

Data Sheet

SST12LP14E is a high-efficiency, ultra-compact power amplifier (PA) based on the highly-reliable InGaP/GaAs HBT technology. Designed to operate over the 2.4 - 2.5 GHz frequency band, SST12LP14E typically provides 23.5 dB gain with 32% power-added efficiency. This power amplifier has excellent linearity while meeting 802.11g spectrum mask requirements up to 22 dBm. The device typically consumes only 95 mA total current at 18 dBm output power, with linear 54 Mbps 802.11g modulation. This efficiency is desirable in embedded applications such as in hand-held units. The SST12LP14E also features easy, board-level usage along with high-speed power-up/-down control through a single combined reference voltage pin and is offered in both 6- and 8-contact XSON packages.

Features

- Excellent RF Stability with Moderate Gain: - Typically 23.5 dB gain across 2.4 - 2.5 GHz
- High Linear Output Power:
 - ->24 dBm P1dB
 - Please refer to "Absolute Maximum Stress Ratings" on page 6
 - Meets 802.11g OFDM ACPR requirement up to 22 dBm -~2.5% added EVM up to 18 dBm for

 - 54 Mbps 802.11g signal Meets 802.11b ACPR requirement up to 22 dBm
- High Power-added Efficiency/Low Operating Current for 802.11b/g/n Applications
 - -~33%/145 mA @ POUT = 22 dBm for 802.11g
- Single-pin Low I_{REF} Power-up/-down Control

 $-I_{RFF} < 2 \text{ mA}$

- Low Idle Current
 - ~45 mA I_{CQ}
- High-speed Power-up/-down
 - Turn on/off time (10%- 90%) <100 ns
 - Typical power-up/down delay <200 ns
- High Temperature Stability
 - 2 dB gain variation between -40°C to +85°C
 1 dB power variation between 0°C to +85°C

- Low Shut-down Current: <2.5 µA (typical)
- Excellent On-chip Power Detection - <+/- 0.3dB variation between 0°C to +85°C</p> - <+/- 0.4dB variation with 2:1 VSWR mismatch - <+/- 0.3dB variation Ch1 through Ch14
- Greater than 15 dB Dynamic Range On-chip Power Detection
- Simple input/output matching
- Packages Available - 6-contact XSON - 1.5mm x 1.5mm - 8-contact XSON - 2mm x 2mm
- All Non-Pb (lead-free) Devices are RoHS Compliant

Applications

- WLAN (IEEE 802.11b/g/n)
- Home RF
- Cordless phones
- 2.4 GHz ISM wireless equipment

Data Sheet

Product Description

SST12LP14E is a high-efficiency, ultra-compact power amplifier (PA) based on the highly-reliable InGaP/GaAs HBT technology.

Designed to operate over the 2.4 – 2.5 GHz frequency band, SST12LP14E typically provides 23.5 dB gain with 33% power-added efficiency (PAE) @ P_{OUT} = 22 dBm for 802.11g.

This power amplifier has excellent linearity, typically ~2.5% added EVM at 18 dBm output power, which is essential for 54 Mbps 802.11g operation while meeting 802.11g spectrum mask requirements up to 22 dBm. Due to its high efficiency, the device typically consumes only 95 mA total current at 18 dBm output power, with linear 54 Mbps 802.11g modulation. This efficiency is desirable in embedded applications such as in hand-held units.

The SST12LP14E also features easy, board-level usage along with high-speed power-up/-down control through a single combined reference voltage pin. Ultra-low reference current (total $I_{REF} \sim 2$ mA) makes the SST12LP14E controllable by an on/off switching signal directly from the baseband chip. These features, coupled with low operating current, make the SST12LP14E ideal for the final stage power amplification in battery-powered 802.11b/g/n WLAN transmitter applications.

The SST12LP14E has an excellent on-chip, single-ended power detector, which features a >15 dB range good linearity and high stability over temperature (< +/-0.3 dB 0°C to +85°C), frequency (<+/-0.3 dB across Channels 1 through 14), and output load (<+/-0.4 dB with 2:1 output VSWR all phases). The excellent on-chip power detector provides a reliable solution to board-level power control.

The SST12LP14E is offered in both 6- and 8-contact XSON packages. See Figure 3 for pin assignments and Tables 1 and 2 for pin descriptions.

Data Sheet

Functional Blocks

Figure 1: Functional Block Diagram, 6-contact XSON (QX6)

Data Sheet

Pin Assignments

VCC1 VCC2/RFOUT 1 6 Top View RFIN 5 DET 2 (Contacts facing down) RF & DC Ground 4 VCCb VREF 3 0_ 1369 F14.1 **6-Contact XSON** 8 VCC2 VCC1 Top View (Contacts RFIN 2 facing down) 7 RFOUT RF & DC RFOUT VCCb 6 Ground 3 0 5 Ì; DET VREF 4 1369 F2.1 8-Contact XSON Figure 3: Pin Assignments

Data Sheet

Pin Descriptions

Symbol	Pin No.	Pin Name	Type ¹	Function
GND	0	Ground		Low inductance GND pad
V _{CC1}	1	Power Supply	PWR	Power supply, 1 st stage
RF _{IN}	2		I	RF input, DC decoupled
V _{CCb}	3	Power Supply	PWR	Supply voltage for bias circuit
VREF	4		PWR	1 st and 2 nd stage idle current control
Det	5		0	On-chip power detector
V _{CC2} / RFOUT	6	Power Supply	PWR/O	Power supply, 2 nd stage/ RF Output
			<i>,</i>	T1.0 7503

Table 1: Pin Description, 6-contact XSON (QX6)

1. I=Input, O=Output

Table 2: Pin Description, 8-contact XSON (QX8)

Symbol	Pin No.	Pin Name	Type ¹	Function
GND	0	Ground		Low inductance GND pad
V _{CC1}	1	Power Supply	PWR	Power supply, 1 st stage
RF _{IN}	2			RF input, DC decoupled
V _{CCb}	3	Power Supply	PWR	Supply voltage for bias circuit
VREF	4		PWR	1 st and 2 nd stage idle current control
Det	5		0	On-chip power detector
RFOUT	6		0	RF output
RFOUT	7		0	RF output
V _{CC2}	8	Power Supply	PWR	Power supply, 2 nd stage

1. I=Input, O=Output

T2.0 75037

Data Sheet

Electrical Specifications

The AC and DC specifications for the power amplifier are specified for the conditions shown. Refer to Table 4 for the DC voltage and current specifications. Refer to Figures 4 through 19 for the RF performance.

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Input power to pins 2 (P _{IN})	+5 dBm
Average output power (P _{OUT}) ¹	+26 dBm
Supply Voltage at pins 1, 3, and 6 (V _{CC}) for 6-contact XSON	
Supply Voltage at pins 1, 3, and 8 (V _{CC}) for 8-contact XSON	0.3V to +5.0V
Reference voltage to pin 4 (V _{REF})	
DC supply current (I _{CC})	400 mA
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	40ºC to +120ºC
Maximum Junction Temperature (T _J)	+150°C
Surface Mount Solder Reflow Temperature	260°C for 10 seconds
1. Never measure with CW source. Pulsed single-tone source with <50% duty cycle is	5
imum rating of average output power could cause permanent damage to the device).

Table 3: Operating Range

Industrial -40°C to +85°C 3.3V	V _{DD}	Ambient Temp	Range
	3.3V	-40°C to +85°C	ndustrial

T3.1 75037

Table 4: DC Electrical Characteristics @ 25°C

Symbol	Parameter	Min.	Тур	Max.	Unit	Test Conditions
V _{CC}	Supply Voltage at pins 1,3, and 6 for 6-contact XSON (QX6)	3.0	3.3	4.2	V	
V _{CC}	Supply Voltage at pins 1,3, and 8 for 8-contact XSON (QX8)	3.0	3.3	4.2	V	
Icc	Supply Current for 802.11g, 22 dBm		145		mA	
I _{CQ}	Idle current for 802.11g to meet added EVM < 2.5% @ dBm		45		mA	
IOFF	Shut down current		2.0		μA	
V _{REG}	Reference Voltage for, with 360Ω resistor	2.75	2.8 5	2.95	V	

T4.3 75037

Data Sheet

Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range	2400		2500	MHz
G	Small signal gain	22.5	23.5		dB
G _{VAR1}	Gain variation over band (2400~2485 MHz)			±0.5	dB
G _{VAR2}	Gain ripple over channel (20 MHz)		0.2		dB
ACPR	Meet 11b spectrum mask	21	22		dBm
	Meet 11g OFDM 54 Mbps spectrum mask	21	22		dBm
Added EVM	< 18 dBm output with 11g OFDM 54 Mbps signal			2.5	%
2f, 3f, 4f, 5f	Harmonics at 22 dBm, without external filters		-30		dBc
					T5 2 750

 Table 5: AC Electrical Characteristics for Configuration (@25°C)

T5.2 75037

STIZLP14E

Data Sheet

Typical Performance Characteristics

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, unless otherwise specified

Figure 4: S-Parameters

2.4 GHz High-Efficiency Power Amplifier

SST12LP14E

Data Sheet

Typical Performance Characteristics

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, 54 Mbps 802.11g OFDM signal

Figure 6: Power Gain versus Output Power

Figure 8: PAE versus Output Power

Figure 9: 802.11g Spectrum Mask at 22 dBm

Phases

Figure 12:CH14 Detector Characteristics Over Temperature with 2:1 Output VSWR All Phases

Figure 13: Detector Characteristics Over Temperature and Over Frequency with 2:1 Output VSWR All Phases

.

Data Sheet

Typical Performance Characteristics

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, 1 Mbps 802.11b CCK signal

Figure 14:802.11b Spectrum Mask at 22 dBm

Figure 17:CH7 Detector Characteristics Over Temperature

2.4 GHz High-Efficiency Power Amplifier

SST12LP14E

Data Sheet

Typical Performance Characteristics

Figure 18:CH14 Detector Characteristics Over Temperature

Figure 19: Detector Characteristics Over Temperature and Frequency

Figure 20: Typical Schematic for 6-contact XSON (QX6)

Data Sheet

Product Ordering Information

Data Sheet

Packaging Diagrams

Data Sheet

Table 6:Revision History

Revision	Description	Date		
00	Initial release of data sheet			
01	Changed environmental attribute from "F" to "E" and updated "Product Ordering Information" on page 18 to reflect that change.			
02	Updated "Features" on page 1	May 2008		
	Revised Table 4 on page 6			
	Added "@25°C" to Table 5 title			
	Updated document status from Preliminary Specification to Data Sheet			
03	Revised Table 4 on page 6 and Table 5 on page 7	Mar 2009		
	 Updated "Features" and "Product Description" on page 2 			
	Updated "Contact Information" on page 20.			
04	 Added package QX6 including updates to "Product Description", "Functional Blocks", "Pin Assignments", and "Electrical Specifications" 	May 2009		
А	Applied new document format	Nov 2011		
	Released document under letter revision system			
	Updated spec number from S71369 to DS75037			
В	Updated Figure 23 on page 20 to reflect new Pin1 indicator	Jun 2012		
	 Made a slight modification to the "High Temperature Stability" feature bullet on page 1 			
	Updated Figure 5 on page 9			

ISBN:978-1-62076-349-0

© 2012 Silicon Storage Technology, Inc-a Microchip Technology Company. All rights reserved.

SST, Silicon Storage Technology, the SST logo, SuperFlash, MTP, and FlashFlex are registered trademarks of Silicon Storage Technology, Inc. MPF, SQI, Serial Quad I/O, and Z-Scale are trademarks of Silicon Storage Technology, Inc. All other trademarks and registered trademarks mentioned herein are the property of their respective owners.

Specifications are subject to change without notice. Refer to www.microchip.com for the most recent documentation. For the most current package drawings, please see the Packaging Specification located at http://www.microchip.com/packaging.

Memory sizes denote raw storage capacity; actual usable capacity may be less.

SST makes no warranty for the use of its products other than those expressly contained in the Standard Terms and Conditions of Sale.

For sales office locations and information, please see www.microchip.com.

Silicon Storage Technology, Inc. A Microchip Technology Company www.microchip.com