OSRAM LZP-00MN00 Datasheet

Published by ams-OSRAM AG Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

LED ENGIN LuxiGen

Industry most robust high power ceramic package with glass lens for high performance over life.

Applications

- Architecture

- Stage Lighting (LED & Laser)

Features

- Package: Ceramic package with integrated glass lens
- Chip technology: Thinfilm / UX:3
- Typ. Radiation: 120°
- Color: $\lambda_{dom} = 623 \text{ nm}$ (• red); $\lambda_{dom} = 523 \text{ nm}$ (• true green); $\lambda_{dom} = 457 \text{ nm}$ (• blue); Cx = 0.38, Cy = 0.38 acc. to CIE 1931 (• neutral white)
- CRI: 75 (typ.)

Ordering Information

Туре	Brightness ¹⁾	Ordering Code
LZP-00MN00-0000		Q65113A3073
• red	• Φ_v = 600 940 lm (I _F = 700 mA)	
• true green	• Φ _v = 720 1130 lm (I _F = 700 mA)	
• blue	• Φ_v = 172 420 lm (I _F = 700 mA)	
 neutral white 	• $\Phi_{_{\rm V}}$ = 1250 1960 lm (I _F = 700 mA)	

Maximum Ratings

Parameter	Symbol		Values • red	Values true green 	Values • blue	Values neutral white
Operating Tempera- ture	T _{op}	min. max.	-40 °C 125 °C	-40 °C 150 °C	-40 °C 150 °C	-40 °C 150 °C
Storage Temperature	T _{stg}	min. max.	-40 °C 150 °C	-40 °C 150 °C	-40 °C 150 °C	-40 °C 150 °C
Junction Tempera- ture ²⁾	T _j	max.	125 °C	150 °C	150 °C	150 °C
Forward Current ²⁾	I _F	max.	1000 mA	1000 mA	1000 mA	1000 mA
Forward Current pulsed t \leq 10 ms; D \leq 0.1 ; T _c = 25 °C	 F pulse	max.	1500 mA	1500 mA	1500 mA	1500 mA
ESD withstand volt- age acc. ANSI/ESDA/JE- DEC JS-001 (HBM, Class 0)	V _{esd}		ESD sensitive device	ESD sensitive device	ESD sensitive device	ESD sensitive device
Reverse voltage ³⁾	V _R		Not designed for reverse operation	for reverse	Not designed for reverse operation	Not designed for reverse operation

Characteristics

 $I_{\rm F}$ = 700 mA; $T_{\rm C}$ = 25 °C; per string

Parameter	Symbol		Values • red	Values true green 	Values • blue	Values neutral white
Chromaticity Coordinate 4)	Cx Cy	typ. typ.				0.38 0.38
Luminous Flux 5)	Φ	typ.	765 lm	920 lm	230 lm	1550 lm
Dominant Wave- length ⁶⁾ I _F = 700 mA	$\lambda_{_{ m dom}}$	min. typ. max.	617 nm 623 nm 630 nm	520 nm 523 nm 530 nm	453 nm 457 nm 460 nm	
Viewing angle at 50% I_v	2φ	typ.	125 °	125 °	125 °	125 °
Forward Voltage ⁷⁾⁵⁾ I _F = 700 mA	V _F	min. typ. max.	12.6 V 14.5 V 17.4 V	19.2 V 20.9 V 25.2 V	16.8 V 17.8 V 22.8 V	19.6 V 24.1 V 26.6 V
Reverse current ³⁾	I _R		Not designed for reverse operation	Not designed for reverse operation	Not designed for reverse operation	Not designed for reverse operation
Color Rendering Index ⁸⁾	R _a	typ.				75
Electrical thermal re- sistance junction/case Value in the first column relates to full package with all chips operated simultane- ously.	R _{thJC elec.}	typ.	0.50 K / W			

Brightness Groups

per string

• red

Group	Luminous Flux ¹⁾ I _F = 700 mA	Luminous Flux ¹⁾ I _F = 700 mA	
	min. Φ _v	max. Φ _v	
18R	600 lm	940 lm	

Brightness Groups

per string

• true green

Group	Luminous Flux ¹⁾ I _F = 700 mA	Luminous Flux ¹⁾ I _F = 700 mA	
	min. Φ _v	max. Φ _v	
20G	720 lm	1130 lm	

Brightness Groups

per string

• blue

Group	Luminous Flux ¹⁾ $I_F = 700 \text{ mA}$ min. Φ_V	Luminous Flux ¹⁾ I _F = 700 mA max. Φ _V	
20B	172 lm	270 lm	
32B	270 lm	420 lm	

Brightness Groups

per	string
-----	--------

neutral white

Group	Luminous Flux ¹⁾ I _F = 700 mA	Luminous Flux ¹⁾ I _F = 700 mA	
	min. Φ _v	max. Φ _v	
09W	1250 lm	1960 lm	

Wavelength Groups

per string

• red

Group	Dominant Wavelength ⁶⁾	Dominant Wavelength ⁶⁾	
	I _F = 700 mA min.	l _F = 700 mA max.	
	λ_{dom}	λ_{dom}	
R01	617 nm	630 nm	

Wavelength Groups

per string

• true green

Group	Dominant Wavelength ⁶⁾ I _F = 700 mA	Dominant Wavelength ⁶⁾ I _F = 700 mA	
	min.	max.	
	λ_{dom}	λ_{dom}	
G2	520 nm	525 nm	
G3	525 nm	530 nm	

Wavelength Groups

per string

B03	453 nm	460 nm	
	λ_{dom}	λ _{dom}	
	min.	max.	
	I _F = 700 mA	l _F = 700 mA	
Group	Dominant Wavelength 6)	Dominant Wavelength 6)	
 blue 			

Chromaticity Coordinate Groups

Chromaticity Coordinate Groups

per string

neutral white

Group	Cx	Су	CCT
5AC	0.3670	0.3578	
	0.3736	0.3874	
	0.4006	0.4044	
	0.3898	0.3716	

Relative Spectral Emission ⁵⁾

 $I_{rel} = f(\lambda); I_{F} = 700 \text{ mA}; T_{C} = 25 \text{ }^{\circ}\text{C}$

Radiation Characteristics ⁵⁾

 $I_{rel} = f(\phi); T_{c} = 25 \ ^{\circ}C$

Forward current ⁵⁾

 $I_F = f(V_F); T_C = 25 \ ^{\circ}C$

Forward current ⁵⁾

 $I_F = f(V_F); T_C = 25 \text{ °C}$

Forward current ⁵⁾

 $I_F = f(V_F); T_C = 25 \ ^{\circ}C$

Forward current ⁵⁾

 $I_{F} = f(V_{F}); T_{C} = 25 \text{ °C}$

Relative Luminous Flux ^{5), 9)}

Relative Luminous Flux ^{5), 9)}

 $\Phi_v/\Phi_v(700 \text{ mA}) = f(I_F); T_c = 25 \text{ °C}$

Relative Luminous Flux ^{5), 9)}

 $\Phi_v/\Phi_v(700 \text{ mA}) = f(I_F); T_C = 25 \text{ °C}$

Relative Luminous Flux ^{5), 9)}

 $\Phi_{v}/\Phi_{v}(700 \text{ mA}) = f(I_{F}); T_{C} = 25 \text{ °C}$

Dominant Wavelength 5)

 $\Delta \lambda_{dom} = f(I_{F}); T_{C} = 25 \ ^{\circ}C$

Dominant Wavelength 5)

 $\Delta \lambda_{dom} = f(I_F); T_C = 25 \ ^{\circ}C$

Chromaticity Coordinate Shift 5)

 ΔCx , $\Delta Cy = f(I_F)$; $T_C = 25 \ ^{\circ}C$

Forward Voltage 5)

0.0

-0.2

-0.4

-0.6

-0.8

-1.0 -40 -20

0 20 40 60 80

100 120

*T*_j / °C

Forward Voltage ⁵⁾

 $\Delta V_{_F} = V_{_F} - V_{_F}(25 \text{ °C}) = f(T_{_J}); I_{_F} = 700 \text{ mA}$

Forward Voltage 5)

 $\Delta V_{F} = V_{F} - V_{F}(25 \text{ °C}) = f(T_{i}); I_{F} = 700 \text{ mA}$

Forward Voltage ⁵

Relative Luminous Flux ⁵⁾

 $\Phi_v/\Phi_v(25 \text{ °C}) = f(T_i); I_F = 700 \text{ mA}$

Relative Luminous Flux⁵⁾

 $\Phi_v/\Phi_v(25 \text{ °C}) = f(T_i); I_F = 700 \text{ mA}$

Relative Luminous Flux⁵⁾

 $\Phi_v/\Phi_v(25 \text{ °C}) = f(T_i); I_F = 700 \text{ mA}$

Relative Luminous Flux ⁵⁾

 $\Phi_v/\Phi_v(25 \text{ °C}) = f(T_i); I_F = 700 \text{ mA}$

Dominant Wavelength 5)

Dominant Wavelength 5)

Dominant Wavelength ⁵⁾

 $\Delta \lambda_{dom} = \lambda_{dom} - \lambda_{dom} (25 \text{ °C}) = f(T_j); I_F = 700 \text{ mA}$

Chromaticity Coordinate Shift 5)

 ΔCx , $\Delta Cy = f(T_i)$; $I_F = 700 \text{ mA}$

Max. Permissible Forward Current

 $I_F = f(T)$

Dimensional Drawing¹⁰⁾

C67062-A0386-A1-01

Further Information:

Approximate Weight: 1,249.0 mg

Electrical Internal Circuit

Pin Out				
Pad	Channel	Function		
18	1	Anode		
2		Cathode		
17	2	Anode		
3	Z	Cathode		
15	З	Anode		
5	Ĺ	Cathode		
14	4	Anode		
6	4	Cathode		
DNC pins :				
1,4,7,8,9,10,11,12,13,16,19,20,21,22,23,24				
Note				

DNC = Do Not Connect (Electrically Non Isolated)

Pin	Description
2, 18	Die B, I, K, R, T, U - red
3, 17	Die E, F, H O, Q, X - true green
5, 15	Die A, C, J, L, S, V - blue
6, 14	Die D, G, M, N, P, W, Y - neutral white

Recommended Solder Pad ¹⁰⁾

1. For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere.

2. Package not suitable for ultra sonic cleaning.

3. Pedestal MCPCB allows the emitter thermal slug to be soldered directly to the metal core of the MCPCB. Such MCPCB eliminate the high thermal resistance dielectric layer that standard MCPCB technologies use in between the emitter thermal slug and the metal core of the MCPCB, thus lowering the overall system thermal resistance.

4. X-ray sample monitoring for solder voids underneath the emitter thermal slug is recommended. The total area covered by solder voids should be less than 20% of the total emitter thermal slug area. Excessive solder voids will increase the emitter to MCPCB thermal resistance and may lead to higher failure rates due to thermal over stress.

Reflow Soldering Profile

Profile Feature	Symbol	Pb-Free (SnAgCu) Assembly			Unit
		Minimum	Recommendation	Maximum	
Ramp-up rate to preheat*) 25 °C to 150 °C			2	3	K/s
Time t _s T _{Smin} to T _{Smax}	t _s	60	100	120	S
Ramp-up rate to peak ^{*)} $T_{s_{max}}$ to T_{p}			2	3	K/s
Liquidus temperature	TL		217		°C
Time above liquidus temperature	t		80	100	S
Peak temperature	Τ _Ρ		245	250	°C
Time within 5 °C of the specified peak temperature T_p - 5 K	t _P	10	20	30	S
Ramp-down rate* T _P to 100 °C			3	4	K/s
Time 25 °C to T _P				480	S

All temperatures refer to the center of the package, measured on the top of the component

* slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

LZP-00MN00 DATASHEET

Taping ¹⁰⁾

Barcode-Product-Label (BPL)

Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class **moderate risk (exposure time 0.25 s)**. Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

Tapes and reels are shipped in airtight bags in order to reduce the onset of silver tarnish. We recommend bags only be opened when ready to use emitters. Partially used reels or trays should be stored in airtight bags or in storage purged with nitrogen.

Based on very short life cycle times in chip technology this component is subject to frequent adaption to the latest chip technology.

Changes to the content of this datasheet may occur without further notification. JEDEC 46C constitutes the guideline of the change management for the device specified in this document.

For further application related information please visit www.osram-os.com/appnotes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on our website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

Our products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer.

Glossary

- ¹⁾ **Brightness:** Brightness groups are tested at a current pulse duration of 10 ms and a tolerance of ± 10 %.
- ²⁾ **Operating Conditions:** Operating conditions according DC-derating (Max. Permissible Forward Current)
- ³⁾ **Reverse Operation:** Not designed for reverse operation. Continuous reverse operation can cause migration and damage of the device.
- ⁴⁾ **Chromaticity coordinate groups:** Chromaticity coordinate groups are tested at a current pulse duration of 10 ms and a tolerance of ±0.01.
- ⁵⁾ **Typical Values:** Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- ⁶⁾ Wavelength: Wavelengths are tested at a current pulse duration of 10 ms and a tolerance of ±1 nm.
- Forward Voltage: Forward voltages are tested at a current pulse duration of 10 ms and a tolerance of ±0.1 V.
- ⁸⁾ **Color reproduction index:** Color reproduction index values (CRI-RA) are measured during a current pulse of typically 25 ms, with an internal reproducibility of ± 2 and an expanded uncertainty of ± 3 (acc. to GUM with a coverage factor of k = 3).
- ⁹⁾ **Characteristic curve:** In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
- ¹⁰⁾ **Tolerance of Measure:** Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.

Revision History

Version	Date	Change
1.0	2022-02-04	New Layout
1.1	2022-06-03	New Layout Taping

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。

Published by ams-OSRAM AG Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

