X: please refer to the device specific BOOT\_CFG pin map on the i.MX6 APRM

#### 5.4.3 Boot sequence customization

BOOT\_CFG pins are routed to the J2 connector, enabling for the customization of the boot sequence through a simple resistor network that can be implemented on carrier board hosting AXEL module.

| Mode signal  | J2 pin | Pin name |
|--------------|--------|----------|
| BOOT_CFG1[0] | J2.3   | EIM_DA0  |
| BOOT_CFG1[1] | J2.5   | EIM_DA1  |
| BOOT_CFG1[2] | J2.7   | EIM_DA5  |
| BOOT_CFG1[3] | J2.9   | EIM_DA3  |
| BOOT_CFG1[4] | J2.11  | EIM_DA4  |
| BOOT_CFG1[5] | J2.13  | EIM_DA5  |
| BOOT_CFG1[6] | J2.15  | EIM_DA6  |
| BOOT_CFG1[7] | J2.17  | EIM_DA7  |
| BOOT_CFG2[0] | J2.19  | EIM_DA8  |
| BOOT_CFG2[1] | J2.23  | EIM_DA9  |
| BOOT_CFG2[2] | J2.25  | EIM_DA10 |
| BOOT_CFG2[3] | J2.27  | EIM_DA11 |
| BOOT_CFG2[4] | J2.29  | EIM_DA12 |
| BOOT_CFG2[5] | J2.31  | EIM_DA13 |
| BOOT_CFG2[6] | J2.33  | EIM_DA14 |
| BOOT_CFG2[7] | J2.35  | EIM_DA15 |
| BOOT_CFG3[0] | J2.37  | EIM_DA16 |
| BOOT_CFG3[1] | J2.39  | EIM_DA17 |
| BOOT_CFG3[2] | J2.43  | EIM_DA18 |
| BOOT_CFG3[3] | J2.45  | EIM_DA19 |
| BOOT_CFG3[4] | J2.47  | EIM_DA20 |
| BOOT_CFG3[5] | J2.49  | EIM_DA21 |
| BOOT_CFG3[6] | J2.51  | EIM_DA22 |
| BOOT_CFG3[7] | J2.53  | EIM_DA23 |
| BOOT_CFG4[0] | J2.55  | EIM_DA24 |
| BOOT_CFG4[1] | J2.57  | EIM_DA25 |
| BOOT_CFG4[2] | J2.59  | EIM_DA26 |
| BOOT_CFG4[3] | J2.63  | EIM_DA27 |

| Mode signal  | J2 pin | Pin name |
|--------------|--------|----------|
| BOOT_CFG4[4] | J2.65  | EIM_DA28 |
| BOOT_CFG4[5] | J2.67  | EIM_DA29 |
| BOOT_CFG4[6] | J2.69  | EIM_DA30 |
| BOOT_CFG4[7] | J2.71  | EIM_DA31 |

For each BOOT\_MODE[31:0] pin it is possible to populate upper or lower side resistor in order to change default value that is set on module itself.

#### 5.5 Clock scheme

This section will be completed in a future version of this manual.

#### 5.6 Recovery

For different reason, starting from image corruption due power loss during upgrade or unrecoverable bug while developing a new U-Boot feature, the user will need, sooner or later, to recover (*bare-metal* restore) the AXEL SOM without using the bootloader itself. The following paragraphs introduce the available options. For further information, please refer to **DAVE Embedded Systems** Developers Wiki or contact the Technical Support Team.

#### 5.6.1 JTAG Recovery

JTAG recovery, though very useful (especially in development or production environment), requires dedicated hardware and software tools. AXEL provides the JTAG interface, which, besides the debug purpose, can be used for programming and recovery operations. For further information on how to use the JTAG interface, please contact the Technical Support Team.

#### 5.6.2 USB Recovery

The USB Serial Downloader provides a means to download the bootloader image to the chip over USB serial connection. Please refer to the XELK Quick Start Guide for further details.

#### 5.6.3 SD/MMC Recovery

MMC recovery is a valuable options that requires no special hardware at all, apart a properly formatted MMC. The boot sequence must include the

SD/MMC option and a way to enable it. When SD/MMC boot option is selected, bootrom looks for a valid FSBL on SD/MMC, which in turn will load the 2nd stage bootloader. Once the board is running after booting from SD, reprogramming the flash memory is straightforward.

#### 5.7 Multiplexing

Most of the i.MX6 processor pins have multiple signal options. These signal to pin and pin to signal options are selected by the input output multiplexer called IOMUX. The IOMUX enables flexible IO multiplexing and is also used to configure other pin characteristics, such as voltage level, drive strength, and hysteresis. Each IO pad has default and up to seven alternate functions, which are software configurable.

Please refer to the following sections of the i.MX6 APRM for further information pin assignment:

- chapter 4 "External Signals and Pin Multiplexing"
- section 4.1 "Pin assignments"
- section 4.2 "Muxing options"
- chapter 36 "IOMUX Controller (IOMUXC)"

#### 5.8 RTC

An on-board Maxim Integrated DS3232 device provides a very accurate, temperature-compensated real-time clock (RTC) resource with:

- Temperature-compensated crystal oscillator
- Date, time and calendar
- Alarm capability
- Backup power from external battery
- ±3.5ppm accuracy from -40°C to +85°C
- 236 Bytes of Battery-Backed SRAM
- I<sup>2</sup>C Interface

Backup power is provided through the RTC\_VBAT (J1.124) signal. If not used, RTC\_VBAT must be externally connected to VCC.

For a detailed description of RTC characteristics, please refer to the DS3232 datasheet.
#### 5.9 Watchdog

An external watchdog (Maxim MAX6373) is connected to the PORSTn signal. During normal operation, the microprocessor should repeatedly toggle the watchdog input WDI before the selected watchdog timeout period elapses to demonstrate that the system is processing code properly. If the  $\mu$ P does not provide a valid watchdog input transition before the timeout period expires, the supervisor asserts a watchdog (WDO) output to signal that the system is not executing the desired instructions within the expected time frame. The watchdog output pulse is used to reset the  $\mu$ P. WDI is is available on AXEL connectors as WDT\_WDI (J3.117).

The MAX6373 watchdog timer is pin-selectable and the timer can be configured through the WD\_SET0 (J1.67), WD\_SET1 (J1.69) and WD\_SET2 (J1.71) signals. As a default, the watchdog is configured through a pull-up/pull-down resistors network (WD\_SET[2..0] = 110) that keeps the watchdog timer inactive at startup. Startup delay ends when WDI sees its first level transition. The default watchdog timeout period is 10 s.

The configuration can be changed by optional external circuitry implemented on the carrier board.

# 6 **Pinout table**

This chapter contains the pinout description of the AXEL module, grouped in six tables (two – odd and even pins – for each connector) that report the pin mapping of the three 140-pin AXEL connectors. Each row in the pinout tables contains the following information:

| Pin                     | Reference to the connector pin                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin Name                | Pin (signal) name on the AXEL connectors                                                                                                                                                                                                                                                                                                                                                                                       |
| Internal<br>Connections | Connections to the AXEL components:<br>CPU. <x> : pin connected to CPU (PS, processing system)<br/>pad named <x><br/>CAN.<x> : pin connected to the CAN transceiver<br/>PMIC.<x> : pin connected to the Power Manager IC<br/>LAN.<x> : pin connected to the LAN PHY<br/>SV.<x>: pin connected to voltage supervisor<br/>MTR: pin connected to voltage monitors<br/>NOR: pin connected to SPI NOR flash</x></x></x></x></x></x> |
| Ball/pin #              | Component ball/pin number connected to signal                                                                                                                                                                                                                                                                                                                                                                                  |
| Supply Group            | Power Supply Group                                                                                                                                                                                                                                                                                                                                                                                                             |
| Туре                    | Pin type: I = Input, O = Output, D= Differential, Z = High<br>impedance, S = Supply voltage, G = Ground, A = Analog<br>signal                                                                                                                                                                                                                                                                                                  |
| Voltage                 | I/O voltage                                                                                                                                                                                                                                                                                                                                                                                                                    |

# 6.1 Carrier board mating connector J1

|       |              | J1 –                 | ODD [1 - 1     | 39]             |      |         |      |
|-------|--------------|----------------------|----------------|-----------------|------|---------|------|
| Pin   | Pin Name     | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |
| J1.1  | DGND         | DGND                 | -              |                 |      |         |      |
| J1.3  | DI0 DISP CLK | CPU.DI0 DISP CLK     | N19            | NVCC            |      |         |      |
| J1.5  | DI0 PIN2     | CPU.DI0 PIN2         | N25            | NVCC            |      |         |      |
| J1.7  | DI0 PIN3     | CPU.DI0 PIN3         | N20            | NVCC            |      |         |      |
| J1.9  | DI0 PIN4     | CPU.DI0 PIN4         | P25            | NVCC            |      |         |      |
| J1.11 | DI0 PIN15    | CPU.DI0 PIN15        | N21            | NVCC            |      |         |      |
| J1.13 | DISP0 DAT0   | CPU.DISP0 DAT0       | P24            | NVCC            |      |         |      |
| J1.15 | DISP0 DAT1   | CPU.DISP0 DAT1       | P22            | NVCC            |      |         |      |
| J1.17 | DISP0 DAT2   | CPU.DISP0 DAT2       | P23            | NVCC            |      |         |      |
| J1.19 | DISP0 DAT3   | CPU.DISP0 DAT3       | P21            | NVCC            |      |         |      |
| J1.21 | DGND         | DGND                 | -              | _               |      |         |      |
| J1.23 | DISP0 DAT4   | CPU.DISP0 DAT4       | P20            | NVCC            |      |         |      |
| J1.25 | DISP0 DAT5   | CPU.DISP0 DAT5       | R25            | NVCC            |      |         |      |
| J1.27 | DISP0 DAT6   | CPU.DISP0 DAT6       | R23            | NVCC            |      |         |      |
| J1.29 | DISP0 DAT7   | CPU.DISP0 DAT7       | R24            | NVCC            |      |         |      |
| J1.31 | DISP0 DAT8   | CPU.DISP0 DAT8       | R22            | NVCC            |      |         |      |
| J1.33 | DISP0 DAT9   | CPU.DISP0 DAT9       | T25            | NVCC            |      |         |      |
| J1.35 | DISP0 DAT10  | CPU.DISP0 DAT10      | R21            | NVCC            |      |         |      |
| J1.37 | DISP0 DAT11  | CPU.DISP0 DAT11      | T23            | NVCC            |      |         |      |
| J1.39 | DISP0 DAT12  | CPU.DISP0 DAT12      | T24            | NVCC            |      |         |      |
| J1.41 | DGND         | DGND                 | -              |                 |      |         |      |
| J1.43 | DISP0 DAT13  | CPU.DISP0 DAT13      | R20            | NVCC            |      |         |      |
| J1.45 | DISP0_DAT14  | CPU.DISP0_DAT14      | U25            | NVCC            |      |         |      |
| J1.47 | DISP0_DAT15  | CPU.DISP0_DAT15      | T22            | NVCC            |      |         |      |
| J1.49 | DISP0_DAT16  | CPU.DISP0_DAT16      | T21            | NVCC            |      |         |      |
| J1.51 | DISP0_DAT17  | CPU.DISP0_DAT17      | U24            | NVCC            |      |         |      |
| J1.53 | DISP0_DAT18  | CPU.DISP0_DAT18      | V25            | NVCC            |      |         |      |
| J1.55 | DISP0_DAT19  | CPU.DISP0_DAT19      | U23            | NVCC            |      |         |      |
| J1.57 | DISP0_DAT20  | CPU.DISP0_DAT20      | U22            | NVCC            |      |         |      |
| J1.59 | DISP0_DAT21  | CPU.DISP0_DAT21      | T20            | NVCC_           |      |         |      |
| J1.61 | DGND         | DGND                 | -              |                 |      |         |      |
| J1.63 | DISP0_DAT22  | CPU.DISP0_DAT22      | V24            | NVCC_           |      |         |      |

|        |               | J1 –                 | ODD [1 - 1     | 39]             |      |         |      |
|--------|---------------|----------------------|----------------|-----------------|------|---------|------|
| Pin    | Pin Name      | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |
| J1.65  | DISP0_DAT23   | CPU.DISP0_DAT23      | W24            | NVCC_           |      |         |      |
| J1.67  | WD_SET0       | WDT.SET0             | -              |                 |      |         |      |
| J1.69  | WD_SET1       | WDT.SET0             | -              |                 |      |         |      |
| J1.71  | WD_SET2       | WDT.SET0             | -              |                 |      |         |      |
| J1.73  | USB_OTG_CHDN  | CPU.USB_OTG_CHDN     | B8             | NVCC            |      |         |      |
| J1.75  | USB_OTG_VBUS  | CPU.USB_OTG_VBUS     | E9             | NVCC            |      |         |      |
| J1.77  | USB_OTG_DN    | CPU.USB_OTG_DN       | B6             | NVCC            |      |         |      |
| J1.79  | USB_OTG_DP    | CPU.USB_OTG_DP       | A6             | NVCC            |      |         |      |
| J1.81  | DGND          | DGND                 | -              |                 |      |         |      |
| J1.83  | USB HOST DP   | CPU.USB HOST DP      | E10            | NVCC            |      |         |      |
| J1.85  | USB HOST DN   | CPU.USB HOST DN      | F10            | NVCC            |      |         |      |
| J1.87  | USB H1 VBUS   | CPU.USB H1 VBUS      | D10            | NVCC            |      |         |      |
| J1.89  | SD1 DAT0      | CPU.SD1 DAT0         | A21            | NVCC            |      |         |      |
| J1.91  | SD1 DAT1      | CPU.SD1 DAT1         | C20            | NVCC            |      |         |      |
| J1.93  | SD1 DAT2      | CPU.SD1 DAT2         | E19            | NVCC            |      |         |      |
| J1.95  | SD1 DAT3      | CPU.SD1 DAT3         | F18            | NVCC            |      |         |      |
| J1.97  | SD1 CMD       | CPU.SD1 CMD          | B21            | NVCC            |      |         |      |
| J1.99  | SD1 CLK       | CPU.SD1 CLK          | D20            | NVCC            |      |         |      |
| J1.101 | DGND          | DGND                 | -              | _               |      |         |      |
| J1.103 | SW2 1.8V/3.3V |                      |                |                 |      |         |      |
| J1.105 | ETHO LED1     | LAN.LED1/PME N1      | 17             |                 |      |         |      |
| J1.107 | ETH0 LED2     | LAN.LED2             | 15             |                 |      |         |      |
| J1.109 | DGND          | DGND                 | -              |                 |      |         |      |
|        | ETH0 TXRX0 M  | LAN.TXRXM A          | 3              |                 |      |         |      |
| J1.113 | ETHO TXRXO P  | LAN.TXRXP A          | 2              |                 |      |         |      |
| J1.115 | DGND          | DGND                 | -              |                 |      |         |      |
| J1.117 | ETH0 TXRX1 M  | LAN.TXRXM B          | 6              |                 |      |         |      |
| J1.119 | ETH0 TXRX1 P  | LAN.TXRXP B          | 5              |                 |      |         |      |
|        | DGND          | DGND                 | -              |                 |      |         |      |
|        | ETH0 TXRX2 M  | LAN.TXRXM C          | 8              |                 | 1    |         |      |
| J1.125 | ETH0 TXRX2 P  | LAN.TXRXP C          | 7              |                 |      |         |      |
|        | DGND          | DGND                 | -              |                 |      |         |      |
|        | ETH0 TXRX3 M  | LAN.TXRXM D          | 11             | 1               | 1    |         |      |
|        | ETH0 TXRX3 P  | LAN.TXRXP D          | 10             | 1               |      |         |      |
| J1.133 | DGND          | DGND                 | -              | 1               |      |         |      |
|        | RGMII MDC     | CPU.ENET MDC         | V20            | 1               |      |         |      |
| J1.137 | RGMII MDIO    | CPU.ENET MDIO        | V23            |                 |      |         |      |

| J1 – ODD [1 - 139] |            |                      |                |                 |      |         |      |
|--------------------|------------|----------------------|----------------|-----------------|------|---------|------|
| Pin                | Pin Name   | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |
| J1.139             | PMIC_VSNVS | CPU.VDD_SNVS_IN      | G11            | <u> </u>        |      |         |      |

|       |              | J1 –                 | EVEN [2 - 14   | 40]             |      |         |      |
|-------|--------------|----------------------|----------------|-----------------|------|---------|------|
| Pin   | Pin Name     | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |
| J1.2  | LVDS0_TX0_N  | CPU.LVDS0_TX0_N      | U2             |                 |      |         |      |
| J1.4  | LVDS0_TX0_P  | CPU.LVDS0_TX0_P      | U1             |                 |      |         |      |
| J1.6  | LVDS0_TX1_N  | CPU.LVDS0_TX1_N      | U4             |                 |      |         |      |
| J1.8  | LVDS0_TX1_P  | CPU.LVDS0_TX1_P      | U3             |                 |      |         |      |
| J1.10 | DGND         | DGND                 | -              |                 |      |         |      |
| J1.12 | LVDS0_TX2_N  | CPU.LVDS0_TX2_N      | V2             |                 |      |         |      |
| J1.14 | LVDS0_TX2_P  | CPU.LVDS0_TX2_P      | V1             |                 |      |         |      |
| J1.16 | LVDS0 TX3 N  | CPU.LVDS0 TX3 N      | W2             |                 |      |         |      |
| J1.18 | LVDS0_TX3_P  | CPU.LVDS0_TX3_P      | W1             |                 |      |         |      |
| J1.20 | LVDS0_CLK_N  | CPU.LVDS0_CLK_N      | V4             |                 |      |         |      |
| J1.22 | LVDS0_CLK_P  | CPU.LVDS0_CLK_P      | V3             |                 |      |         |      |
| J1.24 | DGND         | DGND                 | -              |                 |      |         |      |
| J1.26 | CSI0_MCLK    | CPU.CSI0_MCLK        | P4             |                 |      |         |      |
| J1.28 | DGND         | DGND                 | -              |                 |      |         |      |
| J1.30 | CSI0_PIXCLK  | CPU.CSI0_PIXCLK      | P1             |                 |      |         |      |
| J1.32 | CSI0_VSYNC   | CPU.CSI0_VSYNC       | N2             |                 |      |         |      |
| J1.34 | CSI0_DATA_EN | CPU.CSI0_DATA_EN     | P3             |                 |      |         |      |
| J1.36 | CSI0_DAT4    | CPU.CSI0_DAT4        | N1             |                 |      |         |      |
| J1.38 | CSI0_DAT5    | CPU.CSI0_DAT5        | P2             |                 |      |         |      |
| J1.40 | CSI0_DAT6    | CPU.CSI0_DAT6        | N4             |                 |      |         |      |
| J1.42 | CSI0_DAT7    | CPU.CSI0_DAT7        | N3             |                 |      |         |      |
| J1.44 | CSI0_DAT8    | CPU.CSI0_DAT8        | N6             |                 |      |         |      |
| J1.46 | CSI0 DAT9    | CPU.CSI0 DAT9        | N5             |                 |      |         |      |
| J1.48 | CSI0_DAT10   | CPU.CSI0_DAT10       | M1             |                 |      |         |      |
| J1.50 | DGND         | DGND                 | -              |                 |      |         |      |
| J1.52 | CSI0_DAT11   | CPU.CSI0_DAT11       | M3             |                 |      |         |      |
| J1.54 | CSI0_DAT12   | CPU.CSI0_DAT12       | M2             |                 |      |         |      |
| J1.56 | CSI0_DAT13   | CPU.CSI0_DAT13       | L1             |                 |      |         |      |
| J1.58 | CSI0_DAT14   | CPU.CSI0_DAT14       | M4             |                 |      |         |      |

|        |                                          | J1 –                 | EVEN [2 - 1    | 40]             |      |         |                                                           |
|--------|------------------------------------------|----------------------|----------------|-----------------|------|---------|-----------------------------------------------------------|
| Pin    | Pin Name                                 | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note                                                      |
| J1.60  | CSI0_DAT15                               | CPU.CSI0_DAT15       | M5             |                 |      |         |                                                           |
| J1.62  | CSI0_DAT16                               | CPU.CSI0_DAT16       | L4             |                 |      |         |                                                           |
| J1.64  | CSI0_DAT17                               | CPU.CSI0_DAT17       | L3             |                 |      |         |                                                           |
| J1.66  | CSI0_DAT18                               | CPU.CSI0_DAT18       | M6             |                 |      |         |                                                           |
| J1.68  | CSI0 DAT19                               | CPU.CSI0 DAT19       | L6             |                 |      |         |                                                           |
| J1.70  | DGND                                     | DGND                 | -              |                 |      |         |                                                           |
| J1.72  | GPIO 0                                   | CPU.GPIO 0           | T5             |                 |      |         |                                                           |
| J1.74  | GPIO 1                                   | CPU.GPIO 1           | T4             |                 |      |         |                                                           |
| J1.76  | GPIO 2                                   | CPU.GPIO 2           | T1             |                 |      |         |                                                           |
| J1.78  | GPIO 3/I2C3 SCL                          | CPU.GPIO 3           | R7             |                 |      |         |                                                           |
| J1.80  | GPIO 4                                   | CPU.GPIO 4           | R6             |                 |      |         |                                                           |
| J1.82  | GPIO 5                                   | CPU.GPIO 5           | R4             |                 |      |         |                                                           |
| J1.84  | GPIO 6/I2C3 SDA                          | CPU.GPIO 6           | T3             |                 |      |         |                                                           |
| J1.86  | GPIO 7//FLEXCAN1 H                       | CPU.GPIO 7           | R3             |                 |      |         |                                                           |
| J1.88  | GPIO 8//FLEXCAN1 L                       | CPU.GPIO 8           | R5             |                 |      |         |                                                           |
| J1.90  | DGND                                     | DGND                 | -              |                 |      |         |                                                           |
| J1.92  | GPIO 9                                   | CPU.GPIO 9           | T2             |                 |      |         |                                                           |
| J1.94  | GPIO 16                                  | CPU.GPIO 16          | R2             |                 |      |         |                                                           |
| J1.96  | GPIO 17                                  | CPU.GPIO 17          | R1             |                 |      |         |                                                           |
| J1.98  | GPIO 18                                  | CPU.GPIO 18          | P6             |                 |      |         |                                                           |
| J1.100 | GPIO 19                                  | CPU.GPIO 19          | P5             |                 |      |         |                                                           |
| J1.102 | KEY COL0/ECSPI1 SCLK                     | CPU.KEY COL0         | W5             |                 |      |         |                                                           |
| J1.104 | KEY ROW0/ECSPI1 MOSI                     | CPU.KEY ROW0         | V6             |                 |      |         |                                                           |
| J1.106 | KEY COL1/ECSPI1 MISO                     | CPU.KEY COL1         | U7             |                 |      |         |                                                           |
| J1.108 | KEY ROW1/ECSPI1 SS0                      | CPU.KEY ROW1         | U6             |                 |      |         |                                                           |
| J1.110 | DGND                                     | DGND                 | -              |                 |      |         |                                                           |
| J1.112 | KEY COL2/ECSPI1 SS1                      | CPU.KEY COL2         | W6             |                 |      |         |                                                           |
| J1.114 | KEY ROW2                                 | CPU.KEY ROW2         | W4             |                 |      |         |                                                           |
| J1.116 | KEY COL3/I2C2 SCL                        | CPU.KEY COL3         | U5             |                 |      |         |                                                           |
| J1.118 | KEY ROW3/I2C2 SDA                        | CPU.KEY ROW3         | T7             |                 |      |         |                                                           |
| J1.120 | VGEN4 1V8 I                              |                      |                |                 |      |         |                                                           |
| J1.122 | NVCC_AXEL_I/O_3.3V/1.8V<br>(BOARD_PGOOD) |                      | P7             |                 |      |         | BOARD_PGOOD signal. Please refer to sections 5.1 and 5.2. |
| J1.124 | RTC_VBAT                                 | RTC.VBAT             | 6              |                 |      |         |                                                           |
| J1.126 | PMIC_LICELL                              | PMIC.LICELL          | 42             |                 |      |         |                                                           |
| J1.128 | SD2 CMD                                  | CPU.SD2 CMD          | F19            |                 |      |         |                                                           |
| J1.130 | DGND                                     | DGND                 | -              |                 |      |         |                                                           |

|        | J1 – EVEN [2 - 140] |                      |                |                 |      |         |      |  |  |
|--------|---------------------|----------------------|----------------|-----------------|------|---------|------|--|--|
| Pin    | Pin Name            | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |  |  |
| J1.132 | SD2 CLK             | CPU.SD2 CLK          | C21            |                 |      |         |      |  |  |
| J1.134 | SD2_DATA0           | CPU.SD2_DATA0        | A22            |                 |      |         |      |  |  |
| J1.136 | SD2 DATA1           | CPU.SD2 DATA1        | E20            |                 |      |         |      |  |  |
| J1.138 | SD2 DATA2           | CPU.SD2 DATA2        | A23            |                 |      |         |      |  |  |
| J1.140 | SD2_DATA3           | CPU.SD2_DATA3        | B22            |                 |      |         |      |  |  |

## 6.2 Carrier board mating connector J2

|       | J2 – ODD [1-139] |                      |                |                 |      |         |      |  |  |  |
|-------|------------------|----------------------|----------------|-----------------|------|---------|------|--|--|--|
| Pin   | Pin Name         | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |  |  |  |
| J2.1  | DGND             | DGND                 | -              |                 |      |         |      |  |  |  |
| J2.3  | EIM_DA0          | CPU.EIM_DA0          | L20            |                 |      |         |      |  |  |  |
| J2.5  | EIM_DA1          | CPU.EIM_DA1          | J25            |                 |      |         |      |  |  |  |
| J2.7  | EIM DA2          | CPU.EIM DA2          | L21            |                 |      |         |      |  |  |  |
| J2.9  | EIM DA3          | CPU.EIM DA3          | K24            |                 |      |         |      |  |  |  |
| J2.11 | EIM DA4          | CPU.EIM DA4          | L22            |                 |      |         |      |  |  |  |
| J2.13 | EIM DA5          | CPU.EIM DA5          | L23            |                 |      |         |      |  |  |  |
| J2.15 | EIM DA6          | CPU.EIM DA6          | K25            |                 |      |         |      |  |  |  |
| J2.17 | EIM DA7          | CPU.EIM DA7          | L25            |                 |      |         |      |  |  |  |
| J2.19 | EIM DA8          | CPU.EIM DA8          | L24            |                 |      |         |      |  |  |  |
| J2.21 | DGND             | DGND                 | -              |                 |      |         |      |  |  |  |
| J2.23 | EIM DA9          | CPU.EIM DA9          | M21            |                 |      |         |      |  |  |  |
| J2.25 | EIM_DA10         | CPU.EIM_DA10         | M22            |                 |      |         |      |  |  |  |
| J2.27 | EIM_DA11         | CPU.EIM_DA11         | M20            |                 |      |         |      |  |  |  |
| J2.29 | EIM_DA12         | CPU.EIM_DA12         | M24            |                 |      |         |      |  |  |  |
| J2.31 | EIM DA13         | CPU.EIM DA13         | M23            |                 |      |         |      |  |  |  |
| J2.33 | EIM_DA14         | CPU.EIM_DA14         | N23            |                 |      |         |      |  |  |  |
| J2.35 | EIM_DA15         | CPU.EIM_DA15         | N24            |                 |      |         |      |  |  |  |
| J2.37 | EIM_D16          | CPU.EIM_D16          | C25            |                 |      |         |      |  |  |  |
| J2.39 | EIM_D17          | CPU.EIM_D17          | F21            |                 |      |         |      |  |  |  |
| J2.41 | DGND             | DGND                 | -              |                 |      |         |      |  |  |  |
| J2.43 | EIM_D18          | CPU.EIM_D18          | D24            |                 |      |         |      |  |  |  |
| J2.45 | EIM_D19          | CPU.EIM_D19          | G21            |                 |      |         |      |  |  |  |

|        | J2 – ODD [1-139] |                      |                |                 |      |         |      |  |  |  |
|--------|------------------|----------------------|----------------|-----------------|------|---------|------|--|--|--|
| Pin    | Pin Name         | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |  |  |  |
| J2.47  | EIM D20          | CPU.EIM D20          | G20            |                 |      |         |      |  |  |  |
| J2.49  | EIM D21          | CPU.EIM D21          | H20            |                 |      |         |      |  |  |  |
| J2.51  | EIM D22          | CPU.EIM D22          | E23            |                 |      |         |      |  |  |  |
| J2.53  | EIM D23          | CPU.EIM D23          | D25            |                 |      |         |      |  |  |  |
| J2.55  | EIM D24          | CPU.EIM D24          | F22            |                 |      |         |      |  |  |  |
| J2.57  | EIM D25          | CPU.EIM D25          | G22            |                 |      |         |      |  |  |  |
| J2.59  | EIM D26          | CPU.EIM D26          | E24            |                 |      |         |      |  |  |  |
| J2.61  | DGND             | DGND                 | -              |                 |      |         |      |  |  |  |
| J2.63  | EIM D27          | CPU.EIM D27          | E25            |                 |      |         |      |  |  |  |
| J2.65  | EIM D28          | CPU.EIM D28          | G23            |                 |      |         |      |  |  |  |
| J2.67  | EIM D29          | CPU.EIM D29          | J19            |                 |      |         |      |  |  |  |
| J2.69  | EIM D30          | CPU.EIM D30          | J20            |                 |      |         |      |  |  |  |
| J2.71  | EIM D31          | CPU.EIM D31          | H21            |                 |      |         |      |  |  |  |
| J2.73  | EIM A16          | CPU.EIM A16          | H25            |                 |      |         |      |  |  |  |
| J2.75  | EIM A17          | CPU.EIM A17          | G24            |                 |      |         |      |  |  |  |
| J2.77  | EIM A18          | CPU.EIM A18          | J22            |                 |      |         |      |  |  |  |
| J2.79  | EIM A19          | CPU.EIM A19          | G25            |                 |      |         |      |  |  |  |
| J2.81  | DGND             | DGND                 | -              |                 |      |         |      |  |  |  |
| J2.83  | EIM A20          | CPU.EIM A20          | H22            |                 |      |         |      |  |  |  |
| J2.85  | EIM A21          | CPU.EIM A21          | H23            |                 |      |         |      |  |  |  |
| J2.87  | EIM A22          | CPU.EIM A22          | F24            |                 |      |         |      |  |  |  |
| J2.89  | EIM A23          | CPU.EIM A23          | J21            |                 |      |         |      |  |  |  |
| J2.91  | EIM A24          | CPU.EIM A24          | F25            |                 |      |         |      |  |  |  |
| J2.93  | EIM A25          | CPU.EIM A25          | H19            |                 |      |         |      |  |  |  |
| J2.95  | EIM LBA          | CPU.EIM LBA          | K22            |                 |      |         |      |  |  |  |
| J2.97  | EIM OE           | CPU.EIM OE           | J24            |                 |      |         |      |  |  |  |
| J2.99  | EIM RW           | CPU.EIM RW           | K20            |                 |      |         |      |  |  |  |
| J2.101 | DGND             | DGND                 | -              |                 |      |         |      |  |  |  |
| J2.101 | EIM BCLK         | CPU.EIM BCLK         | N22            |                 |      |         |      |  |  |  |
| J2.105 | EIM WAIT         | CPU.EIM WAIT         | M25            |                 |      |         |      |  |  |  |
| J2.107 | EIM EB0          | CPU.EIM EB0          | K21            |                 |      |         |      |  |  |  |
| J2.107 | EIM EB1          | CPU.EIM EB1          | K23            |                 |      |         |      |  |  |  |
| J2.111 | EIM EB2          | CPU.EIM EB2          | E22            |                 |      |         |      |  |  |  |
| J2.113 | EIM EB3          | CPU.EIM EB3          | F23            |                 |      |         |      |  |  |  |
| J2.115 | EIM CS0          | CPU.EIM_CS0          | H24            |                 |      |         |      |  |  |  |
| J2.117 | EIM CS1          | CPU.EIM CS1          | J23            |                 |      |         |      |  |  |  |
| J2.119 | DGND             | DGND                 | -              |                 |      |         |      |  |  |  |

|        | J2 – ODD [1-139]    |                      |                |                 |      |         |      |  |  |  |
|--------|---------------------|----------------------|----------------|-----------------|------|---------|------|--|--|--|
| Pin    | Pin Name            | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |  |  |  |
| J2.121 | PMIC_PROG_VPGM      | PMIC.VDDOTP          | 47             |                 |      |         |      |  |  |  |
| J2.123 | PMIC_PROG_GATE_CTRL |                      | -              |                 |      |         |      |  |  |  |
| J2.125 | 2V8-4V5             | INPUT VOLTAGE        | -              |                 |      |         |      |  |  |  |
| J2.127 | 2V8-4V5             | INPUT VOLTAGE        | -              |                 |      |         |      |  |  |  |
| J2.129 | 2V8-4V5             | INPUT VOLTAGE        | -              |                 |      |         |      |  |  |  |
| J2.131 | 2V8-4V5             | INPUT VOLTAGE        | -              |                 |      |         |      |  |  |  |
| J2.133 | 2V8-4V5             | INPUT VOLTAGE        | -              |                 |      |         |      |  |  |  |
| J2.135 | 2V8-4V5             | INPUT VOLTAGE        | -              |                 |      |         |      |  |  |  |
| J2.137 | 2V8-4V5             | INPUT VOLTAGE        | -              |                 |      |         |      |  |  |  |
| J2.139 | 2V8-4V5             | INPUT VOLTAGE        | -              |                 |      |         |      |  |  |  |

|       | J2 – EVEN [2-140]   |                      |               |                 |      |         |      |  |  |  |
|-------|---------------------|----------------------|---------------|-----------------|------|---------|------|--|--|--|
| Pin   | Pin Name            | Internal Connections | Ball/pin<br># | Supply<br>Group | Туре | Voltage | Note |  |  |  |
| J2.2  | NANDF_CS0_B         | CPU.NANDF_CS0_B      | F15           |                 |      |         |      |  |  |  |
| J2.4  | NANDF_CS1_B         | CPU.NANDF_CS1_B      | C16           |                 |      |         |      |  |  |  |
| J2.6  | NANDF_CS2_B         | CPU.NANDF_CS2_B      | A17           |                 |      |         |      |  |  |  |
| J2.8  | NANDF_CS3_B         | CPU.NANDF_CS3_B      | D16           |                 |      |         |      |  |  |  |
| J2.10 | DGND                | DGND                 | -             |                 |      |         |      |  |  |  |
| J2.12 | NANDF_D0            | CPU.NANDF_D0         | A18           |                 |      |         |      |  |  |  |
| J2.14 | NANDF_D1            | CPU.NANDF_D1         | C17           |                 |      |         |      |  |  |  |
| J2.16 | NANDF_D2            | CPU.NANDF_D2         | F16           |                 |      |         |      |  |  |  |
| J2.18 | NANDF_D3            | CPU.NANDF_D3         | D17           |                 |      |         |      |  |  |  |
| J2.20 | NANDF_D4            | CPU.NANDF_D4         | A19           |                 |      |         |      |  |  |  |
| J2.22 | NANDF_D5            | CPU.NANDF_D5         | B18           |                 |      |         |      |  |  |  |
| J2.24 | NANDF_D6            | CPU.NANDF_D6         | E17           |                 |      |         |      |  |  |  |
| J2.26 | NANDF_D7            | CPU.NANDF_D7         | C18           |                 |      |         |      |  |  |  |
| J2.28 | SD4_CLK/NANDF_WE_B  | CPU.SD4_CLK          | E16           |                 |      |         |      |  |  |  |
| J2.30 | DGND                | DGND                 | -             |                 |      |         |      |  |  |  |
| J2.32 | SD4_DATA0/NANDF_DQS | CPU.SD4_DATA         | D18           |                 |      |         |      |  |  |  |
| J2.34 | SD4_CMD/NANDF_RE_B  | CPU.SD4_CMD          | B17           |                 |      |         |      |  |  |  |
| J2.36 | NANDF_ALE           | CPU.NANDF_ALE        | A16           |                 |      |         |      |  |  |  |
| J2.38 | NANDF_CLE           | CPU.NANDF_CLE        | C15           |                 |      |         |      |  |  |  |
| J2.40 | NANDF_WP_B          | CPU.NANDF_WP_B       | E15           |                 |      |         |      |  |  |  |

|        |                   | J2 -                    | - EVEN [2-14  | 0]              |      |         |                                           |
|--------|-------------------|-------------------------|---------------|-----------------|------|---------|-------------------------------------------|
| Pin    | Pin Name          | Internal Connections    | Ball/pin<br># | Supply<br>Group | Туре | Voltage | Note                                      |
| J2.42  | NANDF RB0         | CPU.NANDF RB0           | B16           |                 |      |         |                                           |
| J2.44  | SD4 DATA1         | CPU.SD4 DATA1           | B19           |                 |      |         |                                           |
| J2.46  | SD4 DATA2         | CPU.SD4 DATA2           | F17           |                 |      |         |                                           |
| J2.48  | SD4 DATA3         | CPU.SD4 DATA3           | A20           |                 |      |         |                                           |
| J2.50  | DGND              | DGND                    | -             |                 |      |         |                                           |
| J2.52  | SD4 DATA4         | CPU.SD4 DATA4           | E18           |                 |      |         |                                           |
| J2.54  | SD4 DATA5         | CPU.SD4 DATA5           | C19           |                 |      |         |                                           |
| J2.56  | SD4 DATA6         | CPU.SD4 DATA6           | B20           |                 |      |         |                                           |
| J2.58  | SD4 DATA7         | CPU.SD4 DATA7           | D19           |                 |      |         |                                           |
| J2.60  | PMIC SDWNB        | PMIC.SDWNB              | 2             |                 |      |         |                                           |
| J2.62  | TEST MODE         | CPU.TEST MODE           | E12           |                 |      |         |                                           |
| J2.64  | RTC INTN/SQW      | RTC.INT/SQW             | 3             |                 |      |         |                                           |
| J2.66  | RTC RSTN          | RTC.RST                 | 4             |                 |      |         |                                           |
| J2.68  | RTC 32KHZ         | RTC.32KHZ               | 1             |                 |      |         |                                           |
| J2.70  | DGND              | DGND                    | -             |                 |      |         |                                           |
| J2.72  | PMIC INT B        | PMIC.INTB               | 1             |                 |      |         |                                           |
| J2.74  | PMIC PWRON        | PMIC.PWRON              | 56            |                 |      |         |                                           |
| J2.76  | CPU ONOFF         | CPU.CPU ONOFF           | D12           |                 |      |         |                                           |
| J2.78  | CPU PORN          | CPU.CPU PORN            | C11           |                 |      |         |                                           |
| J2.80  | CPU_PMIC_STBY_REQ | CPU.CPU PMIC STBY REQ   | F11           |                 |      |         |                                           |
| J2.82  | CPU PMIC ON REQ   | CPU.CPU PMIC ON REQ     | D11           |                 |      |         |                                           |
| J2.84  | BOOT MODE0        | CPU.BOOT MODE0          | C12           |                 |      |         |                                           |
| J2.86  | BOOT MODE1        | CPU.BOOT MODE1          | F12           |                 |      |         |                                           |
| J2.88  | MRSTN             | MTR.MR                  | 6             |                 |      |         |                                           |
| J2.90  | DGND              | DGND                    | -             |                 |      |         |                                           |
| J2.92  | JTAG_TCK          | CPU.JTAG_TCK            | H5            |                 |      |         |                                           |
| J2.94  | JTAG_VREF         |                         | -             |                 |      |         |                                           |
| J2.96  | JTAG TDI          | CPU.JTAG TDI            | G5            |                 |      |         |                                           |
| J2.98  | JTAG_TDO          | CPU.JTAG_TDO            | G6            |                 |      |         |                                           |
| J2.100 | JTAG_TMS          | CPU.JTAG_TMS            | C3            |                 |      |         |                                           |
| J2.102 | JTAG_NTRST        | CPU.JTAG_TRST           | C2            |                 |      |         |                                           |
| J2.104 | NOR_WP            | NOR.WP                  | C4            |                 |      |         | Pulled-up internally at 3.3V by SPI flash |
| J2.106 | NVCC_CSI_EXT      | INTERNAL VOLTAGE SWITCH |               |                 |      |         | Please refer to section 5.1               |
| J2.108 | DGND              | DGND                    | -             |                 |      |         |                                           |
| J2.110 | NVCC EIM EXT      | INTERNAL VOLTAGE SWITCH |               |                 |      |         | Please refer to section 5.1               |
| J2.112 | DGND              | DGND                    | -             |                 |      |         |                                           |
| J2.114 | NVCC_SD3_EXT      | INTERNAL VOLTAGE SWITCH |               |                 |      |         | Please refer to section 5.1               |

|        | J2 – EVEN [2-140] |                         |               |                 |      |         |                             |  |
|--------|-------------------|-------------------------|---------------|-----------------|------|---------|-----------------------------|--|
| Pin    | Pin Name          | Internal Connections    | Ball/pin<br># | Supply<br>Group | Туре | Voltage | Note                        |  |
| J2.116 | DGND              | DGND                    | -             |                 |      |         |                             |  |
| J2.118 | NVCC_LCD_EXT      | INTERNAL VOLTAGE SWITCH |               |                 |      |         | Please refer to section 5.1 |  |
| J2.120 | DGND              | DGND                    | -             |                 |      |         |                             |  |
| J2.122 | PMIC_PROG_SCL     |                         | -             |                 |      |         |                             |  |
| J2.124 | PMIC_PROG_SDA     |                         | -             |                 |      |         |                             |  |
| J2.126 | 2V8-4V5           | INPUT VOLTAGE           | -             |                 |      |         |                             |  |
| J2.128 | 2V8-4V5           | INPUT VOLTAGE           | -             |                 |      |         |                             |  |
| J2.130 | 2V8-4V5           | INPUT VOLTAGE           | -             |                 |      |         |                             |  |
| J2.132 | 2V8-4V5           | INPUT VOLTAGE           | -             |                 |      |         |                             |  |
| J2.134 | 2V8-4V5           | INPUT VOLTAGE           | -             |                 |      |         |                             |  |
| J2.136 | 2V8-4V5           | INPUT VOLTAGE           | -             |                 |      |         |                             |  |
| J2.138 | 2V8-4V5           | INPUT VOLTAGE           | -             |                 |      |         |                             |  |
| J2.140 | 2V8-4V5           | INPUT VOLTAGE           | -             |                 |      |         |                             |  |

# 6.3 **Carrier board mating connector J3**

|       | J3 – ODD [1-139] |                      |                |                 |      |         |      |  |
|-------|------------------|----------------------|----------------|-----------------|------|---------|------|--|
| Pin   | Pin Name         | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |  |
| J3.1  | SD3_CLK          | CPU.SD3_CLK          | D14            |                 |      |         |      |  |
| J3.3  | DGND             | DGND                 | -              |                 |      |         |      |  |
| J3.5  | SD3_CMD          | CPU.SD3_CMD          | B13            |                 |      |         |      |  |
| J3.7  | SD3_RST          | CPU.SD3_RST          | D15            |                 |      |         |      |  |
| J3.9  | DGND             | DGND                 | -              |                 |      |         |      |  |
| J3.11 | SD3_DATA0        | CPU.SD3_DATA0        | E14            |                 |      |         |      |  |
| J3.13 | SD3 DATA1        | CPU.SD3 DATA1        | F14            |                 |      |         |      |  |
| J3.15 | SD3 DATA2        | CPU.SD3 DATA2        | A15            |                 |      |         |      |  |
| J3.17 | SD3 DATA3        | CPU.SD3 DATA3        | B15            |                 |      |         |      |  |
| J3.19 | SD3 DATA4        | CPU.SD3 DATA4        | D13            |                 |      |         |      |  |
| J3.21 | SD3 DATA5        | CPU.SD3 DATA5        | C13            |                 |      |         |      |  |
| J3.23 | SD3 DATA6        | CPU.SD3 DATA6        | E13            |                 |      |         |      |  |
| J3.25 | SD3_DATA7        | CPU.SD3_DATA7        | F13            |                 |      |         |      |  |
| J3.27 | DGND             | DGND                 | -              |                 |      |         |      |  |
| J3.29 | MLB_CN           | CPU.MLB_CN           | A11            |                 |      |         |      |  |

|        | J3 – ODD [1-139]      |                      |                |                 |      |         |      |
|--------|-----------------------|----------------------|----------------|-----------------|------|---------|------|
| Pin    | Pin Name              | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |
| J3.31  | MLB CP                | CPU.MLB CP           | B11            |                 |      |         |      |
| J3.33  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.35  | MLB SN                | CPU.MLB SN           | A9             |                 |      |         |      |
| J3.37  | MLB SP                | CPU.MLB SP           | B9             |                 |      |         |      |
| J3.39  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.41  | MLB DN                | CPU.MLB DN           | B10            |                 |      |         |      |
| J3.43  | MLB DP                | CPU.MLB DP           | A10            |                 |      |         |      |
| J3.45  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.47  | SATA RXN              | CPU.SATA RXN         | A14            |                 |      |         |      |
| J3.49  | SATA RXP              | CPU.SATA RXP         | B14            |                 |      |         |      |
| J3.51  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.53  | SATA TXN              | CPU.SATA TXN         | B12            |                 |      |         |      |
| J3.55  | SATA TXP              | CPU.SATA TXP         | A12            |                 |      |         |      |
| J3.57  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.59  | CPU RGMII TXC CONN    | CPU.RGMII TXC        | D21            |                 |      |         |      |
| J3.61  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.63  | CPU RGMII TD0 CONN    | CPU.RGMII TD0        | C22            |                 |      |         |      |
| J3.65  | CPU RGMII TD1 CONN    | CPU.RGMII TD1        | F20            |                 |      |         |      |
| J3.67  | CPU RGMII TD2 CONN    | CPU.RGMII TD2        | E21            |                 |      |         |      |
| J3.69  | CPU RGMII TD3 CONN    | CPU.RGMII TD3        | A24            |                 |      |         |      |
| J3.71  | CPU RGMII TX CTL CONN | CPU.RGMII TX CTL     | C23            |                 |      |         |      |
| J3.73  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.75  | CPU RGMII RXC CONN    | CPU.RGMII RXC        | B25            |                 |      |         |      |
| J3.77  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.79  | CPU RGMII RD0 CONN    | CPU.RGMII RD0        | C24            |                 |      |         |      |
| J3.81  | CPU RGMII RD1 CONN    | CPU.RGMII RD1        | B23            |                 |      |         |      |
| J3.83  | CPU RGMII RD2 CONN    | CPU.RGMII RD2        | B24            |                 |      |         |      |
| J3.85  | CPU RGMII RD3 CONN    | CPU.RGMII RD3        | D23            |                 |      |         |      |
| J3.87  | CPU RGMII RX CTL CONN | CPU.RGMII RX CTL     | D22            |                 |      |         |      |
| J3.89  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.91  | ETH0 CLK125 NDO       | LAN.CLK125 NDO       | 41             |                 |      |         |      |
| J3.93  | DGND                  | DGND                 | -              |                 |      |         |      |
| J3.95  | ETHO INTN             | LAN.INT N/PME N2     | 38             |                 |      |         |      |
| J3.97  | ENET TX EN/GPIO1 IO28 | CPU.ENET TX EN       | V21            |                 |      |         |      |
| J3.99  | TAMPER                | CPU.TAMPER           | E11            |                 |      |         |      |
| J3.101 | ENET REF CLK//VDDCORE | CPU.ENET REF CLK     | V22            |                 |      |         |      |
| J3.103 | ENET RX ER//VDDSOC    | CPU.ENET RX ER       | W23            |                 |      |         |      |

|        | J3 – ODD [1-139]                           |                      |                |                 |      |         |      |  |
|--------|--------------------------------------------|----------------------|----------------|-----------------|------|---------|------|--|
| Pin    | Pin Name                                   | Internal Connections | Ball/<br>pin # | Supply<br>Group | Туре | Voltage | Note |  |
| J3.105 | ENET RXD0//DDR 1V5                         | CPU.ENET RXD0        | W21            |                 |      |         |      |  |
| J3.107 | ENET_RXD1                                  | CPU.ENET_RXD1        | W22            |                 |      |         |      |  |
| J3.109 | ENET_TXD0//BB_3.3V/2.5V                    | CPU.ENET_TXD0        | U20            |                 |      |         |      |  |
| J3.111 | ENET_TXD1//1V2_ETH                         | CPU.ENET_TXD1        | W20            |                 |      |         |      |  |
| J3.113 | KEY_COL4//ENET_CRS_DV//<br>VDDHIGH_VPH     | CPU.KEY_COL4         | Т6             |                 |      |         |      |  |
| J3.115 | KEY ROW4//VDDSOC CAP                       | CPU.KEY ROW4         | V5             |                 |      |         |      |  |
| J3.117 | WDT_WDI//VDDPU                             | WDT.WDI              | 1              |                 |      |         |      |  |
| J3.119 | VDD_ARM23_CAP//VGEN4_1<br>V8               |                      | -              |                 |      |         |      |  |
| J3.121 | VDD_ARM01_CAP//VGEN5_2<br>V8//VDD VBUS CAP |                      | -              |                 |      |         |      |  |
| J3.123 | VDD_SNVS_CAP//VGEN3_2V<br>5//NVCC PLL OUT  |                      | -              |                 |      |         |      |  |
| J3.125 | VGEN1                                      |                      | -              |                 |      |         |      |  |
| J3.127 | VGEN2                                      |                      | -              |                 |      |         |      |  |
| J3.129 | VGEN6                                      |                      | -              |                 |      |         |      |  |
| J3.131 | SW4_XV/1.8V                                |                      | -              |                 |      |         |      |  |
| J3.133 | PMIC_SWBST_SUPPLY                          |                      | -              |                 |      |         |      |  |
| J3.135 | PMIC_SWBST_SUPPLY                          |                      | -              |                 |      |         |      |  |
| J3.137 | PMIC_SWBST_SUPPLY                          |                      | -              |                 |      |         |      |  |
| J3.139 | DGND                                       | DGND                 | -              |                 |      |         |      |  |

|       | J3 – EVEN [2-140] |                      |               |                 |      |         |      |  |
|-------|-------------------|----------------------|---------------|-----------------|------|---------|------|--|
| Pin   | Pin Name          | Internal Connections | Ball/pin<br># | Supply<br>Group | Туре | Voltage | Note |  |
| J3.2  | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.4  | CSI CLK0M         | CPU.CSI CLK0M        | F4            |                 |      |         |      |  |
| J3.6  | CSI CLK0P         | CPU.CSI CLK0P        | F3            |                 |      |         |      |  |
| J3.8  | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.10 | CSI D0M           | CPU.CSI DOM          | E4            |                 |      |         |      |  |
| J3.12 | CSI D0P           | CPU.CSI D0P          | E3            |                 |      |         |      |  |
| J3.14 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.16 | CSI D1M           | CPU.CSI D1M          | D1            |                 |      |         |      |  |
| J3.18 | CSI D1P           | CPU.CSI D1P          | D2            |                 |      |         |      |  |
| J3.20 | DGND              | DGND                 | -             |                 |      |         |      |  |

|       | J3 – EVEN [2-140] |                      |               |                 |      |         |      |  |
|-------|-------------------|----------------------|---------------|-----------------|------|---------|------|--|
| Pin   | Pin Name          | Internal Connections | Ball/pin<br># | Supply<br>Group | Туре | Voltage | Note |  |
| J3.22 | CSI D2M           | CPU.CSI D2M          | E1            |                 |      |         |      |  |
| J3.24 | CSI D2P           | CPU.CSI D2P          | E2            |                 |      |         |      |  |
| J3.26 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.28 | CSI D3M           | CPU.CSI D3M          | F2            |                 |      |         |      |  |
| J3.30 | CSI D3P           | CPU.CSI D3P          | F1            |                 |      |         |      |  |
| J3.32 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.34 | DSI CLK0M         | CPU.DSI CLK0M        | H3            |                 |      |         |      |  |
| J3.36 | DSI CLK0P         | CPU.DSI CLK0P        | H4            |                 |      |         |      |  |
| J3.38 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.40 | DSI DOM           | CPU.DSI DOM          | G2            |                 |      |         |      |  |
| J3.42 | DSI DOP           | CPU.DSI DOP          | G1            |                 |      |         |      |  |
| J3.44 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.46 | DSI D1M           | CPU.DSI D1M          | H2            |                 |      |         |      |  |
| J3.48 | DSI D1P           | CPU.DSI D1P          | H1            |                 |      |         |      |  |
| J3.50 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.52 | LVDS1 TX0 N       | CPULVDS1 TX0 N       | Y1            |                 |      |         |      |  |
| J3.54 | LVDS1 TX0 P       | CPU.LVDS1 TX0 P      | Y2            |                 |      |         |      |  |
| J3.56 | DGND              |                      | -             |                 |      |         |      |  |
| J3.58 | LVDS1 TX1 N       | CPU.LVDS1 TX1 N      | AA2           |                 |      |         |      |  |
| J3.60 | LVDS1 TX1 P       | CPULVDS1 TX1 P       | AA1           |                 |      |         |      |  |
| J3.62 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.64 | LVDS1 TX2 N       | CPU.LVDS1 TX2 N      | AB1           |                 |      |         |      |  |
| J3.66 | LVDS1 TX2 P       | CPU.LVDS1 TX2 P      | AB2           |                 |      |         |      |  |
| J3.68 |                   |                      | -             |                 |      |         |      |  |
| J3.70 | LVDS1 CLK N       | CPU.LVDS1 CLK N      | Y3            |                 |      |         |      |  |
| J3.72 | LVDS1 CLK P       | CPU.LVDS1 CLK P      | Y4            |                 |      |         |      |  |
| J3.74 |                   |                      | -             |                 |      |         |      |  |
| J3.76 | LVDS1 TX3 N       | CPU.LVDS1 TX3 N      | AA3           |                 |      |         |      |  |
| J3.78 | LVDS1 TX3 P       | CPULVDS1 TX3 P       | AA4           |                 |      |         |      |  |
| J3.80 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.82 | HDMI CLKN         | CPU.HDMI CLKN        | J5            |                 |      |         |      |  |
| J3.84 | HDMI CLKP         |                      | J6            |                 |      |         |      |  |
| J3.86 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.88 | HDMI DON          | CPU.HDMI DON         | K5            |                 |      |         |      |  |
| J3.90 | HDMI_DOP          |                      | K6            |                 |      |         |      |  |
| J3.92 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.94 | HDMI D1N          | CPU.HDMI D1N         | J3            |                 |      |         |      |  |

|        | J3 – EVEN [2-140] |                      |               |                 |      |         |      |  |
|--------|-------------------|----------------------|---------------|-----------------|------|---------|------|--|
| Pin    | Pin Name          | Internal Connections | Ball/pin<br># | Supply<br>Group | Туре | Voltage | Note |  |
| J3.96  | HDMI_D1P          | CPU.HDMI_D1P         | J4            |                 |      |         |      |  |
| J3.98  | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.100 | HDMI_D2N          | CPU.HDMI_D2N         | K3            |                 |      |         |      |  |
| J3.102 | HDMI_D2P          | CPU.HDMI_D2P         | K4            |                 |      |         |      |  |
| J3.104 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.106 | HDMI_CEC_IN       | CPU.HDMI_DDCCEC      | K2            |                 |      |         |      |  |
| J3.108 | HDMI HPD          | CPU.HDMI HPD         | K1            |                 |      |         |      |  |
| J3.110 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.112 | CLK1_N            | CPU.CLK1_N           | C7            |                 |      |         |      |  |
| J3.114 | CLK1 P            | CPU.CLK1 P           | D7            |                 |      |         |      |  |
| J3.116 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.118 | CLK2_N            | CPU.CLK2_N           | C5            |                 |      |         |      |  |
| J3.120 | CLK2 P            | CPU.CLK2 P           | D5            |                 |      |         |      |  |
| J3.122 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.124 | PCIE_RXN          | CPU.PCIE_RXN         | B1            |                 |      |         |      |  |
| J3.126 | PCIE RXP          | CPU.PCIE RXP         | B2            |                 |      |         |      |  |
| J3.128 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.130 | PCIE_TXN          | CPU.PCIE_TXN         | A3            |                 |      |         |      |  |
| J3.132 | PCIE_TXP          | CPU.PCIE_TXP         | B3            |                 |      |         |      |  |
| J3.134 | DGND              | DGND                 | -             |                 |      |         |      |  |
| J3.136 | PMIC_5V           |                      | -             |                 |      |         |      |  |
| J3.138 | PMIC_5V           |                      | -             |                 |      |         |      |  |
| J3.140 | DGND              | DGND                 | -             |                 |      |         |      |  |

v.1.0.5

# **7** Peripheral interfaces

AXEL modules implement a number of peripheral interfaces through the J1, J2 and J3 connectors. The following notes apply to those interfaces:

- Some interfaces/signals are available only with/without certain configuration options of the AXEL module. Each signal's availability is noted in the "Notes" column on the table of each interface.
- The peripherals described in the following sections represent the default configuration for the AXEL SOM, which match with the features provided by the electronics implemented on the module.

The signals for each interface are described in the related tables. The following notes summarize the column headers for these tables:

- "Pin name" The symbolic name of each signal
- "Conn. Pin" The pin number on the module connectors
- "Function" Signal description
- "Notes" This column summarizes configuration requirements and recommendations for each signal.

#### 7.1 Notes on pin assignment

For further information, please refer to section 5.7 "Multiplexing".

## 7.2 Gigabit Ethernet

On-board Ethernet PHY (Micrel KSZ9031RNX) provides interface signals required to implement the 10/100/1000 Mbps Ethernet port. The transceiver is connected to the triple speed Ethernet MAC (ENET module) through RGMII interface.

| Pin name     | Conn.<br>Pin | Function                                      | Notes |
|--------------|--------------|-----------------------------------------------|-------|
| ETH0_TXRX0_P | J1.113       | Media Dependent<br>Interface[0], positive pin |       |
| ETH0_TXRX0_M | J1.111       | Media Dependent<br>Interface[0], negative pin |       |

| Pin name     | Conn.<br>Pin | Function                                      | Notes |
|--------------|--------------|-----------------------------------------------|-------|
| ETH0_TXRX1_P | J1.119       | Media Dependent<br>Interface[1], positive pin |       |
| ETH0_TXRX1_M | J1.117       | Media Dependent<br>Interface[1], negative pin |       |
| ETH0_TXRX2_P | J1.125       | Media Dependent<br>Interface[2], positive pin |       |
| ETH0_TXRX2_M | J1.123       | Media Dependent<br>Interface[2], negative pin |       |
| ETH0_TXRX3_P | J1.131       | Media Dependent<br>Interface[3], positive pin |       |
| ETH0_TXRX3_M | J1.129       | Media Dependent<br>Interface[3], negative pin |       |
| RGMII_MDIO   | J1.137       | Management Data<br>Input/Output               |       |
| RGMII_MDC    | J1.135       | Management Data Clock<br>input                |       |
| ETH0_INTn    | J3.95        | Interrupt output                              |       |
| ETH0_LED1    | J1.105       | Activity LED                                  |       |
| ETH0_LED2    | J1.107       | Link LED                                      |       |

#### 7.3 USB

AXEL provides two USB ports with integrated PHY, one USB Host 2.0 (High Speed, up to 480 Mbps) and one USB 2.0 On-The-Go (OTG).

#### 7.3.1 USB Host

| Pin name    | Conn.<br>Pin | Function                  | Notes |
|-------------|--------------|---------------------------|-------|
| USB_HOST_DP | J1.83        | D+ pin of the USB cable   |       |
| USB_HOST_DN | J1.85        | D- pin of the USB cable   |       |
| USB_H1_VBUS | J1.87        | VBUS pin of the USB cable |       |

#### 7.3.2 USB OTG

| Pin name     | Conn.<br>Pin    | Function                  | Notes |
|--------------|-----------------|---------------------------|-------|
| USB_OTG_DN   | J1.77           | D- pin of the USB cable   |       |
| USB_OTG_DP   | J1.79           | D+ pin of the USB cable   |       |
| USB_OTG_VBUS | J1.75           | VBUS pin of the USB cable |       |
| USB_OTG_ID   | J2.113<br>J1.74 | USB OTG ID                |       |
| USB_OTG_CHDn | J1.73           | Charge detect signal      |       |

## 7.4 Video Output ports

i.MX6 implements two (identical) Image Processing Units (IPUs), which provide connectivity to displays and related processing, synchronization and control. Each IPU has two display ports - each controlled by a DI module - providing a connection to displays and external devices, either directly (parallel interface) or via bridges (MIPI, LVDS, HDMI). Each IPU has 2 display ports, up to four external ports can be active at any given time. (Additional asynchronous data flows can be sent though the parallel ports and the MIPI/DSI port.). The following is a list of the available interfaces:

- Two parallel ports, driven directly by each of the IPUs
- Two LVDS channels, driven by the LDB
- One HDMI port (ver. 1.4), driven by the HDMI transmitter
- One MIPI/DSI port, driven by the MIPI/DSI transmitter; 2 data lanes at 1

#### GHz

Each IPU display port (DI) can be connected to each of the above ports.

#### 7.4.1 LVDS

The LVDS Display Bridge (LDB) connects the IPU (Image Processing Unit) to an External LVDS Display Interface. There are 2 LVDS channels. These outputs are used to communicate RGB data and controls to external LCD displays.

The LVDS ports may be used as follows:

- Single channel output
- Dual channel output (one input source, two channels outputs for two

displays)

- Split channel output (one input source, splitted to 2 channels on output)
- Separate 2 channel output (2 input sources from IPU).

The output LVDS port complies to the EIA-644-A standard.

#### 7.4.1.1 LVDS0

The following table describes the interface signals:

| Pin name        | Conn.<br>Pin | Function                        | Notes |
|-----------------|--------------|---------------------------------|-------|
| LVDS0_DATA[0]_N | J1.2         | LVDS0 negative data 0 signal    |       |
| LVDS0_DATA[0]_P | J1.4         | LVDS0 positive data 0 signal    |       |
| LVDS0_DATA[1]_N | J1.6         | LVDS0 negative data 1 signal    |       |
| LVDS0_DATA[1]_P | J1.8         | LVDS0 positive data 1<br>signal |       |
| LVDS0_DATA[2]_N | J1.12        | LVDS0 negative data 2 signal    |       |
| LVDS0_DATA[2]_P | J1.14        | LVDS0 positive data 2 signal    |       |
| LVDS0_DATA[3]_N | J1.16        | LVDS0 negative data 2 signal    |       |
| LVDS0_DATA[3]_P | J1.18        | LVDS0 positive data 2 signal    |       |
| LVDS0_CLK_N     | J1.20        | LVDS0 negative clock signal     |       |
| LVDS0_CLK_P     | J1.22        | LVDS0 positive clock signal     |       |

#### 7.4.1.2 LVDS1

| Pin name    | Conn.<br>Pin | Function                        | Notes |
|-------------|--------------|---------------------------------|-------|
| LVDS1_TX0_N | J3.52        | LVDS1 negative data 0<br>signal |       |
| LVDS1_TX0_P | J3.54        | LVDS1 positive data 0           |       |

| Pin name    | Conn.<br>Pin | Function                     | Notes |
|-------------|--------------|------------------------------|-------|
|             |              | signal                       |       |
| LVDS1_TX1_N | J3.58        | LVDS1 negative data 1 signal |       |
| LVDS1_TX1_P | J3.60        | LVDS1 positive data 1 signal |       |
| LVDS1_TX2_N | J3.64        | LVDS1 negative data 2 signal |       |
| LVDS1_TX2_P | J3.66        | LVDS1 positive data 2 signal |       |
| LVDS1_TX3_N | J3.76        | LVDS1 negative data 3 signal |       |
| IVDS1 TX3 P | .13 78       | LVDS1 positive data 3        |       |

# LVDS1\_TX3\_PJ3.78LVDS1 positive data 3<br/>signalLVDS1\_CLK\_NJ3.70LVDS1 negative clock<br/>signalLVDS1\_CLK\_PJ3.72LVDS1 positive clock<br/>signal

#### 7.4.2 HDMI

55/80

The HDMI interface available on AXEL is based on the HDMI transmitter and the HDMI 3D Tx PHY integrated into the i.MX6 SoC. The HDMI port supports the following standards and features:

- High-Definition Multimedia Interface Specification, Version 1.4a
- Support for up to 1080p at 60Hz HDTV display resolutions and up to QXGA graphic display resolutions.
  - Support for 4k x 2k and 3D video formats
  - Support for up to 16-bit Deep Color modes

| Pin name      | Conn.<br>Pin | Function                      | Notes |
|---------------|--------------|-------------------------------|-------|
| HDMI_TX_CLK_N | J3.82        | HDMI negative clock signal    |       |
| HDMI_TX_CLK_P | J3.84        | HDMI positive clock<br>signal |       |

| Pin name        | Conn.<br>Pin     | Function              | Notes |
|-----------------|------------------|-----------------------|-------|
| HDMI_TX_DATA0_N | J3.88            | HDMI negative data 0  |       |
| HDMI_TX_DATA0_P | J3.90            | HDMI positive data 0  |       |
| HDMI_TX_DATA1_N | J3.94            | HDMI negative data 1  |       |
| HDMI_TX_DATA1_P | J3.96            | HDMI positive data 1  |       |
| HDMI_TX_DATA2_N | J3.100           | HDMI negative data 2  |       |
| HDMI_TX_DATA2_P | J3.102           | HDMI positive data 2  |       |
| HDMI_TX_DDC_CEC | J3.106           | HDMI CEC signal       |       |
| HDMI_TX_DDC_SCL | J1.116<br>J2.111 | HDMI I2C clock signal |       |
| HDMI_TX_DDC_SDA | J1.118<br>J2.37  | HDMI I2C data signal  |       |
| HDMI_TX_HPD     | J3.108           | HDMI HPD signal       |       |

#### 7.4.3 Parallel RGB

The Parallel Display interface provided by AXEL is derived directly from the DI0 port of the IPU, bypassing all the i.MX6 integrated display bridges.

| Pin name     | Conn.<br>Pin | Function                         | Notes |
|--------------|--------------|----------------------------------|-------|
| DI0_DISP_CLK | J1.3         | Pixel clock                      |       |
| DI0_PIN2     | J1.5         | Horizontal synchronization       |       |
| DI0_PIN3     | J1.7         | Vertical synchronization         |       |
| DI0_PIN15    | J1.11        | Data valid/blank, data<br>enable |       |
| DISP0_DAT0   | J1.13        | Pixel data bit 0                 |       |
| DISP0_DAT1   | J1.15        | Pixel data bit 1                 |       |
| DISP0_DAT2   | J1.17        | Pixel data bit 2                 |       |
| DISP0_DAT3   | J1.19        | Pixel data bit 3                 |       |
| DISP0_DAT4   | J1.23        | Pixel data bit 4                 |       |
| DISP0_DAT5   | J1.25        | Pixel data bit 5                 |       |
| DISP0_DAT6   | J1.27        | Pixel data bit 6                 |       |

DISP0\_DAT19

DISP0\_DAT20

DISP0\_DAT21 DISP0\_DAT22

DISP0 DAT23

| Pin name    | Conn.<br>Pin | Function          | Notes |
|-------------|--------------|-------------------|-------|
| DISP0_DAT7  | J1.29        | Pixel data bit 7  |       |
| DISP0_DAT8  | J1.31        | Pixel data bit 8  |       |
| DISP0_DAT9  | J1.33        | Pixel data bit 9  |       |
| DISP0_DAT10 | J1.35        | Pixel data bit 10 |       |
| DISP0_DAT11 | J1.37        | Pixel data bit 11 |       |
| DISP0_DAT12 | J1.39        | Pixel data bit 12 |       |
| DISP0_DAT13 | J1.43        | Pixel data bit 13 |       |
| DISP0_DAT14 | J1.45        | Pixel data bit 14 |       |
| DISP0_DAT15 | J1.47        | Pixel data bit 15 |       |
| DISP0_DAT16 | J1.49        | Pixel data bit 16 |       |
| DISP0_DAT17 | J1.51        | Pixel data bit 17 |       |
| DISP0_DAT18 | J1.53        | Pixel data bit 18 |       |

#### 744 **MIPI DSI**

AXEL provides the MIPI Display interface derived from the i.MX6 integrated MIPI-DSI host controller, which acts as a bridge between the IPU and the MIPI D-PHY, enabling the communication with a MIPI-DSI compliant display through up to two D-PHY Data Lanes.

Pixel data bit 19

Pixel data bit 20

Pixel data bit 21

Pixel data bit 22

Pixel data bit 23

The following table describes the interface signals:

J1.55

J1.57

J1.59

J1.63

J1.65

| Pin name  | Conn.<br>Pin | Function                  | Notes |
|-----------|--------------|---------------------------|-------|
| DSI_CLK0M | J3.34        | MIPI Display Differential |       |
| DSI_CLK0P | J3.36        | clock pair                |       |
| DSI_D0M   | J3.40        | MIPI Display Differential |       |
| DSI_D0P   | J3.42        | data 0 pair               |       |
| DSI_D1M   | J3.46        | MIPI Display Differential |       |

| Pin name | Conn.<br>Pin | Function    | Notes |
|----------|--------------|-------------|-------|
| DSI_D1P  | J3.458       | data 1 pair |       |

#### 7.5 Video Input ports

This section will be completed in a future version of this manual.

#### 7.5.1 Parallel RGB

This section will be completed in a future version of this manual.

#### 7.5.2 MIPI CSI

This section will be completed in a future version of this manual.

#### 7.6 UARTs

Five UART ports are routed to AXEL connectors. UART1 provides full Modem Control Signals, while UART2, UART3, UART4 and UART5 are 4-wire interfaces. Each port can be programmed separately (also in IrDA mode).

#### 7.6.1 UART1

| Pin name      | Conn.<br>Pin   | Function                         | Note |
|---------------|----------------|----------------------------------|------|
| UART1_CTS     | J2.45<br>J3.11 | Clear to send                    |      |
| UART1_DCD     | J2.53          | Data carrier<br>detected         |      |
| UART1_DSR     | J2.57          | Data set ready                   |      |
| UART1_DTR     | J2.55          | Data terminal ready              |      |
| UART1_RI      | J2.113         | Ring indicator                   |      |
| UART1_RTS     | J2.47<br>J3.13 | Request to send                  |      |
| UART1_RX_DATA | J1.52<br>J3.23 | Serial/infrared data receive     |      |
| UART1_TX_DATA | J1.48<br>J3.25 | Serial/infrared data<br>transmit |      |

#### 7.6.2 UART2

The following table describes the interface signals:

| Pin name      | Conn.<br>Pin                     | Function                         | Notes |
|---------------|----------------------------------|----------------------------------|-------|
| UART2_CTS     | J2.65<br>J3.5<br>J2.56           | Clear to send                    |       |
| UART2_RTS     | J2.67<br>J3.1<br>J2.54           | Request to send                  |       |
| UART2_RX_DATA | J2.63<br>J1.88<br>J3.19<br>J2.52 | Serial/infrared data receive     |       |
| UART2_TX_DATA | J2.59<br>J1.86<br>J3.21<br>J2.58 | Serial/infrared data<br>transmit |       |

#### 7.6.3 UART3

The following table describes the interface signals:

| Pin name      | Conn.<br>Pin            | Function                         | Notes |
|---------------|-------------------------|----------------------------------|-------|
| UART3_CTS     | J2.53<br>J2.69<br>J3.17 | Clear to send                    |       |
| UART3_RTS     | J2.71<br>J2.113<br>J3.7 | Request to send                  |       |
| UART3_RX_DATA | J2.57<br>J2.28          | Serial/infrared data receive     |       |
| UART3_TX_DATA | J2.55<br>J2.34          | Serial/infrared data<br>transmit |       |

#### 7.6.4 UART4

| Pin name      | Conn.<br>Pin    | Function                         | Notes |
|---------------|-----------------|----------------------------------|-------|
| UART4_CTS     | J1.64           | Clear to send                    |       |
| UART4_RTS     | J1.62           | Request to send                  |       |
| UART4_RX_DATA | J1.56<br>J1.104 | Serial/infrared data receive     |       |
| UART4_TX_DATA | J1.54<br>J1.102 | Serial/infrared data<br>transmit |       |

#### 7.6.5 UART5

The following table describes the interface signals:

| Pin name      | Conn.<br>Pin    | Function                         | Notes |
|---------------|-----------------|----------------------------------|-------|
| UART5_CTS     | J1.68<br>J3.115 | Clear to send                    |       |
| UART5_RTS     | J1.66<br>J3.113 | Request to send                  |       |
| UART5_RX_DATA | J1.60<br>J1.108 | Serial/infrared data receive     |       |
| UART5_TX_DATA | J1.58<br>J1.106 | Serial/infrared data<br>transmit |       |

#### 7.7 SPI

AXEL provides five SPI ports connected to the I.MX6 integrated Enhanced Configurable SPI (ECSPI) controller, featuring:

- Full-duplex synchronous serial interface
- Master/Slave configurable
- Up to four Chip Select (SS) signals to support multiple peripherals
- Transfer continuation function allows unlimited length data transfers
- 32-bit wide by 64-entry FIFO for both transmit and receive data

• Configurable Polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

• Direct Memory Access (DMA) support

#### 7.7.1 ECSPI1

The following table describes the interface signals:

| Pin name    | Conn.<br>Pin                       | Function                          | Notes |
|-------------|------------------------------------|-----------------------------------|-------|
| ECSPI1_MISO | J1.106<br>J1.40<br>J1.63<br>J2.39  | Master data in; slave<br>data out |       |
| ECSPI1_MOSI | J1.104<br>J1.38<br>J1.59<br>J2.43  | Master data out; slave<br>data in |       |
| ECSPI1_RDY  | J1.100                             | Data ready signal                 |       |
| ECSPI1_SCLK | J1.102<br>J1.36<br>J1.57<br>J2.37  | Clock signal                      |       |
| ECSPI1_SS0  | J1.108<br>J1.42<br>J1.65<br>J2.111 | Chip select 0 signal              |       |
| ECSPI1_SS1  | J1.112<br>J1.47<br>J2.45           | Chip select 1 signal              |       |
| ECSPI1_SS2  | J1.114<br>J2.55                    | Chip select 2 signal              |       |
| ECSPI1_SS3  | J1.116<br>J2.57                    | Chip select 3 signal              |       |

#### 7.7.2 ECSPI2

| Pin name    | Conn.<br>Pin             | Function                          | Notes |
|-------------|--------------------------|-----------------------------------|-------|
| ECSPI2_MISO | J1.48<br>J1.51<br>J2.97  | Master data in; slave<br>data out |       |
| ECSPI2_MOSI | J1.46<br>J1.49<br>J2.117 | Master data out; slave<br>data in |       |

| Pin name    | Conn.<br>Pin             | Function             | Notes |
|-------------|--------------------------|----------------------|-------|
| ECSPI2_RDY  | J2.93                    | Data ready signal    |       |
| ECSPI2_SCLK | J1.44<br>J1.55<br>J2.115 | Clock signal         |       |
| ECSPI2_SS0  | J1.52<br>J1.53<br>J2.99  | Chip select 0 signal |       |
| ECSPI2_SS1  | J1.47<br>J2.95           | Chip select 1 signal |       |
| ECSPI2_SS2  | J2.55                    | Chip select 2 signal |       |
| ECSPI2_SS3  | J2.57                    | Chip select 3 signal |       |

#### 7.7.3 ECSPI3

The following table describes the interface signals:

| Pin name    | Conn.<br>Pin | Function                          | Notes |
|-------------|--------------|-----------------------------------|-------|
| ECSPI3_MISO | J1.17        | Master data in; slave<br>data out |       |
| ECSPI3_MOSI | J1.15        | Master data out; slave<br>data in |       |
| ECSPI3_RDY  | J1.29        | Data ready signal                 |       |
| ECSPI3_SCLK | J1.13        | Clock signal                      |       |
| ECSPI3_SS0  | J1.19        | Chip select 0 signal              |       |
| ECSPI3_SS1  | J1.23        | Chip select 1 signal              |       |
| ECSPI3_SS2  | J1.25        | Chip select 2 signal              |       |
| ECSPI3_SS3  | J1.27        | Chip select 3 signal              |       |

#### 7.7.4 ECSPI4

| Pin name    | Conn.<br>Pin | Function                          | Notes |
|-------------|--------------|-----------------------------------|-------|
| ECSPI4_MISO | J2.51        | Master data in; slave<br>data out |       |

| Pin name    | Conn.<br>Pin   | Function                          | Notes |
|-------------|----------------|-----------------------------------|-------|
| ECSPI4_MOSI | J2.65          | Master data out; slave<br>data in |       |
| ECSPI4_RDY  | J2.113         | Data ready signal                 |       |
| ECSPI4_SCLK | J2.49          | Clock signal                      |       |
| ECSPI4_SS0  | J2.47<br>J2.67 | Chip select 0 signal              |       |
| ECSPI4_SS1  | J2.93          | Chip select 1 signal              |       |
| ECSPI4_SS2  | J2.55          | Chip select 2 signal              |       |
| ECSPI4_SS3  | J2.57          | Chip select 3 signal              |       |

#### 7.7.5 ECSPI5

AXEL on-board bootable SPI Flash is interfaced with the i.MX6 SoC through the eCSPI5 port on chip select 0.

The following table describes the interface signals:

| Pin name    | Conn.<br>Pin    | Function                          | Notes |
|-------------|-----------------|-----------------------------------|-------|
| ECSPI5_MISO | J1.89<br>J1.134 | Master data in; slave<br>data out |       |
| ECSPI5_MOSI | J1.97<br>J1.128 | Master data out; slave<br>data in |       |
| ECSPI5_RDY  | J1.86           | Data ready signal                 |       |
| ECSPI5_SCLK | J1.99<br>J1.132 | Clock signal                      |       |
| ECSPI5_SS0  | J1.91<br>J1.136 | Chip select 0 signal              |       |
| ECSPI5_SS1  | J1.93<br>J1.138 | Chip select 1 signal              |       |
| ECSPI5_SS2  | J1.95           | Chip select 2 signal              |       |
| ECSPI5_SS3  | J1.140          | Chip select 3 signal              |       |

#### 7.8 Raw NAND flash controller

Raw NAND flash memory controller signals are routed to the connectors to connect an external flash NAND memory chip.

| Conn.<br>Pin | Function                                                                                                                                                                                                                                                                                                                                        | Notes                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J2.36        | Address latch enable signal                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.2         | Chip enable 0 signal                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.4         | Chip enable 1 signal                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.6         | Chip enable 2 signal                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.8         | Chip enable 3 signal                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.38        | Command latch enable signal                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.12        | Data signal 0                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.14        | Data signal 1                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.16        | Data signal 2                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.18        | Data signal 3                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.20        | Data signal 4                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.22        | Data signal 5                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.24        | Data signal 6                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.26        | Data signal 7                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.32        | DQS signal                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.42        | Ready signal                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.34        | Read enable signal                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.28        | Write enable signal                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |
| J2.40        | Wait polarity signal                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Pin         J2.36         J2.2         J2.4         J2.6         J2.8         J2.12         J2.12         J2.12         J2.12         J2.12         J2.14         J2.12         J2.12         J2.14         J2.16         J2.18         J2.20         J2.22         J2.24         J2.22         J2.32         J2.32         J2.34         J2.28 | PinJ2.36Address latch enable<br>signalJ2.2Chip enable 0 signalJ2.2Chip enable 0 signalJ2.4Chip enable 1 signalJ2.6Chip enable 2 signalJ2.8Chip enable 3 signalJ2.38Command latch enable<br>signalJ2.12Data signal 0J2.14Data signal 1J2.16Data signal 2J2.18Data signal 3J2.20Data signal 4J2.22Data signal 5J2.24Data signal 7J2.32DQS signalJ2.42Ready signalJ2.34Read enable signalJ2.28Write enable signal |

The following table describes the interface signals:

## 7.9 l<sup>2</sup>C

Three I<sup>2</sup>C channels are available on AXEL to provide an interface to other devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus<sup>™</sup>) specification version 2.1. The I<sup>2</sup>C ports support standard mode (up to 100K bits/s) and fast mode (up to 400K bits/s).

#### 7.9.1 I<sup>2</sup>C1

| Pin name | Conn.<br>Pin   | Function  | Notes |
|----------|----------------|-----------|-------|
| I2C1_SCL | J1.46<br>J2.49 | I2C clock |       |
| I2C1_SDA | J1.44<br>J2.65 | I2C data  |       |

#### 7.9.2 l<sup>2</sup>C2

The following table describes the interface signals:

| Pin name | Conn.<br>Pin     | Function  | Notes |
|----------|------------------|-----------|-------|
| I2C2_SCL | J1.116<br>J2.111 | I2C clock |       |
| I2C2_SDA | J1.118<br>J2.37  | I2C data  |       |

#### 7.9.3 l<sup>2</sup>C3

The following table describes the interface signals:

| Pin name | Conn.<br>Pin            | Function  | Notes |
|----------|-------------------------|-----------|-------|
| I2C3_SCL | J1.78<br>J2.39<br>J1.82 | I2C clock |       |
| I2C3_SDA | J1.84<br>J2.43<br>J1.94 | I2C data  |       |

#### 7.10 CAN

AXEL provides two CAN interfaces (FLEXCAN1 and FLEXCAN2) for supporting distributed realtime control with a high level of reliability. The FLEXCAN module implements the CAN protocol version 2.0 part B and supports bit rates up to 1 Mbit/s.

#### 7.10.1 FLEXCAN1

FLEXCAN1 port is connected to on-board transceiver (TI SN65HVD232) which converts the single-ended CAN signals of the controller to the differential signals of the physical layer. When required, the on-board

transceiver can be excluded by dedicated mount options. Please contact our Sales Department for more information about this hardware option. The following table describes the interface signals:

| Pin name | Conn.<br>Pin | Function        | Notes |
|----------|--------------|-----------------|-------|
| CAN_H    | J1.86        | High bus output |       |
| CAN_L    | J1.88        | Low bus output  |       |

The following table describes FLEXCAN1 interface signals:

| Pin name    | Conn.<br>Pin            | Function          | Notes |
|-------------|-------------------------|-------------------|-------|
| FLEXCAN1_RX | J1.88<br>J1.114<br>J3.1 | Receive data pin  |       |
| FLEXCAN1_TX | J1.86<br>J1.112<br>J3.5 | Transmit data pin |       |

#### 7.10.2 FLEXCAN2

When required, FLEXCAN2 must be connected to an external PHY on the carrier board.

| Pin name    | Conn.<br>Pin    | Function          | Notes |
|-------------|-----------------|-------------------|-------|
| FLEXCAN2_RX | J3.115<br>J3.13 | Receive data pin  |       |
| FLEXCAN2_TX | J3.113<br>J3.11 | Transmit data pin |       |

#### 7.11 JTAG

The i.MX6 provides debug access via a standard JTAG (IEEE 1149.1) debug interface.



The following table describes the interface signals:

| Pin name   | Conn.<br>Pin | Function   | Notes |
|------------|--------------|------------|-------|
| JTAG_TDO   | J2.98        | JTAG TDO   |       |
| JTAG_TDI   | J2.96        | JTAG TDI   |       |
| JTAG_TMS   | J2.100       | JTAG TMS   |       |
| JTAG_TCK   | J2.92        | JTAG clock |       |
| JTAG_VREF  | J2.94        | JTAG VREF  |       |
| JTAG_nTRST | J2.102       | JTAG TRST  |       |

## 7.12 SD/SDIO/MMC

Four standard MMC/SD/SDIO interfaces are available on AXEL SOM. The processor provides 4 MMC/SD/SDIO ports through the ULTRA Secured Digital Host Controller (USDHC), compliant with MMC V4.41, Secure Digital Memory Card Specification V3.00 and Secure Digital Input Output (SDIO) V3.00 specifications. The controller supports 1-bit / 4-bit SD and SDIO modes, 1-bit / 4-bit / 8-bit MMC modes. High capacity SD cards (SDHC) are supported.

#### 7.12.1 MMC/SD/SDIO1

| Pin name  | Conn.<br>Pin | Function                                                                | Notes                                                                                          |
|-----------|--------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| SD1_CD    | J1.74        | Card detection pin                                                      | If not used(for the<br>embedded<br>memory),tie low to<br>indicate there is a<br>card attached. |
| SD1_CLK   | J1.99        | Clock for<br>MMC/SD/SDIO card                                           |                                                                                                |
| SD1_CMD   | J1.97        | CMD line                                                                |                                                                                                |
| SD1_DATA0 | J1.89        | DATA0 line in all modes                                                 | Also used to detect busy state                                                                 |
| SD1_DATA1 | J1.91        | DATA1 line in 4/8-bit mode                                              | Also used to detect<br>interrupt in 1/4-<br>bit mode                                           |
| SD1_DATA2 | J1.93        | DATA2 line or Read<br>Wait in 4-bit<br>mode                             | Read Wait in 1-bit mode                                                                        |
| SD1_DATA3 | J1.95        | DATA3 line in 4/8-bit<br>mode or<br>configured as card<br>detection pin | May be configured as<br>card detection<br>pin in 1-bit mode                                    |
| SD1_DATA4 | J2.12        | DATA4 line in 8-bit<br>mode, not used<br>in other modes                 |                                                                                                |
| SD1_DATA5 | J2.14        | DATA5 line in 8-bit<br>mode, not used<br>in other modes                 |                                                                                                |
| SD1_DATA6 | J2.16        | DATA6 line in 8-bit<br>mode, not used<br>in other modes                 |                                                                                                |
| SD1_DATA7 | J2.18        | DATA7 line in 8-bit<br>mode, not used<br>in other modes                 |                                                                                                |
| SD1_LCTL  | J1.94        | LED control used to drive an                                            | Fully controlled by the driver                                                                 |

| Pin name    | Conn.<br>Pin     | Function                          | Notes                                                                                           |
|-------------|------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|
|             |                  | external LED Active<br>high       | Optional output                                                                                 |
| SD1_VSELECT | J1.106<br>J1.116 | IO power voltage selection signal |                                                                                                 |
| SD1_WP      | J1.9<br>J1.92    | Card write protect<br>detect      | If not used(for the<br>embedded<br>memory), tie low to<br>indicate it's not<br>write protected. |

#### 7.12.2 MMC/SD/SDIO2

| Pin name  | Conn.<br>Pin | Function                                                                | Notes                                                                                          |
|-----------|--------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| SD2_CD    | J1.80        | Card detection pin                                                      | If not used(for the<br>embedded<br>memory),tie low to<br>indicate there is a<br>card attached. |
| SD2_CLK   | J1.132       | Clock for<br>MMC/SD/SDIO card                                           |                                                                                                |
| SD2_CMD   | J1.128       | CMD line                                                                |                                                                                                |
| SD2_DATA0 | J1.134       | DATA0 line in all modes                                                 | Also used to detect<br>busy state                                                              |
| SD2_DATA1 | J1.136       | DATA1 line in 4/8-bit mode                                              | Also used to detect<br>interrupt in 1/4-<br>bit mode                                           |
| SD2_DATA2 | J1.138       | DATA2 line or Read<br>Wait in 4-bit<br>mode                             | Read Wait in 1-bit mode                                                                        |
| SD2_DATA3 | J1.140       | DATA3 line in 4/8-bit<br>mode or<br>configured as card<br>detection pin | May be configured as<br>card detection<br>pin in 1-bit mode                                    |
| SD2_DATA4 | J2.20        | DATA4 line in 8-bit<br>mode, not used<br>in other modes                 |                                                                                                |
| SD2_DATA5 | J2.22        | DATA5 line in 8-bit                                                     |                                                                                                |

| Pin name    | Conn.<br>Pin     | Function                                                       | Notes                                                                                           |
|-------------|------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|             |                  | mode, not used in other modes                                  |                                                                                                 |
| SD2_DATA6   | J2.24            | DATA6 line in 8-bit<br>mode, not used<br>in other modes        |                                                                                                 |
| SD2_DATA7   | J2.26            | DATA7 line in 8-bit<br>mode, not used<br>in other modes        |                                                                                                 |
| SD2_LCTL    | J1.84            | LED control used to<br>drive an<br>external LED Active<br>high | Fully controlled by the<br>driver<br>Optional output                                            |
| SD2_VSELECT | J1.108<br>J1.114 | IO power voltage selection signal                              |                                                                                                 |
| SD2_WP      | J1.76            | Card write protect<br>detect                                   | If not used(for the<br>embedded<br>memory), tie low to<br>indicate it's not<br>write protected. |

## 7.12.3 MMC/SD/SDIO3

| Pin name  | Conn.<br>Pin | Function                                               | Notes                                                       |
|-----------|--------------|--------------------------------------------------------|-------------------------------------------------------------|
| SD3_CLK   | J3.1         | Clock for<br>MMC/SD/SDIO card                          |                                                             |
| SD3_CMD   | J3.5         | CMD line                                               |                                                             |
| SD3_DATA0 | J3.11        | DATA0 line in all modes                                | Also used to detect busy state                              |
| SD3_DATA1 | J3.13        | DATA1 line in 4/8-bit<br>mode                          | Also used to detect<br>interrupt in 1/4-<br>bit mode        |
| SD3_DATA2 | J3.15        | DATA2 line or Read<br>Wait in 4-bit<br>mode            | Read Wait in 1-bit mode                                     |
| SD3_DATA3 | J3.17        | DATA3 line in 4/8-bit<br>mode or<br>configured as card | May be configured as<br>card detection<br>pin in 1-bit mode |

| Pin name    | Conn.<br>Pin  | Function                                                | Notes |
|-------------|---------------|---------------------------------------------------------|-------|
|             |               | detection pin                                           |       |
| SD3_DATA4   | J3.19         | DATA4 line in 8-bit<br>mode, not used<br>in other modes |       |
| SD3_DATA5   | J3.21         | DATA5 line in 8-bit<br>mode, not used<br>in other modes |       |
| SD3_DATA6   | J3.23         | DATA6 line in 8-bit<br>mode, not used<br>in other modes |       |
| SD3_DATA7   | J3.25         | DATA7 line in 8-bit<br>mode, not used<br>in other modes |       |
| SD3_RESET   | J3.7          | Card hardware reset<br>signal, active<br>LOW            |       |
| SD3_VSELECT | J1.98<br>J2.4 | IO power voltage selection signal                       |       |

#### 7.12.4 MMC/SD/SDIO4

The following table describes the interface signals:

| Pin name  | Conn.<br>Pin | Function                                                                | Notes                                                       |
|-----------|--------------|-------------------------------------------------------------------------|-------------------------------------------------------------|
| SD4_CLK   | J2.28        | Clock for<br>MMC/SD/SDIO card                                           |                                                             |
| SD4_CMD   | J2.34        | CMD line                                                                |                                                             |
| SD4_DATA0 | J2.32        | DATA0 line in all modes                                                 | Also used to detect busy state                              |
| SD4_DATA1 | J2.44        | DATA1 line in 4/8-bit mode                                              | Also used to detect<br>interrupt in 1/4-<br>bit mode        |
| SD4_DATA2 | J2.46        | DATA2 line or Read<br>Wait in 4-bit<br>mode                             | Read Wait in 1-bit mode                                     |
| SD4_DATA3 | J2.48        | DATA3 line in 4/8-bit<br>mode or<br>configured as card<br>detection pin | May be configured as<br>card detection<br>pin in 1-bit mode |

October, 2016

| Pin name    | Conn.<br>Pin | Function                                                | Notes |
|-------------|--------------|---------------------------------------------------------|-------|
| SD4_DATA4   | J2.52        | DATA4 line in 8-bit<br>mode, not used<br>in other modes |       |
| SD4_DATA5   | J2.54        | DATA5 line in 8-bit<br>mode, not used<br>in other modes |       |
| SD4_DATA6   | J2.56        | DATA6 line in 8-bit<br>mode, not used<br>in other modes |       |
| SD4_DATA7   | J2.58        | DATA7 line in 8-bit<br>mode, not used<br>in other modes |       |
| SD4_RESET   | J2.36        | Card hardware reset<br>signal, active<br>LOW            |       |
| SD4_VSELECT | J2.4         | IO power voltage selection signal                       |       |

#### 7.13 PCI Express

The SOM supports connections to PCIe-compliant devices via the integrated PCIe master/slave bus interface. The i.MX6 integrated PCIe module implements a single one-lane PCIe 2.0 (5.0 GT/s) Dual Mode/Endpoint/Root Complex port.

The following table describes the interface signals:

| Connector Pin | Pin<br>name | Function           | Notes |
|---------------|-------------|--------------------|-------|
| PCIE_TXM      | J3.130      | PCIE Transmit Data |       |
| PCIE_TXP      | J3.132      | Lane 0             |       |
| PCIE_RXM      | J3.124      | PCIE Receive Data  |       |
| PCIE_RXP      | J3.126      | Lane 0.            |       |

#### 7.14 SATA

AXEL provides a Serial ATA-II (SATA-II) 3.0 Gbps controller with integrated PHY, which supports all SATA power management features, eSATA and hardware-assisted native command queuing (NCQ) for up to

#### 32 entries.

The following table describes the interface signals:

| Connector Pin | Pin<br>name | Function                 | Notes |
|---------------|-------------|--------------------------|-------|
| SATA_TXM      | J3.53       | Serial ATA data transmit |       |
| SATA_TXP      | J3.55       |                          |       |
| SATA_RXM      | J3.47       | Serial ATA data receive  |       |
| SATA_RXP      | J3.49       |                          |       |

#### 7.15 Audio interface

This section will be completed in a future version of this manual.

#### 7.16 Keypad

This section will be completed in a future version of this manual.

#### 7.17 GPIO

The i.MX6 GPIO module provides general-purpose pins that can be configured as either inputs or outputs, for connections to external devices. In addition, the GPIO peripheral can produce CORE interrupts. The device contains eight GPIO blocks and each GPIO block is made up of 32 identical channels.

The device GPIO peripheral supports up to 256 3.3-V GPIO pins. Each channel must be properly configured, since GPIO signals are multiplexed with other interfaces signals. For more information on how to configure and use GPIOs, please refer to section 5.7. For additional details, please refer to section 27 of the i.MX 6 APRM.

# **8 Operational characteristics**

## 8.1 Maximum ratings

This section will be completed in a future version of this manual.

| Parameter                 | Min | Тур | Max | Unit |
|---------------------------|-----|-----|-----|------|
| Main power supply voltage | 2.8 | 3.3 | 4.5 | V    |

#### 8.2 Recommended ratings

This section will be completed in a future version of this manual.

| Parameter                 | Min | Тур | Max | Unit |
|---------------------------|-----|-----|-----|------|
| Main power supply voltage | 2.8 | 3.3 | 4.5 | V    |
|                           |     |     |     |      |

#### 8.3 **Power consumption**

Providing theoretical maximum power consumption value would be useless for the majority of system designers building their application upon AXEL module because, in most cases, this would lead to an oversized power supply unit.

Several configurations have been tested in order to provide figures that are measured on real-world use cases instead. Please note that AXEL platform is so flexible that it is virtually impossible to test for all possible configurations and applications on the market. The use cases here presented should cover most of real-world scenarios. However actual customer application might require more power than values reported here. Generally speaking, application specific requirements have to be taken into consideration in order to size power supply unit and to implement thermal management properly.

#### 8.3.1 Set 1

This section will be completed in a future version of this manual.

#### 8.3.2 Set 2

This section will be completed in a future version of this manual.

#### 8.4 Heat Dissipation

Qualification of the microprocessors has been deeply changed with respect to some years ago. Silicon manufactures today qualify ICs measuring the temperature at dye level, that is conceptually correct since we are dealing with silicon. On the other hand, users are loosing the straightforward relationship with the "ambient temperature", that is the end- user parameter still popular and evaluated when they must choose a platform for their needs.

Therefore, a deep knowledge of the heat transfer mechanism from junction to environment is absolutely needed. Also, to know how to save power consumption and to dissipate heating is of primary importance.

Application Note AN4579<sup>2</sup> released by Freescale/NXP is a fundamental guide in understanding thermal dissipation of iMX6 components. *We strongly recommend to read, understand, and follow all suggestions described in that guide.* 

AN4579 deals with the twofold aspects of the problem. The first aspect is related to the power saving strategy to be implemented. That are implemented in software on an hardware properly set. DAVE Embedded Systems has implemented in the Linux BSP, and maintained in the time, many of the Software Thermal Management Techniques listed in the Application Notes. Check with your DAVE Embedded Systems' Technical Support which are currently maintained and which are the default settings.

Once power has been managed at best as mentioned above, heat dissipation is also to be managed. Starting from the standard consumption described in the "use cases" above [see also AN4576<sup>3</sup>, AN4509<sup>4</sup> and AN4715<sup>5</sup> and

<u>http://wiki.dave.eu/index.php/Power\_consumption\_(AxelLite)</u>], using fundamental formula

$$T_j = T_a + R_{ja} * P$$

and knowing that R<sub>ja</sub> =22 °C/W for no-lid i.MX6 case, you can verify that

5 AN4715: i.MX6 Solo Consumption Measurement

<sup>2</sup> AN4579: Thermal Management Guidelines

<sup>3</sup> AN4576: i.MX6 DualLite Power Consumption Measurement

<sup>4</sup> AN4509: i.MX6 Dual/Quad Power Consumption Measurement

natural convection with no heat sink make CPU working only around 20-25°C (see table 10)

To lower  $R_{ja}$  - the only available parameter – you must use of a (passive) heatsink in such a way you can dissipate same power at a considerably high ambient temperature. If you add an air flow on the heatsink you can dissipate at an even higher temperature.

The following table shows an example, on how much power can be dissipated with  $T_j = 105^{\circ}C$  and  $T_a = 25^{\circ}C$  without heatsink/still air (a), with heatsink\*/still air (b), with heatsink/air flow 1m/s (c), with heatsink/air flow 4m/s (d):

| Use Case | Tj    | Та   | R <sub>ja</sub> | P [W] |
|----------|-------|------|-----------------|-------|
| а        | 105°C | 25°C | 22              | 3,64  |
| b        | 105°C | 25°C | 12,9            | 6,20  |
| C        | 105°C | 25°C | 6,9 (1m/s)      | 11,60 |
| d        | 105°C | 25°C | 4,5 (4m/s)      | 17,78 |

Tab. 10: Power dissipation Vs.Thermal Resistance

The following table shows the  $T_a$  the system can work at, in the same "use case" when the CPU is supposed to consume 4W

| Use Case | Tj    | Ta   | R <sub>ja</sub> | P [W] |
|----------|-------|------|-----------------|-------|
| а        | 105°C | 25°C | 22              | 4     |
| b        | 105°C | 53°C | 12,9            | 4     |
| C        | 105°C | 77°C | 6,9 (1m/s)      | 4     |
| d        | 105°C | 87°C | 4,5 (4m/s)      | 4     |

**Tab. 11**: Ambient Temperature Vs.Thermal Resistance

It is mandatory to understand that Thermal Management Techniques are under the responsability of the system integrator. Even if these notes try to help also with some quantitative suggestion, every solution must be validated by the System Integrator itself at the end of the integration process. That is due to the fact that too many parameters that are affecting simulations are not taken in account because it very difficult to modelize them. Therefore, even if customers may afford these kind of design, the simulation itself would be affected by huge uncertainty.

# **9** Application notes

Please refer to the following documents available on **DAVE Embedded Systems** Developers Wiki:

| Document                           | Location                                                                        |
|------------------------------------|---------------------------------------------------------------------------------|
| Integration Guide                  | http://wiki.dave.eu/index.php/Integratio<br>n_guide_%28Axel%29                  |
| Carrier board design<br>guidelines | http://wiki.dave.eu/index.php/Carrier_b<br>oard_design_guidelines_%28SOM<br>%29 |