# AMD8513/X USB-to-10/100 Mbps Ethernet LAN Controller

Communications



Never stop thinking.

Edition 2005-12-05

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2005. All Rights Reserved.

#### **Attention please!**

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

#### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

### USB-to-10/100 Mbps Ethernet LAN Controller

### Revision History: 2005-12-05, Rev. 1.21

| Previous V | Previous Version:                                                        |  |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Page/Date  | Subjects (major changes since last revision)                             |  |  |  |  |  |  |  |
| 2001-12    | Rev. 0.1: Preliminary                                                    |  |  |  |  |  |  |  |
| 2002-01    | Rev. 1.0: Rearrange                                                      |  |  |  |  |  |  |  |
| 2002-06    | Rev. 1.1:                                                                |  |  |  |  |  |  |  |
|            | 1.VAARef I/O is power pin, not input pin in P.7                          |  |  |  |  |  |  |  |
|            | 2.GNDRef I/O is power pin, not input pin in P.7                          |  |  |  |  |  |  |  |
|            | 3.Modify Pin Assignment Diagram P.5                                      |  |  |  |  |  |  |  |
|            | 4.Make small correction on P1, P2, P5, P10, P13, P17, P19, P35, P37, P38 |  |  |  |  |  |  |  |
| 2002-06    | Rev 1.2:                                                                 |  |  |  |  |  |  |  |
|            | 1.Remove power consumption @ mode 1 in P.2                               |  |  |  |  |  |  |  |
|            | 2.Change power consumption in P.33                                       |  |  |  |  |  |  |  |
|            | 3.Add layout guide in Appendix A                                         |  |  |  |  |  |  |  |
| 2005-09-13 | Rev 1.21: when changed to the new Infineon format                        |  |  |  |  |  |  |  |
| 2005-12-05 | Minor change. Included Green package information                         |  |  |  |  |  |  |  |
|            |                                                                          |  |  |  |  |  |  |  |
|            |                                                                          |  |  |  |  |  |  |  |
|            |                                                                          |  |  |  |  |  |  |  |
|            |                                                                          |  |  |  |  |  |  |  |

### Trademarks

ABM<sup>®</sup>, ACE<sup>®</sup>, AOP<sup>®</sup>, ARCOFI<sup>®</sup>, ASM<sup>®</sup>, ASP<sup>®</sup>, DigiTape<sup>®</sup>, DuSLIC<sup>®</sup>, EPIC<sup>®</sup>, ELIC<sup>®</sup>, FALC<sup>®</sup>, GEMINAX<sup>®</sup>, IDEC<sup>®</sup>, INCA<sup>®</sup>, IOM<sup>®</sup>, IPAT<sup>®</sup>-2, ISAC<sup>®</sup>, ITAC<sup>®</sup>, IWE<sup>®</sup>, IWORX<sup>®</sup>, MUSAC<sup>®</sup>, MuSLIC<sup>®</sup>, OCTAT<sup>®</sup>, OptiPort<sup>®</sup>, POTSWIRE<sup>®</sup>, QUAT<sup>®</sup>, QuadFALC<sup>®</sup>, SCOUT<sup>®</sup>, SICAT<sup>®</sup>, SICOFI<sup>®</sup>, SIDEC<sup>®</sup>, SLICOFI<sup>®</sup>, SMINT<sup>®</sup>, SOCRATES<sup>®</sup>, VINETIC<sup>®</sup>, 10BaseV<sup>®</sup>, 10BaseVX<sup>®</sup> are registered trademarks of Infineon Technologies AG. 10BaseS<sup>™</sup>, EasyPort<sup>™</sup>, VDSLite<sup>™</sup> are trademarks of Infineon Technologies AG. Microsoft<sup>®</sup> is a registered trademark of Microsoft Corporation, Linux<sup>®</sup> of Linus Torvalds, Visio<sup>®</sup> of Visio Corporation, and FrameMaker<sup>®</sup> of Adobe Systems Incorporated.



### **Table of Contents**

## **Table of Contents**

|                 | Table of Contents                                | . 4 |
|-----------------|--------------------------------------------------|-----|
|                 | List of Figures                                  | 6   |
|                 | List of Tables                                   | . 7 |
| 1               | Product Overview                                 | . 9 |
| 1.1             | Package Information                              |     |
| 1.2             | Features                                         |     |
| 2               | Interface Description                            |     |
| 2.1<br>2.2      | Pin Assignment Diagram                           |     |
| 2.2.1           | Host Interface                                   |     |
| 2.2.2           | Physical Interface                               |     |
| 2.2.3           |                                                  |     |
| 2.2.4           | EEPROM Interface                                 |     |
| 2.2.5           | Miscellaneous                                    |     |
| 2.2.6           | POWER USB                                        |     |
| 2.2.7<br>2.3    | POWER                                            |     |
|                 | Function Description                             |     |
| <b>3</b><br>3.1 | USB Interface                                    |     |
| 3.1.1           | SIE                                              |     |
| 3.1.2           | USB Command & EP Decoder                         |     |
| 3.2             | FIFO Controller                                  | 16  |
| 3.3             | TX FIFO and RX FIFO                              |     |
| 3.4             | 10/100M Ethernet PHY                             | 16  |
| 4               | USB Device Endpoint Operation                    |     |
| 4.1             | Endpoint 0                                       |     |
| 4.2<br>4.2.1    | Endpoint 1 Bulk IN                               |     |
| 4.2.1           | Endpoint 2 Bulk OUT Endpoint 3 Interrupt IN      |     |
|                 |                                                  |     |
| <b>5</b><br>5.1 | USB Commands                                     |     |
| 511             | Get Register (Vendor Specific) Single/Burst Read |     |
| 5.1.2           | Set Register (Vendor Specific) Burst Write       |     |
| 5.1.3           | Get Status (Device)                              |     |
| 5.1.4           | Get Status (Interface)                           |     |
| 5.1.5           | Get Status (EP0)                                 |     |
| 5.1.6           | Get Status (EP1) Bulk In                         |     |
| 5.1.7<br>5.1.8  | Get Status (EP2) Bulk OUT                        |     |
| 5.1.9           | Get Descriptor (Device) Total 18-byte            |     |
| 5.1.10          | Get Descriptor (Configuration) Total 39-byte     |     |
| 5.1.11          | Get Descriptor (String) Index 0, LanguageID Code |     |
| 5.1.12          | Get Descriptor (String) Index 1, Manufacture     |     |
| 5.1.13          | Get Descriptor (String) Index 2, Product         |     |
| 5.1.14          | Get Descriptor (String) Index 3, Serial No.      |     |
| 5.1.15          | Get Configuration                                | 24  |



### **Table of Contents**

| 5.1.16<br>5.1.17<br>5.1.18<br>5.1.19<br>5.1.20 | Get Interface         Clear Feature (Device) Remote Wakeup         Set Feature (Device) Remote Wakeup         Clear Feature (Device) Remote Wakeup         Clear Feature (EP 0, 1, 2, 3) Halt         Set Feature (EP 0, 1, 2, 3) Halt | 24<br>24<br>25 |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>6</b><br>6.1<br>6.1.1<br>6.2<br>6.2.1       | Registers Description         System Registers         System Registers         PHY Registers Description         PHY Registers                                                                                                        | 26<br>30<br>64 |
| <b>7</b><br>7.1<br>7.2<br>7.3<br>7.3.1         | Electrical Characteristics .<br>Absolute Maximum Ratings .<br>Operating Condition .<br>DC Specifications .<br>USB Interface DC Specification .                                                                                         | 74<br>74<br>74 |
| <b>8</b><br>8.1<br>8.2                         | EEPROM Interface DC Specification         Recommended Operating Conditions         GPIO Interface DC Specification                                                                                                                     | 75             |
| <b>9</b><br>9.1<br>9.2<br>9.3                  | Timing         Reset Timing         USB Interface Timing         EEPROM Interface Timing                                                                                                                                               | 76<br>76       |
| <b>10</b><br>10.1                              | EEPROM Interface & Example                                                                                                                                                                                                             |                |
| 11                                             | Package                                                                                                                                                                                                                                | 80             |
| 12                                             | Appendix Layout Guide                                                                                                                                                                                                                  | 84             |
|                                                | References                                                                                                                                                                                                                             | 88             |
|                                                | Terminology                                                                                                                                                                                                                            | 89             |



### **List of Figures**

## **List of Figures**

- Figure 1 Pin Diagram 11
- Figure 2 Block Diagram 15
- Figure 3 Packet Form when Receive 17
- Figure 4 Packet Form when Transmit 18
- Figure 5 EEPROM Interface Timing 77
- Figure 6 Package 80
- Figure 7 Placement 1 84
- Figure 8 Placement 2 84
- Figure 9 Trace Routing 1 85
- Figure 10 Trace Routing 2 85
- Figure 11 Trace Routing 3 86
- Figure 12 Power and Ground 1 86
- Figure 13 Power and Ground 2 86
- Figure 14 Power and Ground 3 87



### List of Tables

## List of Tables

| Table 1  | Abbreviations for Pin Type 11                                           |
|----------|-------------------------------------------------------------------------|
| Table 1  | Abbreviations for Buffer Type 12                                        |
| Table 2  | Host Interface 12                                                       |
|          |                                                                         |
| Table 4  | Physical Interface 13                                                   |
| Table 5  | LED Interface 13                                                        |
| Table 6  | Mapping between LED action and EEPROM 0B[7:6] setting 13                |
| Table 7  | EEPROM Interface 14                                                     |
| Table 8  | Miscellaneous 14                                                        |
| Table 9  | Power USB 15                                                            |
| Table 10 | Power 15                                                                |
| Table 11 | USB Received Status 17                                                  |
| Table 12 | USB Packet Format 17                                                    |
| Table 13 | Interrupt Packet Form 18                                                |
| Table 14 | Interrupt Packet Form 18                                                |
| Table 15 | Setup Stage 18                                                          |
| Table 16 | Data Stage 18                                                           |
| Table 17 | Setup Stage 19                                                          |
| Table 18 | Data Stage 19                                                           |
| Table 19 | Setup Stage 19                                                          |
| Table 20 | Setup Stage 19                                                          |
| Table 21 | 1st OUT Transfer 19                                                     |
| Table 22 | 2nd OUT Transfer 19                                                     |
| Table 23 | 3rd OUT Transfer 19                                                     |
| Table 24 | Setup Stage 19                                                          |
| Table 25 | Data Stage 20                                                           |
| Table 26 | Setup Stage 20                                                          |
| Table 27 | Data Stage 20                                                           |
| Table 28 | Setup Stage 20                                                          |
| Table 29 | Data Stage 20                                                           |
| Table 30 | Setup Stage 20                                                          |
| Table 31 | Data Stage 20                                                           |
| Table 32 | Setup Stage 21                                                          |
| Table 33 | Data Stage 21                                                           |
| Table 34 | Setup Stage 21                                                          |
| Table 35 | Data Stage 21                                                           |
| Table 36 | Setup Stage 21                                                          |
| Table 37 | Data Stage: wLength Field Specifies the Total byte Count to Return 1 21 |
| Table 38 | Data Stage: wLength Field Specifies the Total byte Count to Return 2 21 |
| Table 39 | Data Stage: wLength Field Specifies the Total byte Count to Return 3 21 |
| Table 40 | Setup Stage 22                                                          |
| Table 41 | Configuration Descriptor 1 22                                           |
| Table 42 | Configuration Descriptor 2 22                                           |
| Table 43 | Interface 0 Descriptor 22                                               |
| Table 44 | EP1 Descriptor 22                                                       |
| Table 45 | EP2 Descriptor 22                                                       |
| Table 46 | EP3 Descriptor 22                                                       |
| Table 47 | Setup Stage 23                                                          |
| Table 48 | Data Stage 23                                                           |
| Table 49 | Setup Stage 23                                                          |



#### List of Tables

Table 50 Data Stage 23 Table 51 Setup Stage 23 Table 52 Data Stage 23 Table 53 Setup Stage 23 Table 54 Data Stage 24 Setup Stage 24 Table 55 Table 56 Data Stage 24 Table 57 Setup Stage 24 Table 58 Data Stage 24 Table 59 Setup Stage 24 Table 60 Setup Stage 24 Table 61 Setup Stage 25 Table 62 Setup Stage 25 Table 63 Registers Address Space 26 Table 64 **Registers Overview 26** Table 65 Register Access Types 29 Registers Clock Domains Registers Clock Domains 30 Table 66 Table 67 Reserved Registers 33 Table 68 Wakeup Frame 0 Mask Registers 51 Table 69 Wakeup Frame 1 Mask Registers 53 Table 70 Wakeup Frame 2 Mask Registers 56 Table 71 Registers Address SpaceRegisters Address Space 64 **Registers Overview 64** Table 72 Table 73 Register Access Types 65 Table 74 Registers Clock DomainsRegisters Clock Domains 66 Table 75 Absolute Maximum Rating 74 Table 76 **Operating Condition 74** Table 77 USB Interface DC Specification 74 Table 78 **EEPROM Interface DC Specification 75** Table 79 **GPIO Interface DC Specification 75** GPIO Interface DC Specification 76 Table 80 Table 81 **EEPROM Interface Timing 76** Table 82 **EEPROM Interface 77** Table 83 **EEPROM Example 78** Table 84 Dimensions for 48 Pin LQFP Package 82



### 1 **Product Overview**

### 1.1 Package Information

| Product Name | Product Type    | Package      | Ordering Number              |
|--------------|-----------------|--------------|------------------------------|
| ADM8513      | ADM8513-AD-T-1  | P-LQFP-48-5  | Q67801H 62A101 <sup>1)</sup> |
| ADM8513X     | ADM8513X-AD-T-1 | PG-LQFP-48-5 | Q67801H 98A101               |

 "x" stands as key to Infineon packing variants, such as "Tape&reel, drypacked" as well as for the environmentally "green" package version.

### 1.2 Features

### Main features:

- Industrial Standard
  - IEEE 802.3/802.3u 10Base-T/100Base-Tx compliant.
  - Supports IEEE 802.3x flow control
  - Supports Auto-Negotiation for 10BASE-T and 100BASE-TX
  - USB specification 1.0 and 1.1 compliant

### USB Interface

- USB specification 1.0 and 1.1 compliant
- Full-Speed USB Device
- Supports 1 USB configuration and 1 interface
- Supports all USB standard commands
- Supports two vendor specific commands
- Supports USB Suspend/Resume detection logic
- Supports 4 endpoints: 1 control endpoint with maximum 8-byte packet, 1 bulk IN endpoint with maximum 64-byte packet, 1 bulk OUT endpoint with maximum 64-byte packet and 1 interrupt IN endpoint with maximum 8-byte packet
- MAC/PHY
  - Integrates the PHY by using address 1
  - Supports configurable threshold for PAUSE frame.
  - Supports Auto-Negotiation
  - Provides transmit wave-shaper, receive filter, and adapter equalizer.
  - Provides MLT-3 transceiver with DC restoration for Base-Line wander.
  - Supports external transmit/receive transformer with turn ration 1:1.

### EEPROM Interface

- Provides serial interface to access 93C46 EEPROM
- Automatically load device ID, vendor ID from EEPROM after power-on reset
- FIFO
  - Synchronous SRAM.
  - Internal 2K-byte two port asynchronous SRAM.
- LED Interface
  - 2 LED operation modes
  - LED0: speed indication for 10Mbps or 100Mbps.
  - LED1: link indication.
  - LED2: full duplex indication.
- Support Power Save Function @ USB suspend mode



#### **Product Overview**

- Mode 0: Resume by remote wakeup or host when OS goes into standby
- Mode 1: Resume by host when OS goes into standby.
- Miscellaneous
  - Supports 6 GPIO pins
  - Provides 48-pin LQFP package
  - 3.3 V power supply with 5 V/3.3 V I/O tolerance
- Support Driver
  - Win98/ME/2000/XP
  - Linux driver, WinCE 3.0&4.0 driver
  - Manufacturing test utilities:
  - EEPROM Burn-in program
  - MFG testing program



## 2 Interface Description

### 2.1 Pin Assignment Diagram

Pin Diagram ADM8513/X.



### Figure 1 Pin Diagram

### 2.2 Pin Description by Function

### Table 1 Abbreviations for Pin Type

| Abbreviations | Description                                 |
|---------------|---------------------------------------------|
|               | Standard input-only pin. Digital levels.    |
| 0             | Output. Digital levels.                     |
| I/O           | I/O is a bidirectional input/output signal. |
| AI            | Input. Analog levels.                       |
| AO            | Output. Analog levels.                      |
| AI/O          | Input or Output. Analog levels.             |
| PWR           | Power                                       |
| GND           | Ground                                      |
| MCL           | Must be connected to Low (JEDEC Standard)   |
| MCH           | Must be connected to High (JEDEC Standard)  |



### Table 1Abbreviations for Pin Type (cont'd)

| Abbreviations | Description                    |
|---------------|--------------------------------|
| NU            | Not Usable (JEDEC Standard)    |
| NC            | Not Connected (JEDEC Standard) |

### Table 2 Abbreviations for Buffer Type

| Abbreviations | Description                                                                                                                                                                                                                                                                        |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z             | High impedance                                                                                                                                                                                                                                                                     |
| PU1           | Pull up, 10 kΩ                                                                                                                                                                                                                                                                     |
| PD1           | Pull down, 10 kΩ                                                                                                                                                                                                                                                                   |
| PD2           | Pull down, 20 kΩ                                                                                                                                                                                                                                                                   |
| TS            | Tristate capability: The corresponding pin has 3 operational states: Low, high and high-<br>impedance.                                                                                                                                                                             |
| OD            | Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. An external pull-up is required to sustain the inactive state until another agent drives it, and must be provided by the central resource. |
| 00            | Open Collector                                                                                                                                                                                                                                                                     |
| PP            | Push-Pull. The corresponding pin has 2 operational states: Active-low and active-high (identical to output with no type attribute).                                                                                                                                                |
| OD/PP         | Open-Drain or Push-Pull. The corresponding pin can be configured either as an output with the OD attribute or as an output with the PP attribute.                                                                                                                                  |
| ST            | Schmitt-Trigger characteristics                                                                                                                                                                                                                                                    |
| TTL           | TTL characteristics                                                                                                                                                                                                                                                                |

### 2.2.1 Host Interface

### Table 3 Host Interface

| Pin or Ball<br>No. | Name    | Pin<br>Type | Buffer<br>Type | Function                                                              |
|--------------------|---------|-------------|----------------|-----------------------------------------------------------------------|
| 16                 | CLK48_I | I           |                | Input Clock<br>48 MHz clock input from crystal or oscillator.         |
| 15                 | CLK48_O | 0           |                | Output for Crystal                                                    |
| 14                 | RST#    | I           |                | External Hardware Reset Input<br>Schmitt-trigger, internal pull high. |
| 20                 | DM      | I/O         |                | USB Data Minus pin                                                    |
| 19                 | DP      | I/O         |                | USB Data Plus Pin                                                     |

### 2.2.2 Physical Interface



| Table 4   Physical Interface |            |      |        |                                                   |  |  |
|------------------------------|------------|------|--------|---------------------------------------------------|--|--|
| Pin or Ball                  | Name       | Pin  | Buffer | Function                                          |  |  |
| No.                          |            | Туре | Туре   |                                                   |  |  |
| 86, 35                       | RXIP, RXIN | I    |        | RX Input                                          |  |  |
| 46, 47                       | TXOP, TXON | 0    |        | TX Output                                         |  |  |
| 44                           | CLK25_I    | I    |        | Crystal Input                                     |  |  |
|                              |            |      |        | 25MHz                                             |  |  |
| 43                           | CLK25_O    | 0    |        | Crystal Output                                    |  |  |
|                              |            |      |        | 25MHz                                             |  |  |
| 41                           | RIBB       | I    |        | Reference Bias Resistor, tied to external 10K(1%) |  |  |
|                              |            |      |        | resistor to ground                                |  |  |
| 38, 39                       | TSTA, TSTB | 0    |        | Test Output Pin                                   |  |  |

#### 2.2.3 LED Interface

#### Table 5 LED Interface

| Pin or Ball<br>No. | Name | Pin<br>Type | Buffer<br>Type | Function                                                                                                                          |
|--------------------|------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 33                 | LED0 | 0           |                | <b>LED display for 100M b/s or 10M b/s speed.</b><br>Active low indicates 100Base-TX, active high indicates 10<br>BaseT.          |
| 32                 | LED1 | 0           |                | LED display for link and activity status.<br>Active low when link is established.                                                 |
| 31                 | LED2 | 0           |                | LED display for Full Duplex or Collision status.<br>Active low indicates full duplex, high indicates collision in<br>half duplex. |

Note: The LED interface is EEPROM-programmable, 2 bit EEPROM control bit, Address 0B[7:6] at EEPROM, is used to select LED mode, the default setting are:

- 1. LED0: 100Mbps(on, drive '0') or 10Mbps(off, drive '1')
- 2. LED1: link (keeps on when link ok) or activity (blinks with 10Hz when Pegasus II is receiving or transmitting but not colliding
- 3. LED2: full duplex (keeps on when in full duplex mode) or collision (blinks with 20Hz when colliding)
- 4. All LED pins will be tri-state when using external PHY (offset 81h with  $bit[4:2] = 001_B$ )

Mapping between LED action and EEPROM 0B[7:6] setting

| Table 6 | Mapping between LED action and EEPROM 0B[7:6] setting |
|---------|-------------------------------------------------------|
|---------|-------------------------------------------------------|

| EEPROM 0B[7:6] | LED  | Action                     |
|----------------|------|----------------------------|
|                | LED0 | 10 / 100 (OFF/ON)          |
| 0,0            | LED1 | LINK / ACTIVITY (ON/FLASH) |
|                | LED2 | FULL DUP / COL (ON/FLASH)  |
|                | LED0 | ACTIVITY when LINK (FLASH) |
| 0,1            | LED1 | LINK 10(ON)                |
|                | LED2 | LINK 100(ON)               |



### 2.2.4 EEPROM Interface

| Table 7            | EEPROM Inte | erface      |                |                                                                                                                                                                                                                  |
|--------------------|-------------|-------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin or Ball<br>No. | Name        | Pin<br>Type | Buffer<br>Type | Function                                                                                                                                                                                                         |
| 2                  | EECS        | 0           |                | <b>EEPROM Chip Select</b><br>This pin enables the EEPROM during loading of the<br>Ethernet configuration data.<br>CMOS I/O with 5 V tolerant, 2mA                                                                |
| 4                  | EEDI        | 0           |                | <b>EEPROM Data In</b><br>The MAC will use this pin to serially write opcodes,<br>addresses and data into the serial EEPROM.<br>CMOS I/O with 5 V tolerant, 2mA                                                   |
| 5                  | EEDO        | I           |                | <b>EEPROM Data Out, internal pull low</b><br>The MAC will read the contents of the EEPROM serially<br>through this pin.<br>Input, pull down, 5 V tolerant                                                        |
| 3                  | EESK        | 0           |                | <b>EEPROM Clock</b><br>After reset, the MAC if configured, will read the contents of<br>the EEPROM using EESK, EEDO, and EEDI. This pin<br>provides the clock for the EEPROM.<br>CMOS I/O with 5 V tolerant, 2mA |

### 2.2.5 Miscellaneous

### Table 8Miscellaneous

| Pin or Ball<br>No. | Name   | Pin<br>Type | Buffer<br>Type | Function                                                 |
|--------------------|--------|-------------|----------------|----------------------------------------------------------|
| 9                  | GPIO5  | I/O         |                | General Purpose Input/Output Pins                        |
| 8                  | GPIO4  |             |                | These pins are used as general purpose Input/Output pins |
| 24                 | GPIO3  |             |                | and offset 0A[1] = 0 in EEPROM.                          |
| 26                 | GPIO2  |             |                | Default is internal pull-low                             |
| 27                 | GPIO1  |             |                |                                                          |
| 28                 | GPIO0  |             |                |                                                          |
| 10                 | POREN# | I           |                | Test Pins                                                |
| 11                 | NC     | Х           |                | Test Pins                                                |

### 2.2.6 POWER USB



| Table 9   Power USB |         |      |        |                                       |  |  |  |  |
|---------------------|---------|------|--------|---------------------------------------|--|--|--|--|
| Pin or Ball         | Name    | Pin  | Buffer | Function                              |  |  |  |  |
| No.                 |         | Туре | Туре   |                                       |  |  |  |  |
| 21                  | UVDD 33 | PWR  |        | 3.3V power supply for USB transceiver |  |  |  |  |
| 18                  | UVSS    | PWR  |        | Ground for USB transceiver            |  |  |  |  |

### 2.2.7 **POWER**

| Table 10                 | Power  | Table 10 Power |                |                             |  |  |  |  |
|--------------------------|--------|----------------|----------------|-----------------------------|--|--|--|--|
| Pin or Ball<br>No.       | Name   | Pin<br>Type    | Buffer<br>Type | Function                    |  |  |  |  |
| 1, 6, 13, 22,<br>29      | VDD 33 | PWR            |                | 3.3V Power Supply.          |  |  |  |  |
| 7, 12, 23, 17,<br>25, 30 | VSS    | PWR            |                | Ground                      |  |  |  |  |
| 42                       | VAARef | PWR            |                | +3.3V Power Supply for PHY. |  |  |  |  |
| 40                       | GNDRed | PWR            |                | +3.3V Power Ground for PHY  |  |  |  |  |
| 48                       | VAAT   | PWR            |                | +3.3V for Transmitter       |  |  |  |  |
| 45                       | GNDT   | PWR            |                | GND for Transmitter         |  |  |  |  |
| 34                       | VAAR   | PWR            |                | +3.3V for Receiver          |  |  |  |  |
| 37                       | GNDR   | PWR            |                | GND for Receiver            |  |  |  |  |

### 2.3 Block Diagram



Figure 2 Block Diagram



#### **Function Description**

### **3** Function Description

### 3.1 USB Interface

USB is a likely solution any time you want to use a computer to communication with devices outside the computer. The interface is suitable for one-of-kind and small-scale designs as well as mass-produced, standard peripheral. The benefits to USB are easy to use, fast and reliable data transfers, flexibility, low cost and power conservation.

### 3.1.1 SIE

SIE (Serial Interface Engine) is to control USB communications and check USB protocol, then transfer protocol to EP decoder. The SIE and USB transceivers, which provide the hardware interface to the USB cable, together comprise the USB engine.

### 3.1.2 USB Command & EP Decoder

The detail description is in "USB Command".

### 3.2 FIFO Controller

FIFO Controller in receive path is in charge of:

- Stores received Ethernet packets to SRAM and multiple packets can be stored to SRAM. If more than
  maximum packet counts are received or total packet size is more than the size of SRAM, the subsequent
  coming Ethernet packet will be discarded.
- FIFO controller will load data from SRAM to internal RX FIFO then inform EP Decoder that 64-byte data or a
  packet is ready in RX FIFO. Before FIFO controller informs about this, any USB access to bulk IN endpoint will
  return NAK. This is to maintain the data transfer on the USB bus via bulk IN transfer which is continuous, thus
  a 64-byte internal RX FIFO is needed.
- If an Ethernet packet is being received and loading into SRAM while FIFO Controller is moving data from SRAM to internal RX FIFO, writing the Ethernet packet to SRAM will get the higher priority.

### 3.3 TX FIFO and RX FIFO

RX FIFO is a one-port 64-byte FIFO and TX FIFO is a two-port 2K-byte FIFO.

### 3.4 10/100M Ethernet PHY

The Ethernet PHY is compliant to IEEE 802.3u 100BASE-TX and IEEE802.3 10BASE-T. It provides the whole physical layer functions for both 10M and 100M Ethernet speed.

### 4 USB Device Endpoint Operation

### 4.1 Endpoint 0

Endpoint 0 is in charge of response to standard USB commands and vendor specific commands. Internal register settings are also via this endpoint. The response to each command is described in section 6.



### **USB Device Endpoint Operation**

### 4.2 Endpoint 1 Bulk IN

Endpoint 1 is in charge of sending the received Ethernet packet to USB host. An Ethernet packet will be split to multiple 64 bytes USB packets on USB. The end of the Ethernet packet is indicated by less then 64-byte or 0 length data transfer in this pipe. The Ethernet received status is optionally reported at the end of the packet.

While accessing to this endpoint, if RXFIFO is either full or any packet is inside, the data in RXFIFO is returned in USB data stage. If ACK is received from USB host, data in RXFIFO is flushed. If no response or NAK is received from USB host, the content in RXFIFO will be re-transmitted. If RXFIFO isn't ready for transmission, NAK is returned to USB host.



### Figure 3 Packet Form when Receive

The Received Status is Reported as Follows:

| Offset  | Bit | Field           | Description                                                   |
|---------|-----|-----------------|---------------------------------------------------------------|
| Offset0 | 7-0 | rx_bytecnt_lo   | The received byte count[7:0].                                 |
| Offset1 | 3-0 | rx_bytecnt_hi   | The received byte count[11:8].                                |
|         | 7-4 | reserved        |                                                               |
| Offset2 | 0   | multicast_frame | Indicates received a multicast frame.                         |
|         | 1   | long_pkt        | Indicates received packet length > 1518 bytes.                |
|         | 2   | runt_pkt        | Indicates received packet length < 64 bytes.                  |
|         | 3   | crc_err         | Indicates CRC check error.                                    |
|         | 4   | dribble_bit     | Indicates packet length is not integer multiple of 8-<br>bit. |
|         | 7-5 | reserved        |                                                               |
| Offset3 | 7-0 | reserved        |                                                               |

### Table 11 USB Received Status

### 4.2.1 Endpoint 2 Bulk OUT

Endpoint 2 is in charge of sending the USB packet to Ethernet. An Ethernet packet is concatenated by multiple 64 bytes USB packets on USB. The first two bytes in every first concatenated USB packet indicate the length of the Ethernet packet. The end of the Ethernet packet is indicated by less then 64-byte or 0 length data transfer in this pipe. The Ethernet transmit status is reported in transmit status register.

When accessing to this endpoint, data in USB data stage is transferred to TXFIFO, if TXFIFO is free and ACK is returned. If TXFIFO isn't free, NAK is returned.



### Table 12USB Packet Format

| Field   | 1st Byte in 1st USB Packet                   | 2nd Byte in 1st USB Packet | The Following Packets |
|---------|----------------------------------------------|----------------------------|-----------------------|
| Content | len[7:0]: Low byte Ethernet<br>packet length | {reserved[4:0], len[10:8]} | Ethernet packet       |



### Figure 4 Packet Form when Transmit

### 4.2.2 Endpoint 3 Interrupt IN

Endpoint 3 is in charge of returning the current Ethernet transfer status every polling interval. When accessing to this endpoint, 8 bytes data is returned to USB host. The 8-byte packet contains

### Table 13 Interrupt Packet Form

| Offset0                        | Offset1                        | Offset2                        | Offset3                         | Offset4                         |
|--------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|
| tx_status(Reg2B <sub>H</sub> ) | tx_status(Reg2C <sub>H</sub> ) | rx_status(Reg2D <sub>H</sub> ) | rx_lostpkt(Reg2E <sub>H</sub> ) | rx_lostpkt(Reg2F <sub>H</sub> ) |

### Table 14Interrupt Packet Form

| Offset5                            | Offset6(1B)              | Offset7(1B)         |
|------------------------------------|--------------------------|---------------------|
| wakeup_status(Reg7A <sub>H</sub> ) | Packet number in RX FIFO | 7'b00, length error |
|                                    | (Reg82 <sub>H</sub> )    |                     |

### 5 USB Commands

### 5.1 USB Command

### 5.1.1 Get Register (Vendor Specific) Single/Burst Read

### Table 15Setup Stage

| bmReq | bReq | wValue(2B) | wIndexLow(1B) | wIndexHigh(1B) | wLength L(1B) | wLength H(1B) |
|-------|------|------------|---------------|----------------|---------------|---------------|
| C0    | F0   | 0          | RegIndex[7:0] | 00             | Length Low    | Length High   |



### Table 16Data Stage

| Offset0(1B) | Offset1(1B)  | Offset2(1B)  |
|-------------|--------------|--------------|
| {RegIndex}  | {RegIndex+1) | {RegIndex+2) |

The returned total number of registers depends on the length field.

### 5.1.2 Set Register (Vendor Specific) Burst Write

#### Table 17 Setup Stage

| bmReq | bReq | wValue(2B) | wIndexLow(1B) | wIndexHigh(1B) | wLength L(1B) | wLength H(1B) |
|-------|------|------------|---------------|----------------|---------------|---------------|
| 40    | F1   | 0          | RegIndex[7:0] | 00             | Length Low    | Length High   |

#### Table 18 Data Stage

| Offset0(1B) | Offset1(1B)  | Offset2(1B)  | Offset3(1B)  |
|-------------|--------------|--------------|--------------|
| {RegIndex}  | {RegIndex+1} | {RegIndex+2} | {RegIndex+3} |

Ex. Write 44 to RegIndex =  $05_{H}$ , the transfer will be

#### Table 19Setup Stage

| bmReq | bReq | wValue<br>L(1B) | wValue<br>H(1B) | wIndexLow<br>(1B) | wIndexHigh<br>(1B) | wLength<br>L(1B) | wLength<br>H(1B) |
|-------|------|-----------------|-----------------|-------------------|--------------------|------------------|------------------|
| 40    | F1   | 44              | 00              | 05                | 00                 | 01               | 00               |

If wLength > 1, more than 1 register is accessed (burst write) and mask is not supported => DataStage for 8-byte OUT transfer appears

Ex. Burst write 20 registers from RegIndex =  $07_{H}$  and data from  $01_{D}$  to  $20_{D}$ 

Setup Stage

#### Table 20 Setup Stage

| bmReq | bReq | wValue(2B) | wIndexLow(1B) | wIndexHigh(1B) | wLength L(1B) | wLength H(1B) |
|-------|------|------------|---------------|----------------|---------------|---------------|
| 40    | F1   | 0000       | 07            | 00             | 14            | 00            |

Data Stage

### Table 211st OUT Transfer

| Offset0(1B) | Offset1(1B) | Offset2(1B) | Offset3(1B) | Offset4(1B) | Offset5(1B) | Offset6(1B) | Offset7(1B) |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 01          | 02          | 03          | 04          | 05          | 06          | 07          | 08          |

### Table 222nd OUT Transfer

| Offset0(1B) | Offset1(1B) | Offset2(1B) | Offset3(1B) | Offset4(1B) | Offset5(1B) | Offset6(1B) | Offset7(1B) |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 09          | 0A          | 0B          | 0C          | 0D          | 0E          | 0F          | 10          |



### Table 233rd OUT Transfer

| Offset0(1B) | Offset1(1B) | Offset2(1B) |
|-------------|-------------|-------------|
| 11          | 12          | 13          |

### 5.1.3 Get Status (Device)

### Table 24Setup Stage

| bmReq | bReq | wValue(2B) | wIndex(2B) | wLength L(1B) | wLength H(1B) |
|-------|------|------------|------------|---------------|---------------|
| 80    | 0    | 0          | 0          | 2             | 0             |

### Table 25 Data Stage

| D[15:2] | D[1]: Remote Wakeup       | D[0]:Self Powered |
|---------|---------------------------|-------------------|
| 0       | Register of remote_wakeup | 1                 |

### 5.1.4 Get Status (Interface)

### Table 26 Setup Stage

| bmReq | bReq | wValue(2B) | wIndex(2B) | wLength L(1B) | wLength H(1B) |
|-------|------|------------|------------|---------------|---------------|
| 81    | 0    | 0          | 0          | 2             | 0             |

#### Table 27 Data Stage

| D[15:0] |  |  |  |
|---------|--|--|--|
| 0       |  |  |  |

### 5.1.5 Get Status (EP0)

| Table 28 Se | etup Stage |            |              |              |                  |                  |
|-------------|------------|------------|--------------|--------------|------------------|------------------|
| bmReq       | bReq       | wValue(2B) | windex L(1B) | windex H(1B) | wLength<br>L(1B) | wLength<br>H(1B) |
| 82          | 0          | 0          | 80 or 00     | 00           | 2                | 0                |

### Table 29 Data Stage

| D[15:1] | D[0]: Halt           |
|---------|----------------------|
| 0       | Register of ep0_halt |

### 5.1.6 Get Status (EP1) Bulk In



| Table 30 Setup Stage |      |            |              |              |                  |                  |  |
|----------------------|------|------------|--------------|--------------|------------------|------------------|--|
| bmReq                | bReq | wValue(2B) | wIndex L(1B) | wIndex H(1B) | wLength<br>L(1B) | wLength<br>H(1B) |  |
| 82                   | 0    | 0          | 81           | 00           | 2                | 0                |  |

| Table 31 | Data Stage |                      |
|----------|------------|----------------------|
| D[15:1]  |            | D[0]: Halt           |
| 0        |            | Register of ep1_halt |

### 5.1.7 Get Status (EP2) Bulk OUT

| Table 32 Setup Stage |      |            |              |              |                  |                  |  |  |
|----------------------|------|------------|--------------|--------------|------------------|------------------|--|--|
| bmReq                | bReq | wValue(2B) | wIndex L(1B) | wIndex H(1B) | wLength<br>L(1B) | WLength<br>H(1B) |  |  |
| 82                   | 0    | 0          | 02           | 00           | 2                | 0                |  |  |

### Table 33 Data Stage

| D[15:1] | D[0]: Halt           |
|---------|----------------------|
| 0       | register of ep2_halt |

### 5.1.8 Get Status (EP3) Interrupt IN

### Table 34 Setup Stage

| bmReq | bReq | wValue(2B) | wIndex L(1B) | wIndex H(1B) | wLength<br>L(1B) | wLength<br>H(1B) |
|-------|------|------------|--------------|--------------|------------------|------------------|
| 82    | 0    | 0          | 83           | 00           | 2                | 0                |

| Table 35 Da | ata Stage |                      |
|-------------|-----------|----------------------|
| D[15:1]     |           | D[0]: Halt           |
| 0           |           | register of ep3_halt |

### 5.1.9 Get Descriptor (Device) Total 18-byte

#### Table 36 Setup Stage

| bmReq | bReq | wValue L(1B) | wValue H(1B) | wIndex(2B) | wLength<br>L(1B) | wLength<br>H(1B) |
|-------|------|--------------|--------------|------------|------------------|------------------|
| 80    | 6    | 01           | 00           | 0          | Length low       | Length high      |



### Table 37 Data Stage: wLength Field Specifies the Total byte Count to Return 1

| Offset 0            | Offset 1<br>(type)  | •                   | Offset 3 (USB<br>release no. H) |                     | Offset 5 (Sub<br>Class Code) |                     | Offset 7 (EP0<br>MaxPktSize) |
|---------------------|---------------------|---------------------|---------------------------------|---------------------|------------------------------|---------------------|------------------------------|
| 12(1 <sub>B</sub> ) | 01(1 <sub>B</sub> ) | 10(1 <sub>B</sub> ) | 01(1 <sub>B</sub> )             | FF(1 <sub>B</sub> ) | 00(1 <sub>B</sub> )          | ff(1 <sub>B</sub> ) | 8(1 <sub>B</sub> )           |

### Table 38 Data Stage: wLength Field Specifies the Total byte Count to Return 2

| Offset 8 (vendor ID)<br>Low |                   |                   | Offset 11<br>(productID) High | Offset 12 (releaseID<br>Low) |
|-----------------------------|-------------------|-------------------|-------------------------------|------------------------------|
| (1 <sub>B</sub> )           | (1 <sub>B</sub> ) | (1 <sub>B</sub> ) | (1 <sub>B</sub> )             | 01(1 <sub>B</sub> )          |

### Table 39 Data Stage: wLength Field Specifies the Total byte Count to Return 3

| Offset 13 (releaseID<br>High) | Offset 14<br>(manufacture) | Offset 15 (Product) | Offset 16 (serial<br>no.) | Offset 17 (no. of config) |
|-------------------------------|----------------------------|---------------------|---------------------------|---------------------------|
| 01(1 <sub>B</sub> )           | 01(1 <sub>B</sub> )        | 02(1 <sub>B</sub> ) | 03(1 <sub>B</sub> )       | 01(1 <sub>B</sub> )       |

### 5.1.10 Get Descriptor (Configuration) Total 39-byte

### Table 40 Setup Stage

| BmReq | bReq | wValue L(1B) | wValue H(1B) | wIndex(2B) | wLength<br>L(1B) | wLength<br>H(1B) |
|-------|------|--------------|--------------|------------|------------------|------------------|
| 80    | 6    | 02           | 00           | 0          | Length low       | Length high      |

Data Stage

### Table 41 Configuration Descriptor 1

| Offset 0 (Length)   | Offset 1 (DscrType) | Offset 2            | Offset 3            | Offset 4            |  |
|---------------------|---------------------|---------------------|---------------------|---------------------|--|
|                     |                     | (TotalLength) Low   | (TotalLength) High  | (NumInterface)      |  |
| 09(1 <sub>B</sub> ) | 02(1 <sub>B</sub> ) | 27(1 <sub>B</sub> ) | 00(1 <sub>B</sub> ) | 01(1 <sub>B</sub> ) |  |

### Table 42Configuration Descriptor 2

| Offset 5 (ConfgValue) | Offset 6 (StringIndex) | Offset 7 (Attribute) | Offset 8(MaxPower)       |
|-----------------------|------------------------|----------------------|--------------------------|
| 00(1 <sub>B</sub> )   | 00(1 <sub>B</sub> )    | E0(1 <sub>B</sub> )  | max_pwr(1 <sub>B</sub> ) |

### Table 43Interface 0 Descriptor

| Offset 0<br>(Length) | Offset 1<br>(DscrType) | Offset 2<br>(Interface<br>Num) |   | Offset 4<br>(NumEP) | Offset 5<br>(IntfClass) |   | Offset 7<br>(IntfProto<br>col) | Offset 8<br>(StringInd<br>ex) |
|----------------------|------------------------|--------------------------------|---|---------------------|-------------------------|---|--------------------------------|-------------------------------|
|                      |                        | - /                            | , |                     |                         | , | ,                              |                               |



#### Table 44 **EP1** Descriptor Offset 0 Offset 3 Offset 4 Offset 5 Offset 6 Offset 1 Offset 2 (Length) (DscrType) (EPAddr) (Attribute) (MaxPktSize) (MaxPktSize) (Interval) High Low 07(1<sub>B</sub>) 02(1<sub>B</sub>) bulk 64(1<sub>B</sub>) 00(1<sub>B</sub>) $00(1_{B})$ $05(1_{B})$ 81(1<sub>B</sub>)

### Table 45 EP2 Descriptor

| Offset 0<br>(Length) | Offset 1<br>(DscrType) | Offset 2<br>(EPAddr) | Offset 3<br>(Attribute)  | Offset 4<br>(MaxPktSize)<br>Low | Offset 4<br>(MaxPktSize)<br>High | Offset 6<br>(Interval) |
|----------------------|------------------------|----------------------|--------------------------|---------------------------------|----------------------------------|------------------------|
| 07(1 <sub>B</sub> )  | 05(1 <sub>B</sub> )    | 02(1 <sub>B</sub> )  | 02(1 <sub>B</sub> ) bulk | 64(1 <sub>B</sub> )             | 00(1 <sub>B</sub> )              | 00(1 <sub>B</sub> )    |

### Table 46 EP3 Descriptor

| Offset 0<br>(Length) | Offset 1<br>(DscrType) | Offset 2<br>(EPAddr) | Offset 3<br>(Attribute)       | Offset 4<br>(MaxPktSize)<br>Low | Offset 5<br>(MaxPktSize)<br>High | Offset 6<br>(Interval)        |
|----------------------|------------------------|----------------------|-------------------------------|---------------------------------|----------------------------------|-------------------------------|
| 07(1 <sub>B</sub> )  | 05(1 <sub>B</sub> )    | 83(1 <sub>B</sub> )  | 03(1 <sub>B</sub> ) interrupt | 08(1 <sub>B</sub> )             | 00(1 <sub>B</sub> )              | ep3_interval(1 <sub>B</sub> ) |

### 5.1.11 Get Descriptor (String) Index 0, LanguageID Code

### Table 47 Setup Stage

| BmReq | bReq | wValue L(1B) | wValue H(1B) | wIndex(2B) | wLength<br>Low(1B) | wLength<br>High(1B) |
|-------|------|--------------|--------------|------------|--------------------|---------------------|
| 80    | 06   | 00           | 03           | 0000       | Length Low         | Length High         |

### Table 48Data Stage

| Offset0 (Length)    | Offset1 (DscrType)  | Offset2 (LanguageID) L | Offset3 (LanguageID) H |
|---------------------|---------------------|------------------------|------------------------|
| 04(1 <sub>B</sub> ) | 03(1 <sub>B</sub> ) | 09(1 <sub>B</sub> )    | 04(1 <sub>B</sub> )    |

### 5.1.12 Get Descriptor (String) Index 1, Manufacture

### Table 49 Setup Stage

| BmReq | bReq | wValue L(1B) | wValue H(1B) | wIndex (2B) | wLength<br>Low(1B) | wLength<br>High(1B) |
|-------|------|--------------|--------------|-------------|--------------------|---------------------|
| 80    | 06   | 01           | 03           | 0904        | Length Low         | Length High         |

### Table 50 Data Stage

| Offset0 (Length) | Offset1 (DscrType) |        |
|------------------|--------------------|--------|
| length(1B)       | 03(1B)             | String |



### 5.1.13 Get Descriptor (String) Index 2, Product

### Table 51Setup Stage

| BmReq | bReq | wValue L(1B) | wValue H(1B) | wIndex (2B) | wLength<br>Low(1B) | wLength<br>High(1B) |
|-------|------|--------------|--------------|-------------|--------------------|---------------------|
| 80    | 06   | 02           | 03           | 0904        | Length Low         | Length High         |

### Table 52 Data Stage

| Offset 0 (Length)       | Offset 1 (DscrType) |        |
|-------------------------|---------------------|--------|
| length(1 <sub>B</sub> ) | 03(1 <sub>B</sub> ) | String |

### 5.1.14 Get Descriptor (String) Index 3, Serial No.

### Table 53 Setup Stage

| BmReq | bReq | wValue L(1B) | wValue H(1B) | wIndex (2B) | wLength<br>Low(1B) | wLength<br>High(1B) |
|-------|------|--------------|--------------|-------------|--------------------|---------------------|
| 80    | 06   | 03           | 03           | 0904        | Length Low         | Length High         |

#### Table 54 Data Stage

| Offset 0 (Length)       | Offset 1 (DscrType) |        |
|-------------------------|---------------------|--------|
| Length(1 <sub>B</sub> ) | 03(1 <sub>B</sub> ) | String |

### 5.1.15 Get Configuration

#### Table 55Setup Stage

| BmReq | bReq | wValue(2B) | wIndex(2B) | wLength<br>Low(1B) | wLength<br>High(1B) |
|-------|------|------------|------------|--------------------|---------------------|
| 80    | 08   | 0          | 0          | 1                  | 0                   |

### Table 56 Data Stage

| Offset 0 (ConfgValue)(1B) |  |  |
|---------------------------|--|--|

### 5.1.16 Get Interface

| Table 57 Setup Stage |      |            |            |                    |                     |
|----------------------|------|------------|------------|--------------------|---------------------|
| BmReq                | bReq | wValue(2B) | wIndex(2B) | wLength<br>Low(1B) | wLength<br>High(1B) |
| 81                   | 10   | 0          | 0          | 1                  | 0                   |



| Table 58    | Data Stage  |
|-------------|-------------|
| Offset0 (Al | tIntf) (1B) |
| 00          |             |

### 5.1.17 Clear Feature (Device) Remote Wakeup

Table 59Setup Stage

| BmReq | bReq | wValue L(1B) | WValue H(1B) | wIndex(2B) | wLength(2B) |
|-------|------|--------------|--------------|------------|-------------|
| 00    | 01   | 01           | 00           | 0          | 0           |

### 5.1.18 Set Feature (Device) Remote Wakeup

| Table 60 | Table 60 Setup Stage |              |              |            |             |
|----------|----------------------|--------------|--------------|------------|-------------|
| BmReq    | bReq                 | wValue L(1B) | WValue H(1B) | wIndex(2B) | wLength(2B) |
| 00       | 03                   | 01           | 00           | 0          | 0           |

### 5.1.19 Clear Feature (EP 0, 1, 2, 3) Halt

### Table 61 Setup Stage

| BmReq | bReq | wValue(2B) | WIndex L(1B) | wIndex L(2B) | WLength(2B) |
|-------|------|------------|--------------|--------------|-------------|
| 02    | 03   | 0000       | EP no        | 00           | 0           |

### 5.1.20 Set Feature (EP 0, 1, 2, 3) Halt

#### Table 62Setup Stage

| BmReq | bReq | wValue(2B) | WIndex H(1B) | wIndex H(2B) | WLength(2B) |
|-------|------|------------|--------------|--------------|-------------|
| 02    | 03   | 0000       | EP no        | 00           | 0           |



### 6.1 System Registers

### Table 63 Registers Address Space

| Module           | Base Address           | End Address            | Note |
|------------------|------------------------|------------------------|------|
| System Registers | 0000 0000 <sub>H</sub> | 0000 0081 <sub>H</sub> |      |

### Table 64 Registers Overview

| Register Short Name | Register Long Name                       | Offset Address     | Page Number |
|---------------------|------------------------------------------|--------------------|-------------|
| Res30_Res155        | Reserved 30~Reserved 155                 | 82~FF <sub>H</sub> | 34          |
| EC0                 | Ethernet Control 0                       | 00 <sub>H</sub>    | 30          |
| EC1                 | Ethernet Control 1                       | 01 <sub>H</sub>    | 31          |
| EC2                 | Ethernet Control 2                       | 02 <sub>H</sub>    | 32          |
| Res0                | Reserved 0                               | 03 <sub>H</sub>    | 33          |
| Res1                | Reserved 1                               | 04 <sub>H</sub>    | 33          |
| Res2                | Reserved 2                               | 05 <sub>H</sub>    | 33          |
| Res3                | Reserved 3                               | 06 <sub>H</sub>    | 33          |
| Res4                | Reserved 4                               | 07 <sub>H</sub>    | 33          |
| MA0                 | Multicast Address 0                      | 08 <sub>H</sub>    | 34          |
| MA1                 | Multicast Address 1                      | 09 <sub>H</sub>    | 34          |
| MA2                 | Multicast Address 2                      | 0A <sub>H</sub>    | 35          |
| MA3                 | Multicast Address 3                      | 0B <sub>H</sub>    | 35          |
| MA4                 | Multicast Address 4                      | 0C <sub>H</sub>    | 36          |
| MA5                 | Multicast Address 5                      | 0D <sub>H</sub>    | 36          |
| MA6                 | Multicast Address 6                      | 0E <sub>H</sub>    | 37          |
| MA7                 | Multicast Address 7                      | 0F <sub>H</sub>    | 37          |
| EID0                | Ethernet ID 0                            | 10 <sub>H</sub>    | 38          |
| EID1                | Ethernet ID 1                            | 11 <sub>H</sub>    | 38          |
| EID2                | Ethernet ID 2                            | 12 <sub>H</sub>    | 39          |
| EID3                | Ethernet ID 3                            | 13 <sub>H</sub>    | 39          |
| EID4                | Ethernet ID 4                            | 14 <sub>H</sub>    | 40          |
| EID5                | Ethernet ID 5                            | 15 <sub>H</sub>    | 40          |
| Res5                | Reserved 5                               | 16 <sub>H</sub>    | 33          |
| Res6                | Reserved 6                               | 17 <sub>H</sub>    | 33          |
| PT                  | Pause Timer                              | 18 <sub>H</sub>    | 41          |
| RPNBFC              | Receive Packet Number Based Flow Control | 1A <sub>H</sub>    | 41          |
| ORFBFC              | Occupied Receive FIFO Based Flow Control | 1B <sub>H</sub>    | 42          |
| EP1C                | EP1 Control                              | 1C <sub>H</sub>    | 42          |
| Res7                | Reserved 7                               | 1C <sub>H</sub>    | 33          |



| <b>Register Short Name</b> | Register Long Name             | Offset Address  | Page Number |
|----------------------------|--------------------------------|-----------------|-------------|
| Res8                       | Reserved 8                     | 1D <sub>H</sub> | 33          |
| Res9                       | Reserved 9                     | 1E <sub>H</sub> | 33          |
| Res10                      | Reserved 10                    | 1F <sub>H</sub> | 33          |
| EEPROMO                    | EEPROM Offset                  | 20 <sub>H</sub> | 43          |
| EEPROMDL                   | EEPROM Data Low                | 21 <sub>H</sub> | 43          |
| EEPROMDH                   | EEPROM Data High               | 22 <sub>H</sub> | 43          |
| EEPROMAC                   | EEPROM Access Control          | 23 <sub>H</sub> | 45          |
| Res11                      | Reserved 11                    | 24 <sub>H</sub> | 33          |
| РНҮА                       | PHY Address                    | 25 <sub>H</sub> | 45          |
| PHYDL                      | PHY Data Low                   | 26 <sub>H</sub> | 46          |
| PHYDH                      | PHY Data High                  | 27 <sub>H</sub> | 46          |
| PHYAC                      | PHY Access Control             | 28 <sub>H</sub> | 47          |
| Res12                      | Reserved 12                    | 29 <sub>H</sub> | 33          |
| USBBS                      | USB Bus Status                 | 2A <sub>H</sub> | 47          |
| TS1                        | Transmit Status 1              | 2B <sub>H</sub> | 47          |
| TS2                        | Transmit Status 2              | 2C <sub>H</sub> | 49          |
| RS                         | Receive Status                 | 2D <sub>H</sub> | 49          |
| RLPCH                      | Receive Lost Packet Count High | 2E <sub>H</sub> | 50          |
| RLPCL                      | Receive Lost Packet Count Low  | 2F <sub>H</sub> | 50          |
| WUF0M_0                    | Wakeup Frame 0 Mask            | 30 <sub>H</sub> | 50          |
| WUF0M 1                    | Wakeup Frame 0 Mask 1          | 31 <sub>H</sub> | 51          |
| WUF0M 2                    | Wakeup Frame 0 Mask 2          | 32 <sub>H</sub> | 51          |
| WUF0M 3                    | Wakeup Frame 0 Mask 3          | 33 <sub>H</sub> | 51          |
| <br>WUF0M_4                | Wakeup Frame 0 Mask 4          | 34 <sub>H</sub> | 51          |
| WUF0M_5                    | Wakeup Frame 0 Mask 5          | 35 <sub>H</sub> | 51          |
| WUF0M_6                    | Wakeup Frame 0 Mask 6          | 36 <sub>H</sub> | 51          |
| <br>WUF0M_7                | Wakeup Frame 0 Mask 7          | 37 <sub>H</sub> | 51          |
| <br>WUF0M_8                | Wakeup Frame 0 Mask 8          | 38 <sub>H</sub> | 51          |
| WUF0M 9                    | Wakeup Frame 0 Mask 9          | 39 <sub>H</sub> | 51          |
|                            | Wakeup Frame 0 Mask 10         | 3A <sub>H</sub> | 51          |
|                            | Wakeup Frame 0 Mask 11         | 3B <sub>H</sub> | 51          |
|                            | Wakeup Frame 0 Mask 12         | 3C <sub>H</sub> | 51          |
|                            | Wakeup Frame 0 Mask 13         | 3D <sub>H</sub> | 51          |
|                            | Wakeup Frame 0 Mask 14         | 3E <sub>H</sub> | 51          |
|                            | Wakeup Frame 0 Mask 15         | 3F <sub>H</sub> | 51          |
|                            | Wakeup Frame 0 Offset          | 40 <sub>H</sub> | 51          |
| WUF0CRCL                   | Wakeup Frame 0 CRC Low         | 41 <sub>H</sub> | 52          |
| WUF0CRCH                   | Wakeup Frame 0 CRC High        | 42 <sub>H</sub> | 52          |
| Res13                      | Reserved 13                    | 43 <sub>H</sub> | 33          |
| Res14                      | Reserved 14                    | 44 <sub>H</sub> | 33          |
| Res15                      | Reserved 15                    | 45 <sub>H</sub> | 33          |

### Table 64 Registers Overview (cont'd)



| <b>Register Short Nam</b> | e Register Long Name    | Offset Address  | Page Number |
|---------------------------|-------------------------|-----------------|-------------|
| Res16                     | Reserved 16             | 46 <sub>H</sub> | 33          |
| Res17                     | Reserved 17             | 47 <sub>H</sub> | 33          |
| WUF1M_0                   | Wakeup Frame 1 Mask     | 48 <sub>H</sub> | 53          |
| WUF1M_1                   | Wakeup Frame 1 Mask 1   | 49 <sub>H</sub> | 53          |
| WUF1M_2                   | Wakeup Frame 1 Mask 2   | 4A <sub>H</sub> | 53          |
| WUF1M_3                   | Wakeup Frame 1 Mask 3   | 4B <sub>H</sub> | 53          |
| WUF1M_4                   | Wakeup Frame 1 Mask 4   | 4C <sub>H</sub> | 53          |
| WUF1M_5                   | Wakeup Frame 1 Mask 5   | 4D <sub>H</sub> | 53          |
| WUF1M_6                   | Wakeup Frame 1 Mask 6   | 4E <sub>H</sub> | 53          |
| WUF1M_7                   | Wakeup Frame 1 Mask 7   | 4F <sub>H</sub> | 53          |
| WUF1M_8                   | Wakeup Frame 1 Mask 8   | 50 <sub>H</sub> | 53          |
| WUF1M_9                   | Wakeup Frame 1 Mask 9   | 51 <sub>H</sub> | 53          |
| WUF1M_10                  | Wakeup Frame 1 Mask 10  | 52 <sub>H</sub> | 53          |
| WUF1M_12                  | Wakeup Frame 1 Mask 12  | 54 <sub>H</sub> | 53          |
| WUF1M_13                  | Wakeup Frame 1 Mask 13  | 55 <sub>H</sub> | 53          |
| WUF1M_11                  | Wakeup Frame 1 Mask 11  | 56 <sub>H</sub> | 53          |
| WUF1M_14                  | Wakeup Frame 1 Mask 14  | 56 <sub>H</sub> | 53          |
| WUF1M_15                  | Wakeup Frame 1 Mask 15  | 57 <sub>H</sub> | 53          |
| WUF10                     | Wakeup Frame 1 Offset   | 58 <sub>H</sub> | 53          |
| WUF1CRCL                  | Wakeup Frame 1 CRC Low  | 59 <sub>H</sub> | 55          |
| WUF1CRCH                  | Wakeup Frame 1 CRC High | 5A <sub>H</sub> | 55          |
| Res18                     | Reserved 18             | 5B <sub>H</sub> | 33          |
| Res19                     | Reserved 19             | 5C <sub>H</sub> | 33          |
| Res20                     | Reserved 20             | 5D <sub>H</sub> | 33          |
| Res21                     | Reserved 21             | 5E <sub>H</sub> | 33          |
| Res22                     | Reserved 22             | 5F <sub>H</sub> | 33          |
| WUF2M                     | Wakeup Frame 2 Mask     | 60 <sub>H</sub> | 56          |
| WUF2M_1                   | Wakeup Frame 2 Mask 1   | 61 <sub>H</sub> | 56          |
| WUF2M_2                   | Wakeup Frame 2 Mask 2   | 62 <sub>H</sub> | 56          |
| WUF2M_3                   | Wakeup Frame 2 Mask 3   | 63 <sub>H</sub> | 56          |
| WUF2M_4                   | Wakeup Frame 2 Mask 4   | 64 <sub>H</sub> | 56          |
| WUF2M_5                   | Wakeup Frame 2 Mask 5   | 65 <sub>H</sub> | 56          |
| WUF2M_6                   | Wakeup Frame 2 Mask 6   | 66 <sub>H</sub> | 56          |
| WUF2M_7                   | Wakeup Frame 2 Mask 7   | 67 <sub>H</sub> | 56          |
| WUF2M_8                   | Wakeup Frame 2 Mask 8   | 68 <sub>H</sub> | 56          |
| WUF2M_9                   | Wakeup Frame 2 Mask 9   | 69 <sub>H</sub> | 56          |
| <br>WUF2M_10              | Wakeup Frame 2 Mask 10  | 6A <sub>H</sub> | 56          |
| <br>WUF2M_11              | Wakeup Frame 2 Mask 11  | 6B <sub>H</sub> | 56          |
|                           | Wakeup Frame 2 Mask 12  | 6C <sub>H</sub> | 56          |
|                           | Wakeup Frame 2 Mask 13  | 6D <sub>H</sub> | 56          |
|                           | Wakeup Frame 2 Mask 14  | 6E <sub>H</sub> | 56          |

### Table 64 Registers Overview (cont'd)



| Register Short Name | Register Long Name      | Offset Address  | Page Number |  |
|---------------------|-------------------------|-----------------|-------------|--|
| WUF2M_15            | Wakeup Frame 2 Mask 15  | 6F <sub>н</sub> | 56          |  |
| WUF2O               | Wakeup Frame 2 Offset   | 70 <sub>H</sub> | 56          |  |
| WUF2CRCL            | Wakeup Frame 2 CRC Low  | 71 <sub>H</sub> | 58          |  |
| WUF2CRCH            | Wakeup Frame 2 CRC High | 72 <sub>H</sub> | 58          |  |
| Res23               | Reserved 23             | 73 <sub>H</sub> | 33          |  |
| Res24               | Reserved 24             | 74 <sub>H</sub> | 33          |  |
| Res25               | Reserved 25             | 75 <sub>H</sub> | 33          |  |
| Res26               | Reserved 26             | 76 <sub>H</sub> | 34          |  |
| Res27               | Reserved 27             | 77 <sub>H</sub> | 34          |  |
| WUC                 | Wakeup Control          | 78 <sub>H</sub> | 59          |  |
| Res28               | Reserved 28             | 79 <sub>H</sub> | 34          |  |
| WUS                 | Wakeup Status           | 7A <sub>H</sub> | 60          |  |
| IPHYC               | Internal PHY Control    | 7B <sub>H</sub> | 60          |  |
| GPIO54C             | GPIO[5:4] Control       | 7C <sub>H</sub> | 61          |  |
| Res29               | Reserved 29             | 7D <sub>H</sub> | 34          |  |
| GPIO10C             | GPIO[1:0] Control       | 7E <sub>H</sub> | 62          |  |
| GPIO32C             | GPIO[3:2] Control       | 7F <sub>H</sub> | 63          |  |
| Test                | TEST                    | 80 <sub>H</sub> | 64          |  |
| ТМ                  | Test Mode               | 81 <sub>H</sub> | 64          |  |

### Table 64 Registers Overview (cont'd)

The register is addressed wordwise.

### Table 65 Register Access Types

| Mode                         | Symbol | Description HW                                                                                                  | Description SW                                                                                                                                                                 |  |  |
|------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| read/write                   | rw     | Register is used as input for the HW                                                                            | Register is readable and writable by SW                                                                                                                                        |  |  |
| read r                       |        | Register is written by HW (register<br>between input and output -> one cycle<br>delay)                          | Value written by software is ignored by<br>hardware; that is, software may write any<br>value to this field without affecting hardware<br>behavior (= Target for development.) |  |  |
| Read only                    | ro     | Register is set by HW (register between input and output -> one cycle delay)                                    | SW can only read this register                                                                                                                                                 |  |  |
| Read virtual                 | rv     | Physically, there is no new register, the input of the signal is connected directly to the address multiplexer. | SW can only read this register                                                                                                                                                 |  |  |
| Latch high, self clearing    | lhsc   | Latch high signal at high level, clear on read                                                                  | SW can read the register                                                                                                                                                       |  |  |
| Latch low, self clearing     | llsc   | Latch high signal at low-level, clear on read                                                                   | SW can read the register                                                                                                                                                       |  |  |
| Latch high,<br>mask clearing | lhmk   | Latch high signal at high level, register cleared with written mask                                             | SW can read the register, with write mask the register can be cleared (1 clears)                                                                                               |  |  |
| Latch low,<br>mask clearing  | llmk   | Latch high signal at low-level, register cleared on read                                                        | SW can read the register, with write mask the register can be cleared (1 clears)                                                                                               |  |  |



| Mode                                                                                                       | Symbol | Description HW                                                                            | Description SW                                                                                                            |
|------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Interrupt high, self clearing                                                                              | ihsc   | Differentiates the input signal (low-<br>>high) register cleared on read                  | SW can read the register                                                                                                  |
| Interrupt low, self clearing                                                                               | ilsc   | Differentiates the input signal (high-<br>>low) register cleared on read                  | SW can read the register                                                                                                  |
| Interrupt high,<br>mask clearingihmkDifferentiates the input signal (<br>>low) register cleared with writt |        |                                                                                           | SW can read the register, with write mask the register can be cleared                                                     |
| Interrupt low,<br>mask clearing                                                                            | ilmk   | Differentiates the input signal (low-<br>>high) register cleared with written<br>mask     | SW can read the register, with write mask the register can be cleared                                                     |
| Interrupt enable register                                                                                  | ien    | Enables the interrupt source for<br>interrupt generation                                  | SW can read and write this register                                                                                       |
| latch_on_reset                                                                                             | lor    | rw register, value is latched after first clock cycle after reset                         | Register is readable and writable by SW                                                                                   |
| self clearing register                                                                                     |        | Register is used as input for the hw, the register will be cleared due to a HW mechanism. | Writing to the register generates a strobe signal for the HW (1 pdi clock cycle) Register is readable and writable by SW. |

### Table 65 Register Access Types (cont'd)

### Table 66 Registers Clock DomainsRegisters Clock Domains

| Clock Short Name | Description |
|------------------|-------------|
|                  |             |

### 6.1.1 System Registers

### **Ethernet Control 0**

| EC0<br>Ethernet Control 0 |     |     |       | Offset<br>00 <sub>H</sub> |      |     |      | Reset Value<br>09 <sub>H</sub> |  |  |
|---------------------------|-----|-----|-------|---------------------------|------|-----|------|--------------------------------|--|--|
|                           | 7   | 6   | 5     | 4                         | 3    | 2   | 1    | 0                              |  |  |
|                           | TXE | RXE | RXFCE | WOE                       | RXSA | SBO | RXMA | RXCS                           |  |  |
|                           | rw  | rw  | rw    | rw                        | rw   | rw  | rw   | rw                             |  |  |

| Field | Bits | Туре | Description                                        |
|-------|------|------|----------------------------------------------------|
| TXE   | 7    | rw   | Ethernet Transmission Enable                       |
| RXE   | 6    | rw   | Ethernet Receive Enable                            |
| RXFCE | 5    | rw   | Receive Pause Frame Enable                         |
| WOE   | 4    | rw   | Wake-on-LAN Mode Enable                            |
| RXSA  | 3    | rw   | Status Append at the End of Received Packet Enable |



| Field | Bits | Туре | Description                                                                                                                                                                                    |
|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SBO   | 2    | rw   | Stop Back Off         0 <sub>B</sub> CNOT, Back-off counter isn't affected by carrier         1 <sub>B</sub> CST, Back-off counter stops when carrier is active and resumes when carrier drops |
| RXMA  | 1    | rw   | Receive All Multicast Packet                                                                                                                                                                   |
| RXCS  | 0    | rw   | Include CRC in Receive Packet                                                                                                                                                                  |

#### Ethernet Control 1

| EC1<br>Ethernet Control 1 |     |    | Offset<br>01 <sub>H</sub> |     |    |     | Reset Value<br>00 <sub>H</sub> |    |  |
|---------------------------|-----|----|---------------------------|-----|----|-----|--------------------------------|----|--|
|                           | 7   | 6  | 5                         | 4   | 3  | 2   | 1                              | 0  |  |
|                           | Res |    | FD                        | 10M | RM | МІІ | R                              | es |  |
| ro                        |     | rw | rw                        | rw  | r  | ro  |                                |    |  |

| Field | Bits | Туре | Description                                                                                           |
|-------|------|------|-------------------------------------------------------------------------------------------------------|
| Res   | 7:6  | ro   | Reserved                                                                                              |
| FD    | 5    | rw   | Full Dublex         0 <sub>B</sub> HDM, Half-duplex mode         1 <sub>B</sub> FDM, Full-duplex mode |
| 10M   | 4    | rw   | 10mode $0_B$ 10Base, 10Base-T mode $1_B$ 100Base, 100Base-T mode                                      |
| RM    | 3    | rw   | <b>Reset MAC</b><br>After write 1, HW will clear this bit after MAC reset.                            |
| MII   | 2    | r    | MII Mode<br>0 <sub>B</sub> MIIM, MII mode                                                             |
| Res   | 1:0  | ro   | Reserved                                                                                              |



#### **Ethernet Control 2**

| EC2<br>Ethernet Con | ntrol 2 | Offset<br>02 <sub>H</sub> |       |    |      | Reset Value<br>00 <sub>H</sub> |       |  |
|---------------------|---------|---------------------------|-------|----|------|--------------------------------|-------|--|
| 7                   | 6       | 5                         | 4     | 3  | 2    | 1                              | 0     |  |
| MEPL                | Res     | LEEPRS                    | EEPRW | LB | PROM | RXBP                           | EP3RC |  |
| rw                  | ro      | rw                        | rw    | rw | rw   | rw                             | rw    |  |

| Field  | Bits | Туре | Description                                                                                                                                                                                                 |
|--------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MEPL   | 7    | rw   | Max Ethernet Packet Length $0_B$ 1528B, 1528 bytes $1_B$ 1638B, 1638 bytes, Default is 0                                                                                                                    |
| Res    | 6    | ro   | Reserved                                                                                                                                                                                                    |
| LEEPRS | 5    | rw   | <b>Load EEPROM Start</b><br>When this bit is written with 1, HW will start to load EEPROM.                                                                                                                  |
| EEPRW  | 4    | rw   | EEPROM Write Enable/disable0BWEDC, EEPROM writes enable/disable command1BWC, EEPROM writes command                                                                                                          |
| LB     | 3    | rw   | MAC Loop Back Mode Enable                                                                                                                                                                                   |
| PROM   | 2    | rw   | Promiscuous         0 <sub>B</sub> RPP, Receives packets which pass the address filter         1 <sub>B</sub> RAP, Receives any packet                                                                      |
| RXBP   | 1    | rw   | Receive Bad Packets         0 <sub>B</sub> FABP, Filters all bad packet         1 <sub>B</sub> RBPP, Receives bad packets which pass the address filter                                                     |
| EP3RC  | 0    | rw   | <ul> <li>EP3 Read Cleared</li> <li>0<sub>B</sub> AEP3, Access EP3, no effect to those registers.</li> <li>1<sub>B</sub> OEP3, Once EP3 is accessed, those registers (2B-2F, 7A) will be cleared.</li> </ul> |



#### **Reserved 0**

| Res0<br>Reserved 0 |   |   | Offset<br>03 <sub>H</sub> |   |   |   | Reset Value<br>00 <sub>H</sub> |  |  |
|--------------------|---|---|---------------------------|---|---|---|--------------------------------|--|--|
| 7                  | 6 | 5 | 4                         | 3 | 2 | 1 | 0                              |  |  |
| Res                |   |   |                           |   |   |   |                                |  |  |
| ro                 |   |   |                           |   |   |   |                                |  |  |

| Field | Bits | Туре | Description |
|-------|------|------|-------------|
| Res   | 7:0  | ro   | Reserved    |

### Similar Registers

### Table 67 Reserved Registers

| Register Short Name | Register Long Name | Offset Address  | Page Number |  |
|---------------------|--------------------|-----------------|-------------|--|
| Res1                | Reserved 1         | 04 <sub>H</sub> |             |  |
| Res2                | Reserved 2         | 05 <sub>H</sub> |             |  |
| Res3                | Reserved 3         | 06 <sub>H</sub> |             |  |
| Res4                | Reserved 4         | 07 <sub>H</sub> |             |  |
| Res5                | Reserved 5         | 16 <sub>H</sub> |             |  |
| Res6                | Reserved 6         | 17 <sub>H</sub> |             |  |
| Res7                | Reserved 7         | 1C <sub>H</sub> |             |  |
| Res8                | Reserved 8         | 1D <sub>H</sub> |             |  |
| Res9                | Reserved 9         | 1E <sub>H</sub> |             |  |
| Res10               | Reserved 10        | 1F <sub>H</sub> |             |  |
| Res11               | Reserved 11        | 24 <sub>H</sub> |             |  |
| Res12               | Reserved 12        | 29 <sub>H</sub> |             |  |
| Res13               | Reserved 13        | 43 <sub>H</sub> |             |  |
| Res14               | Reserved 14        | 44 <sub>H</sub> |             |  |
| Res15               | Reserved 15        | 45 <sub>H</sub> |             |  |
| Res16               | Reserved 16        | 46 <sub>H</sub> |             |  |
| Res17               | Reserved 17        | 47 <sub>H</sub> |             |  |
| Res18               | Reserved 18        | 5B <sub>H</sub> |             |  |
| Res19               | Reserved 19        | 5C <sub>H</sub> |             |  |
| Res20               | Reserved 20        | 5D <sub>H</sub> |             |  |
| Res21               | Reserved 21        | 5E <sub>H</sub> |             |  |
| Res22               | Reserved 22        | 5F <sub>H</sub> |             |  |
| Res23               | Reserved 23        | 73 <sub>H</sub> |             |  |
| Res24               | Reserved 24        | 74 <sub>H</sub> |             |  |
| Res25               | Reserved 25        | 75 <sub>H</sub> |             |  |



|                     | - 3 ( )                  |                    |             |
|---------------------|--------------------------|--------------------|-------------|
| Register Short Name | Register Long Name       | Offset Address     | Page Number |
| Res26               | Reserved 26              | 76 <sub>H</sub>    |             |
| Res27               | Reserved 27              | 77 <sub>H</sub>    |             |
| Res28               | Reserved 28              | 79 <sub>H</sub>    |             |
| Res29               | Reserved 29              | 7D <sub>H</sub>    |             |
| Res30_Res155        | Reserved 30~Reserved 155 | 82~FF <sub>H</sub> |             |

#### Table 67 Reserved Registers (cont'd)

### Multicast Address 0

| MA0<br>Multicast Ad | dress 0 |   | Offset<br>08 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |
|---------------------|---------|---|---------------------------|---|---|--------------------------------|---|--|
| 7                   | 6       | 5 | 4                         | 3 | 2 | 1                              | 0 |  |
| МАВО                |         |   |                           |   |   |                                |   |  |
| rw                  |         |   |                           |   |   |                                |   |  |

| Field | Bits | Туре | Description                  |
|-------|------|------|------------------------------|
| MAB0  | 7:0  | rw   | Multicast 0                  |
|       |      |      | Multicast address byte [7:0] |

### Multicast Address 1

| MA1<br>Multicast Address 1 |   |   | Offset<br>09 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |  |  |
|----------------------------|---|---|---------------------------|---|---|--------------------------------|---|--|--|--|
| 7                          | 6 | 5 | 4                         | 3 | 2 | 1                              | 0 |  |  |  |
| MAB1                       |   |   |                           |   |   |                                |   |  |  |  |
| L                          |   |   |                           |   |   |                                |   |  |  |  |

rw

| Field | Bits | Туре | Description                                  |
|-------|------|------|----------------------------------------------|
| MAB1  | 7:0  | rw   | Multicast 1<br>Multicast address byte [15:8] |



#### **Multicast Address 2**

| MA2<br>Multicast Address 2 |      |   |   | Offset<br>0A <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |
|----------------------------|------|---|---|---------------------------|---|---|--------------------------------|---|--|
|                            | 7    | 6 | 5 | 4                         | 3 | 2 | 1                              | 0 |  |
|                            | MAB2 |   |   |                           |   |   |                                |   |  |
|                            | rw   |   |   |                           |   |   |                                |   |  |

| Field | Bits | Туре | Description                    |
|-------|------|------|--------------------------------|
| MAB2  | 7:0  | rw   | Multicast 2                    |
|       |      |      | Multicast address byte [23:16] |

### **Multicast Address 3**

| MA3<br>Multicast Ad | dress 3 |   | Offset<br>0B <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |
|---------------------|---------|---|---------------------------|---|---|--------------------------------|---|--|
| 7                   | 6       | 5 | 4                         | 3 | 2 | 1                              | 0 |  |
| MAB3                |         |   |                           |   |   |                                |   |  |
| rw                  |         |   |                           |   |   |                                |   |  |

| Field | Bits | Туре | Description                    |
|-------|------|------|--------------------------------|
| MAB3  | 7:0  | rw   | Multicast 3                    |
|       |      |      | Multicast address byte [31:24] |



#### **Multicast Address 4**

| MA4<br>Multicast Ad |    | Offset<br>0С <sub>н</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |   |  |  |  |
|---------------------|----|---------------------------|---|---|--------------------------------|---|---|--|--|--|
| 7                   | 6  | 5                         | 4 | 3 | 2                              | 1 | 0 |  |  |  |
| MAB4                |    |                           |   |   |                                |   |   |  |  |  |
|                     | rw |                           |   |   |                                |   |   |  |  |  |

| Field | Bits | Туре | Description                    |  |
|-------|------|------|--------------------------------|--|
| MAB4  | 7:0  | rw   | Multicast 4                    |  |
|       |      |      | Multicast address byte [39:32] |  |

### **Multicast Address 5**

| MA5<br>Multicast Ad | dress 5 |   | Offset<br>0D <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |
|---------------------|---------|---|---------------------------|---|---|--------------------------------|---|--|
| 7                   | 6       | 5 | 4                         | 3 | 2 | 1                              | 0 |  |
| MAB5                |         |   |                           |   |   |                                |   |  |
|                     | 1       |   | r                         | w |   |                                |   |  |

| Field | Bits | Туре | Description                    |
|-------|------|------|--------------------------------|
| MAB5  | 7:0  | rw   | Multicast 5                    |
|       |      |      | Multicast address byte [47:40] |


#### **Multicast Address 6**

| MA6<br>Multicast Ad | dress 6 |     |    | <sup>i</sup> set<br>Е <sub>н</sub> |               |   | Reset Value<br>00 <sub>H</sub> |
|---------------------|---------|-----|----|------------------------------------|---------------|---|--------------------------------|
| 7                   | 6       | 5   | 4  | 3                                  | 2             | 1 | 0                              |
|                     | 1       |     | MA | <b>B6</b>                          |               |   |                                |
|                     | •       | L L | r  | w                                  | · · · · · · · |   |                                |

| Field | Bits | Туре | Description                    |
|-------|------|------|--------------------------------|
| MAB6  | 7:0  | rw   | Multicast 6                    |
|       |      |      | Multicast address byte [55:48] |

# **Multicast Address 7**

| MA7<br>Multicast Ad | dress 7 |   |    | fset<br>F <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |
|---------------------|---------|---|----|------------------------|---|---|--------------------------------|
| 7                   | 6       | 5 | 4  | 3                      | 2 | 1 | 0                              |
|                     |         |   | MA | AB7                    |   |   |                                |
| <u></u>             |         |   | r  | w                      |   |   | 1                              |

| Field | Bits | Туре | Description                    |
|-------|------|------|--------------------------------|
| MAB7  | 7:0  | rw   | Multicast 7                    |
|       |      |      | Multicast address byte [63:56] |



#### Ethernet ID 0

| EID0<br>Ethernet ID 0 | ) |       |    | set<br>D <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |
|-----------------------|---|-------|----|-----------------------|---|---|--------------------------------|
| 7                     | 6 | 5     | 4  | 3                     | 2 | 1 | 0                              |
|                       | I | 11    | EI | D0                    |   |   |                                |
|                       |   | · · · | n  | N                     | · |   |                                |

| Field | Bits | Туре | Description                                                                                             |
|-------|------|------|---------------------------------------------------------------------------------------------------------|
| EID0  | 7:0  | rw   | <b>Ethernet ID 0</b><br>The 1st byte of Ethernet ID is automatically loaded from EEPROM after HW reset. |

#### Ethernet ID 1

| EID1<br>Ethernet ID 1 |   |   | Off<br>1′ |    |     |   | Reset Value<br>00 <sub>H</sub> |
|-----------------------|---|---|-----------|----|-----|---|--------------------------------|
| 7                     | 6 | 5 | 4         | 3  | 2   | 1 | 0                              |
|                       |   | 1 | EII       | D1 | 1 1 |   | 1                              |
|                       |   |   | n         | N  |     |   |                                |

| Field | Bits | Туре | Description                  |
|-------|------|------|------------------------------|
| EID1  | 7:0  | rw   | Ethernet ID 1                |
|       |      |      | The 2nd byte of Ethernet ID. |



#### Ethernet ID 2

| EID2<br>Ethernet ID 2 |   | Offset Reset Valu<br>12 <sub>H</sub> 00 |    |    |          |   |   |
|-----------------------|---|-----------------------------------------|----|----|----------|---|---|
| 7                     | 6 | 5                                       | 4  | 3  | 2        | 1 | 0 |
|                       | 1 |                                         | EI | 02 |          |   |   |
| L                     | 1 | 1                                       | rv | N  | <u> </u> |   | • |

| Field | Bits | Туре | Description                  |  |
|-------|------|------|------------------------------|--|
| EID2  | 7:0  | rw   | Ethernet ID 2                |  |
|       |      |      | The 3rd byte of Ethernet ID. |  |

### Ethernet ID 3

| EID3<br>Ethernet ID 3 | 3 |   |    | <sup>i</sup> set<br>3 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |
|-----------------------|---|---|----|------------------------------------|---|---|--------------------------------|
| 7                     | 6 | 5 | 4  | 3                                  | 2 | 1 | 0                              |
|                       |   |   | EI | D3                                 |   |   |                                |
|                       |   |   | r  | w                                  |   |   |                                |

| Field | Bits | Туре | Description                  |
|-------|------|------|------------------------------|
| EID3  | 7:0  | rw   | Ethernet ID 3                |
|       |      |      | The 4th byte of Ethernet ID. |



#### Ethernet ID 4

| EID4<br>Ethernet ID 4 |   |   |     |    |             |   | Reset Value<br>00 <sub>H</sub> |
|-----------------------|---|---|-----|----|-------------|---|--------------------------------|
| 7                     | 6 | 5 | 4   | 3  | 2           | 1 | 0                              |
|                       | 1 |   | EIC | 04 |             |   |                                |
|                       | 1 |   | rv  | V  | · · · · · · |   | •                              |

| Field | Bits | Туре | Description                  |
|-------|------|------|------------------------------|
| EID4  | 7:0  | rw   | Ethernet ID 4                |
|       |      |      | The 5th byte of Ethernet ID. |

# Ethernet ID 5

| EID5<br>Ethernet ID 5 | 5 | Offset<br>15 <sub>H</sub> |    |    |   |   |   |
|-----------------------|---|---------------------------|----|----|---|---|---|
| 7                     | 6 | 5                         | 4  | 3  | 2 | 1 | 0 |
|                       | 1 |                           | EI | D5 |   |   |   |
|                       |   |                           | r  | W  |   |   |   |

| Field | Bits | Туре | Description                  |
|-------|------|------|------------------------------|
| EID5  | 7:0  | rw   | Ethernet ID 5                |
|       |      |      | The 6th byte of Ethernet ID. |



#### Pause Timer

| PT<br>Pause Timer |   |   |    | Reset Value<br>00 <sub>H</sub> |           |   |   |
|-------------------|---|---|----|--------------------------------|-----------|---|---|
| 7                 | 6 | 5 | 4  | 3                              | 2         | 1 | 0 |
|                   |   |   | P  | г                              | 1 1       |   |   |
|                   |   |   | rv | /                              | · · · · · |   |   |

| Field | Bits | Туре | Description                                  |
|-------|------|------|----------------------------------------------|
| PT    | 7:0  | rw   | Pause Timer                                  |
|       |      |      | The [11:4] of pause time in the PAUSE frame. |

### **Receive Packet Number Based Flow Control**

| RPNBFC<br>Receive Pack | tet Number B | ased Flow Co |   | Offset<br>1A <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |
|------------------------|--------------|--------------|---|---------------------------|---|---|--------------------------------|
| 7                      | 6            | 5            | 4 | 3                         | 2 | 1 | 0                              |
| Res                    |              |              |   | PN                        |   |   | FCP                            |
|                        |              |              |   | rw                        |   |   | rw                             |

| Field | Bits | Туре | Description                                                                                                                                                                                                  |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PN    | 6:1  | rw   | <b>Packet Number</b><br>This field specifies the threshold for transmitting the PAUSE frame. As the received packet number is more than or equal to this field, the PAUSE frame is sent automatically by HW. |
| FCP   | 0    | rw   | Flow Control Packet         1 <sub>B</sub> RPN, Enables pause frame transmission based on received packet number                                                                                             |



# **Occupied Receive FIFO Based Flow Control**

| ORFBFC<br>Occupied Re | ceive FIFO B | ased Flow Co | Off<br>ntrol 1E |   |   |   | Reset Value<br>00 <sub>H</sub> |
|-----------------------|--------------|--------------|-----------------|---|---|---|--------------------------------|
| 7                     | 6            | 5            | 4               | 3 | 2 | 1 | 0                              |
| Res                   |              |              | R)              | S |   |   | FCRXS                          |
|                       |              |              | n               | v |   |   | rw                             |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                       |
|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RXS   | 6:1  | rw   | <b>RX Size</b><br>This field specifies the Kbyte threshold for transmitting the PAUSE frame.<br>As the received FIFO is occupied than or equal to this field, the PAUSE<br>frame is sent automatically by HW.<br>If this field = 2, as receive FIFO is occupied more than or equal to 2 Kbyte,<br>the PAUSE frame is transmitted. |
| FCRXS | 0    | rw   | Flow Control RX Size         1 <sub>B</sub> RFS, Enables pause frame transmission based on occupied received FIFO size                                                                                                                                                                                                            |

#### **EP1 Control**

| EP1C<br>EP1 Control |   |    |   | fset<br>C <sub>H</sub> |    |   | Reset Value<br>04 <sub>H</sub> |
|---------------------|---|----|---|------------------------|----|---|--------------------------------|
| 7                   | 6 | 5  | 4 | 3                      | 2  | 1 | 0                              |
| EP1S0E              | F | ID |   | 1                      | FI |   |                                |
| rw                  | r | W  |   |                        | rw |   |                                |

| Field  | Bits | Туре | Description                                                                                                                                                                                                 |
|--------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP1S0E | 7    | rw   | <ul> <li>EP1 Send</li> <li>0<sub>B</sub> DEP1, Disables EP1 send 1-byte 00 function</li> <li>1<sub>B</sub> EEP1, Enables EP1 send 1-byte 00 when more than frame_<br/>interval's NAK is received</li> </ul> |
| FID    | 6:5  | rw   | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                    |



| Field | Bits              | Туре | Description                                                                                                                                                                                                                                               |
|-------|-------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FI    | 4:0 rw <b>F</b> i |      | Frame Interval                                                                                                                                                                                                                                            |
|       |                   |      | This value multiply with 4 is the frame interval, it is from 4ms to 124ms $00001_{B}$ , for more than 4 ms NAK, EP1 sends 1-byte 00 $00010_{B}$ , for more than 8 ms NAK, EP1 sends 1-byte 00 $11111_{B}$ , for more than 124 ms NAK, EP1 sends 1-byte 00 |

# **EEPROM Offset**

| EEPROMO<br>EEPROM Off | set |    | Off<br>20 | Reset Value<br>00 <sub>H</sub> |    |   |   |
|-----------------------|-----|----|-----------|--------------------------------|----|---|---|
| 7                     | 6   | 5  | 4         | 3                              | 2  | 1 | 0 |
| R                     | es  |    |           | RO                             | МО |   |   |
|                       |     | 11 |           | r                              | W  |   | 1 |

| Field | Bits | Туре | Description                                  |  |  |  |
|-------|------|------|----------------------------------------------|--|--|--|
| ROMO  | 5:0  | rw   | ROM Offset                                   |  |  |  |
|       |      |      | SW sets this register when access to EEPROM. |  |  |  |

# **EEPROM Data Low**

| EEPROMDL<br>EEPROM Da | EPROMDL Offset<br>EPROM Data Low $21_{H}$ |   |   |   |   |   | Reset Value<br>00 <sub>H</sub> |  |
|-----------------------|-------------------------------------------|---|---|---|---|---|--------------------------------|--|
| 7                     | 6                                         | 5 | 4 | 3 | 2 | 1 | 0                              |  |
|                       | ROMDL                                     |   |   |   |   |   |                                |  |
|                       | rw                                        |   |   |   |   |   |                                |  |

| Field | Bits | Туре | Description                                                                                                                                            |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROMDL | 7:0  | rw   | ROM Data LowEEPROM Write: The data set in this register will be written to EEPROMEEPROM Read: The data red from EEPROM will be stored in this register |

# **EEPROM** Data High

| EEPROMDH         | Offset          | Reset Value     |
|------------------|-----------------|-----------------|
| EEPROM Data High | 22 <sub>H</sub> | 00 <sub>H</sub> |



|       |  |  |  |  | - | • | 5 |  |
|-------|--|--|--|--|---|---|---|--|
|       |  |  |  |  |   |   |   |  |
| ROMDH |  |  |  |  |   |   |   |  |

rw

| Field | Bits | Туре | Description                                                                                                                                                                |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROMDH | 7:0  | rw   | <b>ROM Data High</b><br>EEPROM Write: The data set in this register will be written to EEPROM<br>EEPROM Read: The data read from EEPROM will be stored in this<br>register |



#### **EEPROM Access Control**

| EEPROMAC<br>EEPROM Acc | cess Control |     | Offset<br>23 <sub>H</sub> |   |    | Reset Va |     |  |
|------------------------|--------------|-----|---------------------------|---|----|----------|-----|--|
| 7                      | 6            | 5   | 4                         | 3 | 2  | 1        | 0   |  |
|                        |              | Res |                           |   | DO | RDE      | WRE |  |
|                        |              |     |                           |   | rw | rw       | rw  |  |

| Field | Bits | Туре | Description                                                                      |
|-------|------|------|----------------------------------------------------------------------------------|
| DO    | 2    | rw   | Done                                                                             |
|       |      |      | Set by HW to indicate successful completion of EEPROM access.                    |
|       |      |      | Clear by SW when initiate a new access to EEPROM                                 |
| RDE   | 1    | rw   | Read Access to EEPROM                                                            |
|       |      |      | Set by SW to initiate a read access to EEPROM.                                   |
|       |      |      | SW sets this bit after it well setting the rom_offset.                           |
| WRE   | 0    | rw   | Write Access to EEPROM                                                           |
|       |      |      | Set by SW to initiate a write access to EEPROM.                                  |
|       |      |      | SW set this bit after it well setting the rom_offset, romdata_lo and romdata_hi. |

#### **PHY Address**

|   | PHYA<br>PHY Address | ;   |   |   | fset<br>5 <sub>H</sub> |      |   | Reset Value<br>00 <sub>H</sub> |
|---|---------------------|-----|---|---|------------------------|------|---|--------------------------------|
| Г | 7                   | 6   | 5 | 4 | 3                      | 2    | 1 | 0                              |
|   |                     | Res |   |   |                        | PHYA | 1 |                                |
|   |                     |     |   |   |                        | rw   |   | ·                              |

| Field | Bits | Туре | Description     |
|-------|------|------|-----------------|
| PHYA  | 4:0  | rw   | MII PHY Address |



#### **PHY Data Low**

| PHYDL<br>PHY Data Lo | w |   |     | fset<br>6 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |
|----------------------|---|---|-----|------------------------|---|---|--------------------------------|
| 7                    | 6 | 5 | 4   | 3                      | 2 | 1 | 0                              |
|                      | 1 | I | PH' | YDL                    | 1 | L |                                |
|                      |   |   | r   | w                      |   |   |                                |

| Field | Bits | Туре | Description                                                                                                                                            |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| PHYDL | 7:0  | rw   | <ul><li>PHY Data Low</li><li>SW set this register when write to PHY register.</li><li>HW set this register when read data from PHY register.</li></ul> |

#### **PHY Data High**

| PHYDH<br>PHY Data Hig | gh |     | Off<br>2 | set<br>7 <sub>н</sub> |     |   | Reset Value<br>00 <sub>H</sub> |
|-----------------------|----|-----|----------|-----------------------|-----|---|--------------------------------|
| 7                     | 6  | 5   | 4        | 3                     | 2   | 1 | 0                              |
|                       | 1  | 1 1 | PH       | /DH                   | 1 1 |   |                                |
|                       |    |     | n        | N                     |     |   |                                |

| Field | Bits | Туре | Description                                            |
|-------|------|------|--------------------------------------------------------|
| PHYDH | 7:0  | rw   | PHY Data High                                          |
|       |      |      | SW set this register when write to PHY register.       |
|       |      |      | HW set this register when read data from PHY register. |



#### **PHY Access Control**

|   | PHYAC<br>PHY Access | Control |       |   | <sup>i</sup> set<br>8 <sub>н</sub> |       |   | Reset Value<br>00 <sub>H</sub> |
|---|---------------------|---------|-------|---|------------------------------------|-------|---|--------------------------------|
| г | 7                   | 6       | 5     | 4 | 3                                  | 2     | 1 | 0                              |
|   | DO                  | RDPHY   | WRPHY |   |                                    | PHYRA |   |                                |
| - | rw                  | rw      | rw    |   |                                    | rw    | 1 |                                |

| Field | Bits | Туре | Description                                                                 |
|-------|------|------|-----------------------------------------------------------------------------|
| DO    | 7    | rw   | Done                                                                        |
|       |      |      | Set by HW to indicate successful completion of PHY access.                  |
|       |      |      | Clear by SW when initiate a new access to PHY.                              |
| RDPHY | 6    | rw   | Read Access to PHY Register                                                 |
|       |      |      | Set by SW to initiate a read access to PHY register.                        |
|       |      |      | SW set this bit after it well setting the phy_addr and phyreg_addr.         |
| WRPHY | 5    | rw   | Write Access to PHY Register                                                |
|       |      |      | Set by SW to initiate a write access to PHY register. SW set this bit after |
|       |      |      | it well setting the phy_addr, phyreg_addr and phyreg_data.                  |
| PHYRA | 4:0  | rw   | PHY Register Address                                                        |

#### **USB Bus Status**

| USBBS<br>USB Bus Sta | itus |    |    | fset<br>A <sub>H</sub> |   |      | Reset Value<br>00 <sub>H</sub> |
|----------------------|------|----|----|------------------------|---|------|--------------------------------|
| 7                    | 6    | 5  | 4  | 3                      | 2 | 1    | 0                              |
|                      | 1    | Re | es | 1                      | 1 | USBR | USBS                           |
|                      |      |    |    |                        |   | rw   | rw                             |

| Field | Bits | Туре | Description                                       |  |
|-------|------|------|---------------------------------------------------|--|
| USBR  | 1    | rw   | USB Bus in Resume State                           |  |
|       |      |      | Set by HW to indicate usb bus in resumed state.   |  |
|       |      |      | Clear by SW read this register.                   |  |
| USBS  | 0    | rw   | USB Bus in Suspend State                          |  |
|       |      |      | Set by HW to indicate usb bus in suspended state. |  |
|       |      |      | Clear by SW read this register.                   |  |

**Transmit Status 1** 



| TS1<br>Transmit Sta | tus 1 |    |    | fset<br>B <sub>H</sub> |     |   | Reset Value<br>00 <sub>H</sub> |
|---------------------|-------|----|----|------------------------|-----|---|--------------------------------|
| 7                   | 6     | 5  | 4  | 3                      | 2   | 1 | 0                              |
| TXUE                | EC    | LC | NC | CL                     | JTO | R | es                             |
| r                   | r     | r  | r  | r                      | r   |   |                                |

| Field | Bits | Туре | Description                                                                                                                          |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| TXUE  | 7    | r    | <b>TX Underrun Error</b> Set by HW to indicate tx underrun error.Clear by SW read this register or after EP3 is accessed.            |
| EC    | 6    | r    | <b>Excessive Collision</b><br>Set by HW to indicate excessive collision.<br>Clear by SW read this register or after EP3 is accessed. |
| LC    | 5    | r    | Late Collision ErrorSet by HW to indicate late collision error.Clear this register by SW Read or after EP3 is accessed.              |
| NC    | 4    | r    | No Carrier<br>Set by HW to indicate no carrier.<br>Clear this register by SW Read or after EP3 is accessed.                          |
| CL    | 3    | r    | Carrier Loss<br>Set by HW to indicate carrier loss.<br>Clear this register by SW Read or after EP3 is accessed.                      |
| JTO   | 2    | r    | Jabber Time Out<br>Set by HW to indicate jabber time out.<br>Clear this register by SW Read or after EP3 is accessed.                |



#### **Transmit Status 2**

|   | TS2<br>Transmit Sta | tus 2 |   |    | fset<br>C <sub>H</sub> |    |    | Reset Value<br>00 <sub>H</sub> |  |
|---|---------------------|-------|---|----|------------------------|----|----|--------------------------------|--|
| , | 7                   | 6     | 5 | 4  | 3                      | 2  | 1  | 0                              |  |
|   | TXFF                | TXFE  | R | es |                        | тх | PC |                                |  |
| l | r                   | r     |   |    |                        | l  | r  | ·                              |  |

| Field | Bits | Туре | Description                                                                                                                                                                                                                          |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TXFF  | 7    | r    | <b>TX Fifo Full</b><br>Set by HW to indicate tx fifo full.<br>Clear this register by SW Read or after EP3 is accessed.                                                                                                               |
| TXFE  | 6    | r    | <b>TX Fifo Empty</b><br>Set by HW to indicate tx fifo empty.<br>Clear this register by SW Read or after EP3 is accessed.                                                                                                             |
| TXPC  | 3:0  | r    | <b>TX Packet Count</b><br>Set by HW to indicate Ethernet transmit packet counts every interrupt EP polling. If more than 15 packets have been transmitted, this value will stay as 15.<br>Clear by SW read or after EP3 is accessed. |

#### **Receive Status**

| RS<br>Receive Stat | ve Status Offset 2D <sub>H</sub> |     |   |   |   |   | Reset Value<br>00 <sub>H</sub> |
|--------------------|----------------------------------|-----|---|---|---|---|--------------------------------|
| 7                  | 6                                | 5   | 4 | 3 | 2 | 1 | 0                              |
|                    | Res                              |     |   |   |   |   | RXO                            |
|                    | •                                | 1 1 |   |   | • | r | r                              |

| Field | Bits | Туре | Description                                              |
|-------|------|------|----------------------------------------------------------|
| RXP   | 1    | r    | RX Pause                                                 |
|       |      |      | Set by HW to indicate a PAUSE frame is received.         |
|       |      |      | Clear this register by SW Read or after EP3 is accessed. |
| RXO   | 0    | r    | RX Overflow                                              |
|       |      |      | Set by HW to indicate external SRAM overflow.            |
|       |      |      | Clear this register by SW Read or after EP3 is accessed. |



# **Receive Lost Packet Count High**

| RLPCH<br>Receive Lost Packet Count High |   |   | Offset<br>2E <sub>H</sub> |       |   | Reset Value<br>00 <sub>H</sub> |   |  |
|-----------------------------------------|---|---|---------------------------|-------|---|--------------------------------|---|--|
| 7                                       | 6 | 5 | 4                         | 3     | 2 | 1                              | 0 |  |
| RPL                                     |   |   |                           | RXLPC | 1 |                                |   |  |
| r                                       |   |   |                           | r     |   |                                |   |  |

| Field | Bits | Туре | Description                                                    |
|-------|------|------|----------------------------------------------------------------|
| RPL   | 7    | r    | Received Packet Lost                                           |
| RXLPC | 6:0  | r    | RX Lost Packet Counts                                          |
|       |      |      | The [14:8] of lost packet counts due to receive FIFO overflow. |
|       |      |      | Clear this register by SW Read or after EP3 is accessed.       |

# **Receive Lost Packet Count Low**

| RLPCL<br>Receive Lost Packet Count Low |   |   | Off<br>2F |   |                                       |   | Reset Value<br>00 <sub>H</sub> |  |  |  |
|----------------------------------------|---|---|-----------|---|---------------------------------------|---|--------------------------------|--|--|--|
| 7                                      | 6 | 5 | 4         | 3 | 2                                     | 1 | 0                              |  |  |  |
| RXLPC                                  |   |   |           |   |                                       |   |                                |  |  |  |
|                                        |   |   | r         |   | · · · · · · · · · · · · · · · · · · · |   |                                |  |  |  |

| Field | Bits | Туре | Description                                                                                                               |
|-------|------|------|---------------------------------------------------------------------------------------------------------------------------|
| RXLPC | 7:0  | r    | RX Lost Packet Counts                                                                                                     |
|       |      |      | The [7:0] of lost packet counts due to receive FIFO overflow.<br>Clear this register by SW Read or after EP3 is accessed. |

#### Wakeup Frame 0 Mask

| WUF0M_0<br>Wakeup Frai |   | Offset<br>30 <sub>H</sub> |           |   | Reset Value<br>00 <sub>H</sub> |  |  |  |  |  |
|------------------------|---|---------------------------|-----------|---|--------------------------------|--|--|--|--|--|
| 7                      | 6 | 5                         | 5 4 3 2 1 |   |                                |  |  |  |  |  |
| FOM                    |   |                           |           |   |                                |  |  |  |  |  |
| ·                      | • | · · ·                     | n         | N | · · ·                          |  |  |  |  |  |



| Field | Bits | Туре | Description                   |
|-------|------|------|-------------------------------|
| F0M   | 7:0  | rw   | The 128 Mask Bits for Frame 0 |

#### **Similar Registers**

# Table 68 Wakeup Frame 0 Mask Registers

| Register Short Name | Register Long Name     | Offset Address  | Page Number |
|---------------------|------------------------|-----------------|-------------|
| WUF0M_1             | Wakeup Frame 0 Mask 1  | 31 <sub>H</sub> |             |
| WUF0M_2             | Wakeup Frame 0 Mask 2  | 32 <sub>H</sub> |             |
| WUF0M_3             | Wakeup Frame 0 Mask 3  | 33 <sub>H</sub> |             |
| WUF0M_4             | Wakeup Frame 0 Mask 4  | 34 <sub>H</sub> |             |
| WUF0M_5             | Wakeup Frame 0 Mask 5  | 35 <sub>H</sub> |             |
| WUF0M_6             | Wakeup Frame 0 Mask 6  | 36 <sub>H</sub> |             |
| WUF0M_7             | Wakeup Frame 0 Mask 7  | 37 <sub>H</sub> |             |
| WUF0M_8             | Wakeup Frame 0 Mask 8  | 38 <sub>H</sub> |             |
| WUF0M_9             | Wakeup Frame 0 Mask 9  | 39 <sub>H</sub> |             |
| WUF0M_10            | Wakeup Frame 0 Mask 10 | 3A <sub>H</sub> |             |
| WUF0M_11            | Wakeup Frame 0 Mask 11 | 3B <sub>H</sub> |             |
| WUF0M_12            | Wakeup Frame 0 Mask 12 | 3C <sub>H</sub> |             |
| WUF0M_13            | Wakeup Frame 0 Mask 13 | 3D <sub>H</sub> |             |
| WUF0M_14            | Wakeup Frame 0 Mask 14 | 3E <sub>H</sub> |             |
| WUF0M_15            | Wakeup Frame 0 Mask 15 | ЗF <sub>Н</sub> |             |

# Wakeup Frame 0 Offset

| WUF0O_0<br>Wakeup Frame 0 Offset |   |   | Offset<br>40 <sub>H</sub> |  |  | Reset Value<br>00 <sub>H</sub> |  |  |  |  |
|----------------------------------|---|---|---------------------------|--|--|--------------------------------|--|--|--|--|
| 7                                | 6 | 5 | 5 4 3 2                   |  |  |                                |  |  |  |  |
| F0O                              |   |   |                           |  |  |                                |  |  |  |  |
| rw                               |   |   |                           |  |  |                                |  |  |  |  |

| Field | Bits | Туре | Description               |
|-------|------|------|---------------------------|
| F0O   | 7:0  | rw   | Offset for Wakeup Frame 0 |



# Wakeup Frame 0 CRC Low

| WUF0CRCL<br>Wakeup Frar | RCL Offset<br>Frame 0 CRC Low 41 <sub>H</sub> |   |   |   |   |   | Reset Value<br>00 <sub>H</sub> |  |  |  |
|-------------------------|-----------------------------------------------|---|---|---|---|---|--------------------------------|--|--|--|
| 7                       | 6                                             | 5 | 4 | 3 | 2 | 1 | 0                              |  |  |  |
| F0CRCL                  |                                               |   |   |   |   |   |                                |  |  |  |
|                         | rw                                            |   |   |   |   |   |                                |  |  |  |

| Field  | Bits | Туре | Description                             |
|--------|------|------|-----------------------------------------|
| F0CRCL | 7:0  | rw   | The Low Byte of CRC16 Match for Frame 0 |

# Wakeup Frame 0 CRC High

| WUF0CRCH<br>Wakeup Frame 0 CRC High |   |   | Offset<br>42 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |
|-------------------------------------|---|---|---------------------------|---|---|--------------------------------|---|--|
| 7                                   | 6 | 5 | 4                         | 3 | 2 | 1                              | 0 |  |
| F0CRCH                              |   |   |                           |   |   |                                |   |  |
| rw                                  |   |   |                           |   |   |                                |   |  |

| Field  | Bits | Туре | Description                              |
|--------|------|------|------------------------------------------|
| F0CRCH | 7:0  | rw   | The High Byte of CRC16 Match for Frame 0 |



# Wakeup Frame 1 Mask

| WUF1M_0<br>Wakeup Frar | ne 1 Mask |   | Offset<br>48 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |  |
|------------------------|-----------|---|---------------------------|---|---|--------------------------------|---|--|--|
| 7                      | 6         | 5 | 4                         | 3 | 2 | 1                              | 0 |  |  |
| F1M                    |           |   |                           |   |   |                                |   |  |  |
|                        | rw        |   |                           |   |   |                                |   |  |  |

| Field | Bits | Туре | Description                   |
|-------|------|------|-------------------------------|
| F1M   | 7:0  | rw   | The 128 Mask Bits for Frame 1 |

# **Similar Registers**

# Table 69 Wakeup Frame 1 Mask Registers

| Register Short Name | Register Long Name     | Offset Address  | Page Number |
|---------------------|------------------------|-----------------|-------------|
| WUF1M_1             | Wakeup Frame 1 Mask 1  | 49 <sub>H</sub> |             |
| WUF1M_2             | Wakeup Frame 1 Mask 2  | 4A <sub>H</sub> |             |
| WUF1M_3             | Wakeup Frame 1 Mask 3  | 4B <sub>H</sub> |             |
| WUF1M_4             | Wakeup Frame 1 Mask 4  | 4C <sub>H</sub> |             |
| WUF1M_5             | Wakeup Frame 1 Mask 5  | 4D <sub>H</sub> |             |
| WUF1M_6             | Wakeup Frame 1 Mask 6  | 4E <sub>H</sub> |             |
| WUF1M_7             | Wakeup Frame 1 Mask 7  | 4F <sub>H</sub> |             |
| WUF1M_8             | Wakeup Frame 1 Mask 8  | 50 <sub>H</sub> |             |
| WUF1M_9             | Wakeup Frame 1 Mask 9  | 51 <sub>H</sub> |             |
| WUF1M_10            | Wakeup Frame 1 Mask 10 | 52 <sub>H</sub> |             |
| WUF1M_11            | Wakeup Frame 1 Mask 11 | 56 <sub>H</sub> |             |
| WUF1M_12            | Wakeup Frame 1 Mask 12 | 54 <sub>H</sub> |             |
| WUF1M_13            | Wakeup Frame 1 Mask 13 | 55 <sub>H</sub> |             |
| WUF1M_14            | Wakeup Frame 1 Mask 14 | 56 <sub>H</sub> |             |
| WUF1M_15            | Wakeup Frame 1 Mask 15 | 57 <sub>H</sub> |             |

#### Wakeup Frame 1 Offset

| WUF10                 | Offset          | <b>Reset Value</b> |
|-----------------------|-----------------|--------------------|
| Wakeup Frame 1 Offset | 58 <sub>H</sub> | 00 <sub>H</sub>    |



| 7   | 6   | 5 | 4 | 3 | 2   | 1 | 0 |  |  |
|-----|-----|---|---|---|-----|---|---|--|--|
|     | I I | 1 | Ι |   | 1   |   |   |  |  |
| F10 |     |   |   |   |     |   |   |  |  |
|     | 1 1 | 1 | 1 |   | 1 1 |   |   |  |  |
| rw  |     |   |   |   |     |   |   |  |  |

| Field | Bits | Туре | Description               |
|-------|------|------|---------------------------|
| F10   | 7:0  | rw   | Offset for Wakeup Frame 1 |



# Wakeup Frame 1 CRC Low

| WUF1CRCL<br>Wakeup Frame 1 CRC Low |   |   | Offset<br>59 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |
|------------------------------------|---|---|---------------------------|---|---|--------------------------------|---|--|
| 7                                  | 6 | 5 | 4                         | 3 | 2 | 1                              | 0 |  |
|                                    | I | 1 | <u> </u>                  | N | 1 | 1                              | 1 |  |

| Field | Bits | Туре | Description                             |
|-------|------|------|-----------------------------------------|
|       | 7:0  | rw   | The Low Byte of CRC16 Match for Frame 1 |

# Wakeup Frame 1 CRC High

| WUF1CRCH<br>Wakeup Frame 1 CRC High |   |   | Offset<br>5A <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |
|-------------------------------------|---|---|---------------------------|---|---|--------------------------------|---|--|
| 7                                   | 6 | 5 | 4                         | 3 | 2 | 1                              | 0 |  |
| F1CRCH                              |   |   |                           |   |   |                                |   |  |
| rw                                  |   |   |                           |   |   |                                |   |  |

| Field  | Bits | Туре | Description                              |
|--------|------|------|------------------------------------------|
| F1CRCH | 7:0  | rw   | The High Byte of CRC16 Match for Frame 1 |



# Wakeup Frame 2 Mask

| WUF2M<br>Wakeup Frar | ne 2 Mask |     | Offset<br>60 <sub>H</sub> |   |   |   | Reset Value<br>00 <sub>H</sub> |
|----------------------|-----------|-----|---------------------------|---|---|---|--------------------------------|
| 7                    | 6         | 5   | 4                         | 3 | 2 | 1 | 0                              |
|                      | 1         | 1 1 | F2                        | M | 1 |   |                                |
|                      |           |     | n                         | N |   |   |                                |

| Field | Bits | Туре | Description                   |
|-------|------|------|-------------------------------|
| F2M   | 7:0  | rw   | The 128 Mask Bits for Frame 2 |

# **Similar Registers**

# Table 70 Wakeup Frame 2 Mask Registers

| Register Short Name | Register Long Name     | Offset Address  | Page Number |
|---------------------|------------------------|-----------------|-------------|
| WUF2M_1             | Wakeup Frame 2 Mask 1  | 61 <sub>H</sub> |             |
| WUF2M_2             | Wakeup Frame 2 Mask 2  | 62 <sub>H</sub> |             |
| WUF2M_3             | Wakeup Frame 2 Mask 3  | 63 <sub>H</sub> |             |
| WUF2M_4             | Wakeup Frame 2 Mask 4  | 64 <sub>H</sub> |             |
| WUF2M_5             | Wakeup Frame 2 Mask 5  | 65 <sub>H</sub> |             |
| WUF2M_6             | Wakeup Frame 2 Mask 6  | 66 <sub>H</sub> |             |
| WUF2M_7             | Wakeup Frame 2 Mask 7  | 67 <sub>H</sub> |             |
| WUF2M_8             | Wakeup Frame 2 Mask 8  | 68 <sub>H</sub> |             |
| WUF2M_9             | Wakeup Frame 2 Mask 9  | 69 <sub>H</sub> |             |
| WUF2M_10            | Wakeup Frame 2 Mask 10 | 6A <sub>H</sub> |             |
| WUF2M_11            | Wakeup Frame 2 Mask 11 | 6B <sub>H</sub> |             |
| WUF2M_12            | Wakeup Frame 2 Mask 12 | 6C <sub>H</sub> |             |
| WUF2M_13            | Wakeup Frame 2 Mask 13 | 6D <sub>H</sub> |             |
| WUF2M_14            | Wakeup Frame 2 Mask 14 | 6E <sub>H</sub> |             |
| WUF2M_15            | Wakeup Frame 2 Mask 15 | 6F <sub>H</sub> |             |

#### Wakeup Frame 2 Offset

| WUF2O                 | Offset          | Reset Value     |
|-----------------------|-----------------|-----------------|
| Wakeup Frame 2 Offset | 70 <sub>H</sub> | 00 <sub>H</sub> |



| 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|-----|---|---|---|---|---|---|---|--|--|
| Г   |   |   | 1 | 1 | T | I |   |  |  |
| F2O |   |   |   |   |   |   |   |  |  |
|     |   |   | 1 | 1 |   | 1 | 1 |  |  |
| rw  |   |   |   |   |   |   |   |  |  |

| Field | Bits | Туре | Description               |
|-------|------|------|---------------------------|
| F2O   | 7:0  | rw   | Offset for Wakeup Frame 2 |



# Wakeup Frame 2 CRC Low

| WUF2CRCL<br>Wakeup Frar | ne 2 CRC Low | , | Offset<br>71 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |  |
|-------------------------|--------------|---|---------------------------|---|---|--------------------------------|---|--|--|
| 7                       | 6            | 5 | 4                         | 3 | 2 | 1                              | 0 |  |  |
|                         | F2CRCL       |   |                           |   |   |                                |   |  |  |
| rw                      |              |   |                           |   |   |                                |   |  |  |

| Field  | Bits | Туре | Description                             |
|--------|------|------|-----------------------------------------|
| F2CRCL | 7:0  | rw   | The Low Byte of CRC16 Match for Frame 2 |

# Wakeup Frame 2 CRC High

| WUF2CRCH<br>Wakeup Fran | ne 2 CRC Hig | h | Offset<br>72 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |   |  |  |
|-------------------------|--------------|---|---------------------------|---|---|--------------------------------|---|--|--|
| 7                       | 6            | 5 | 4                         | 3 | 2 | 1                              | 0 |  |  |
|                         | F2CRCH       |   |                           |   |   |                                |   |  |  |
| rw                      |              |   |                           |   |   |                                |   |  |  |

| Field  | Bits | Туре | Description                              |
|--------|------|------|------------------------------------------|
| F2CRCH | 7:0  | rw   | The High Byte of CRC16 Match for Frame 2 |



# Wakeup Control

| WUC<br>Wakeup Control |     |     |      | Of<br>7 | Reset Value<br>04 <sub>H</sub> |       |     |   |
|-----------------------|-----|-----|------|---------|--------------------------------|-------|-----|---|
| r                     | 7   | 6   | 5    | 4       | 3                              | 2     | 1   | 0 |
|                       | ЕМР | ELS | EWF0 | WUF1    | WUF2                           | CRC16 | Res |   |
|                       | rw  | rw  | rw   | rw      | rw                             | rw    |     |   |

| Field | Bits | Туре | Description                                                            |
|-------|------|------|------------------------------------------------------------------------|
| EMP   | 7    | rw   | Enable Magic Packet                                                    |
|       |      |      | Set by SW to enable magic packet wakeup function.                      |
|       |      |      | 1 <sub>B</sub> <b>EMP</b> , Enables magic packet wakeup function       |
| ELS   | 6    | rw   | Enable Link Status                                                     |
|       |      |      | Set by SW to enable link status wakeup function.                       |
|       |      |      | 1 <sub>B</sub> <b>ELS</b> , Enables link status wakeup function        |
| EWF0  | 5    | rw   | Enable Wakeup Frame 0                                                  |
|       |      |      | Set by SW to enable wakeup frame0 wakeup function                      |
|       |      |      | 1 <sub>B</sub> <b>EWF0</b> , Enables wakeup frame0 wakeup function     |
| WUF1  | 4    | rw   | Enable Wakeup Frame 1                                                  |
|       |      |      | Set by SW to enable wakeup frame1 wakeup function                      |
|       |      |      | 1 <sub>B</sub> <b>EWF1</b> , Enables wakeup frame1 wakeup function     |
| WUF2  | 3    | rw   | Enable Wakeup Frame 2                                                  |
|       |      |      | Set by SW to enable wakeup frame2 wakeup function                      |
|       |      |      | 1 <sub>B</sub> <b>EWF2</b> , Enables wakeup frame2 wakeup function     |
| CRC16 | 2    | rw   | CRC-16 Initial Type                                                    |
|       |      |      | $0_{\rm B}$ <b>CRC16</b> , CRC-16 initial contents = $0000_{\rm H}$    |
|       |      |      | $1_{\rm B}$ <b>CRC16</b> , CRC-16 initial contents = ffff <sub>H</sub> |



# Wakeup Status

| WUS<br>Wakeup Stat | us |      | Offset<br>7A <sub>H</sub> |   |    | Reset Value<br>00 <sub>H</sub> |    |  |
|--------------------|----|------|---------------------------|---|----|--------------------------------|----|--|
| 7                  | 6  | 5    | 4                         | 3 | 2  | 1                              | 0  |  |
| RXMP               | LW | RXWF |                           | R | es |                                | LS |  |
| r                  | r  | r    | · · · · · · ·             |   |    |                                | r  |  |

| Field | Bits | Туре | Description                                                               |
|-------|------|------|---------------------------------------------------------------------------|
| RXMP  | 7    | r    | Receives a Magic Packet                                                   |
|       |      |      | Set by HW when receive a magic packet.                                    |
|       |      |      | Clear by SW read this register.                                           |
|       |      |      | 1 <sub>B</sub> <b>RMP</b> , Means ADM8513/X receives a magic packet       |
| LW    | 6    | r    | Receives a Link Status Change                                             |
|       |      |      | Set by HW when link status change.Clear by SW read this register.         |
|       |      |      | 1 <sub>B</sub> <b>RLS</b> , Means ADM8513/X receives a link status change |
| RXWF  | 5    | r    | Receives a Wakeup Frame                                                   |
|       |      |      | Set by HW when receive a wakeup frame.Clear by SW read this register.     |
|       |      |      | 1 <sub>B</sub> <b>RWF</b> , Means ADM8513/X receives a wakeup frame       |
| LS    | 0    | r    | Indicate the Current Link Status                                          |
|       |      |      | link_sts                                                                  |
|       |      |      | 0 <sub>B</sub> LOFF, Link off                                             |
|       |      |      | 1 <sub>B</sub> LON, Link on                                               |

# Internal PHY Control

| IPHYC<br>Internal PHY Control |   |    | Offset<br>7B <sub>H</sub> |   |   |      | Reset Value<br>00 <sub>H</sub> |  |  |
|-------------------------------|---|----|---------------------------|---|---|------|--------------------------------|--|--|
| 7                             | 6 | 5  | 4                         | 3 | 2 | 1    | 0                              |  |  |
|                               | 1 | Re | es                        | 1 | 1 | EPHY | PHYR                           |  |  |
|                               | 1 |    |                           |   |   | rw   | rw                             |  |  |

| Field | Bits | Туре | Description                                              |
|-------|------|------|----------------------------------------------------------|
| EPHY  | 1    | rw   | Enable PHY                                               |
|       |      |      | 0 <sub>B</sub> <b>DIN</b> , Disables internal 10/100 PHY |
|       |      |      | 1 <sub>B</sub> <b>EIN</b> , Enables internal 10/100 PHY  |



| Field                        | Bits | Туре | Description                                                                                                                                           |
|------------------------------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| PHYR 0 rw Internal PHY Reset |      | rw   | Internal PHY Reset                                                                                                                                    |
|                              |      |      | The internal PHY is reset when this bit is written with 1 and stops reset when this bit is written with 0.<br>$1_B$ <b>RIPHY</b> , Reset internal PHY |

# GPIO[5:4] Control

| GPIO54C<br>GPIO[5:4] | Control |    | Offset<br>7C <sub>H</sub> |      |      |      | Reset Value<br>00 <sub>H</sub> |
|----------------------|---------|----|---------------------------|------|------|------|--------------------------------|
| 7                    | 6       | 5  | 4                         | 3    | 2    | 1    | 0                              |
|                      | Res     |    | G5OV                      | G5IV | G4OE | G4OV | G4IV                           |
|                      |         | rw | rw                        | r    | rw   | rw   | r                              |

| Field | Bits | Туре | Description                                                                                                                   |
|-------|------|------|-------------------------------------------------------------------------------------------------------------------------------|
| G5OE  | 5    | rw   | GPIO5 Output Enable<br>0 <sub>B</sub> IN, GPIO5 is used for input                                                             |
| 0501/ | 4    |      | 1 <sub>B</sub> <b>OUT</b> , GPIO5 is used for output                                                                          |
| G5OV  | 4    | rw   | <b>GPIO5 Output Value</b><br>When GPIO5 is used for output, this value is driven to GPIO5 pin.                                |
| G5IV  | 3    | r    | <b>GPIO5 Input Value</b><br>When GPIO5 is used for input, this field reflects the status of GPIO5.<br>Default is pulled-down. |
| G40E  | 2    | rw   | GPIO4 Output Enable         0 <sub>B</sub> IN, GPIO4 is used for input         1 <sub>B</sub> OUT, GPIO4 is used for output   |
| G4OV  | 1    | rw   | <b>GPIO4 Output Value</b><br>When GPIO4 is used for output, this value is driven to GPIO4 pin.                                |
| G4IV  | 0    | r    | <b>GPIO4 Input Value</b><br>When GPIO4 is used for input, this field reflects the status of GPIO4.<br>Default is pulled-down. |



# GPIO[1:0] Control

| GPIO10C<br>GPIO[1:0] Control |     |   | Offset<br>7E <sub>H</sub> |      |      |      | Reset Value<br>00 <sub>H</sub> |      |
|------------------------------|-----|---|---------------------------|------|------|------|--------------------------------|------|
|                              | 7   | 6 | 5                         | 4    | 3    | 2    | 1                              | 0    |
|                              | Res |   | G10E                      | G10V | G1IV | G10E | G0OV                           | G0IV |
|                              |     |   | rw                        | rw   | r    | rw   | rw                             | r    |

| Field | Bits | Туре | Description                                                                                                                 |
|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------|
| G10E  | 5    | rw   | GPIO1 Output Enable         0 <sub>B</sub> IN, GPIO1 is used for input         1 <sub>B</sub> OUT, GPIO1 is used for output |
| G10V  | 4    | rw   | <b>GPIO1 Output Value</b><br>When GPIO1 is used for output, this value is driven to GPIO1 pin. Set by SW.                   |
| G1IV  | 3    | r    | <b>GPIO1 Input Value</b><br>When GPIO1 is used for input, this field reflects the status of GPIO1. Set by HW.               |
| G10E  | 2    | rw   | GPIO0 Output Enable         0 <sub>B</sub> IN, GPIO0 is used for input         1 <sub>B</sub> OUT, GPIO0 is used for output |
| G0OV  | 1    | rw   | <b>GPIO0 Output Value</b><br>When GPIO0 is used for output, this value is driven to GPIO0 pin. Set by SW.                   |
| G0IV  | 0    | r    | <b>GPIO0 Input Value</b><br>When GPIO0 is used for input, this field reflects the status of GPIO0. Set by HW.               |



# GPIO[3:2] Control

| GPIO32C<br>GPIO[3:2] Control |     |   |      | Off<br>7 | Reset Value<br>00 <sub>H</sub> |      |      |      |
|------------------------------|-----|---|------|----------|--------------------------------|------|------|------|
|                              | 7   | 6 | 5    | 4        | 3                              | 2    | 1    | 0    |
|                              | Res |   | G3OE | G3OV     | G3IV                           | G2OE | G2OV | G2IV |
|                              |     |   | rw   | rw       | r                              | rw   | rw   | r    |

| Field | Bits | Туре | Description                                                                                                                 |
|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------|
| G3OE  | 5    | rw   | GPIO3 Output Enable         0 <sub>B</sub> IN, GPIO3 is used for input         1 <sub>B</sub> OUT, GPIO3 is used for output |
| G3OV  | 4    | rw   | <b>GPIO3 Output Value</b><br>When GPIO3 is used for output, this value is driven to GPIO3 pin. Set by SW.                   |
| G3IV  | 3    | r    | <b>GPIO3 Input Value</b><br>When GPIO3 is used for input, this field reflects the status of GPIO3. Set by HW.               |
| G2OE  | 2    | rw   | GPIO2 Output Enable         0 <sub>B</sub> IN, GPIO2 is used for input         1 <sub>B</sub> OUT, GPIO2 is used for output |
| G2OV  | 1    | rw   | <b>GPIO2 Output Value</b><br>When GPIO2 is used for output, this value is driven to GPIO2 pin. Set by SW.                   |
| G2IV  | 0    | r    | <b>GPIO2 Input Value</b><br>When GPIO2 is used for input, this field reflects the status of GPIO2. Set by HW.               |



TEST

| Test<br>TEST |   |   | Off:<br>80 |    |   |   | Reset Value<br>00 <sub>H</sub> |
|--------------|---|---|------------|----|---|---|--------------------------------|
| 7            | 6 | 5 | 4          | 3  | 2 | 1 | 0                              |
|              |   |   | Re         | es |   |   |                                |
|              |   |   | rc         | )  |   |   |                                |

| Field | Bits | Туре | Description |
|-------|------|------|-------------|
| Res   | 7:0  | ro   | Reserved    |

#### **Test Mode**

| TM<br>Test Mode |   |   |   | รset<br>1 <sub>H</sub> |   |   | Reset Value<br>00 <sub>H</sub> |
|-----------------|---|---|---|------------------------|---|---|--------------------------------|
| 7               | 6 | 5 | 4 | 3                      | 2 | 1 | 0                              |
|                 | 1 | 1 | R | es                     | 1 | 1 |                                |
| L               |   |   | r | 0                      |   |   |                                |

| Field | Bits | Туре | Description |
|-------|------|------|-------------|
| Res   | 7:0  | ro   | Reserved    |

# 6.2 PHY Registers Description

# Table 71 Registers Address SpaceRegisters Address Space

| Module           | Base Address           | End Address            | Note |
|------------------|------------------------|------------------------|------|
| System Registers | 0000 0000 <sub>H</sub> | 0000 0006 <sub>H</sub> |      |

# Table 72 Registers Overview

| Register Short Name | Register Long Name             | Offset Address | Page Number |
|---------------------|--------------------------------|----------------|-------------|
| CTL                 | Control                        | 0 <sub>H</sub> | 67          |
| STA                 | Status                         | 1 <sub>H</sub> | 68          |
| PHYI1               | PHY Identifier 1               | 2 <sub>H</sub> | 70          |
| PHYI2               | PHY Identifier 2               | 3 <sub>H</sub> | 70          |
| ANA                 | Auto-Negotiation Advertisement | 4 <sub>H</sub> | 71          |



# Table 72Registers Overview (cont'd)

| Register Short Name | Register Long Name                    | Offset Address | Page Number |
|---------------------|---------------------------------------|----------------|-------------|
| ANLPA               | Auto-Negotiation Link Partner Ability | 5 <sub>H</sub> | 72          |
| ANE                 | Auto-Negotiation Expansion            | 6 <sub>H</sub> | 72          |

The register is addressed wordwise.

| Mode                             | Symbol | Description HW                                                                                                  | Description SW                                                                                                                                                                 |  |  |  |
|----------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| read/write                       | rw     | Register is used as input for the HW                                                                            | Register is readable and writable by SW                                                                                                                                        |  |  |  |
| read                             | r      | Register is written by HW (register<br>between input and output -> one cycle<br>delay)                          | Value written by software is ignored by<br>hardware; that is, software may write any<br>value to this field without affecting hardware<br>behavior (= Target for development.) |  |  |  |
| Read only                        | ro     | Register is set by HW (register between input and output -> one cycle delay)                                    | SW can only read this register                                                                                                                                                 |  |  |  |
| Read virtual                     | rv     | Physically, there is no new register, the input of the signal is connected directly to the address multiplexer. | SW can only read this register                                                                                                                                                 |  |  |  |
| Latch high, self clearing        | lhsc   | Latch high signal at high level, clear on read                                                                  | SW can read the register                                                                                                                                                       |  |  |  |
| Latch low, self clearing         | llsc   | Latch high signal at low-level, clear on read                                                                   | SW can read the register                                                                                                                                                       |  |  |  |
| Latch high,<br>mask clearing     | lhmk   | Latch high signal at high level, register cleared with written mask                                             | SW can read the register, with write mask the register can be cleared (1 clears)                                                                                               |  |  |  |
| Latch low,<br>mask clearing      | llmk   | Latch high signal at low-level, register cleared on read                                                        | SW can read the register, with write mask the register can be cleared (1 clears)                                                                                               |  |  |  |
| Interrupt high, self clearing    | ihsc   | Differentiate the input signal (low-<br>>high) register cleared on read                                         | SW can read the register                                                                                                                                                       |  |  |  |
| Interrupt low, self clearing     | ilsc   | Differentiate the input signal (high-<br>>low) register cleared on read                                         | SW can read the register                                                                                                                                                       |  |  |  |
| Interrupt high,<br>mask clearing | ihmk   | Differentiate the input signal (high-<br>>low) register cleared with written mask                               | SW can read the register, with write mask the register can be cleared                                                                                                          |  |  |  |
| Interrupt low,<br>mask clearing  | ilmk   | Differentiate the input signal (low-<br>>high) register cleared with written<br>mask                            | SW can read the register, with write mask the register can be cleared                                                                                                          |  |  |  |
| Interrupt enable register        | ien    | Enables the interrupt source for<br>interrupt generation                                                        | SW can read and write this register                                                                                                                                            |  |  |  |
| latch_on_reset                   | lor    | rw register, value is latched after first clock cycle after reset                                               | Register is readable and writable by SW                                                                                                                                        |  |  |  |
| Read/write self clearing         | rwsc   | Register is used as input for the hw, the register will be cleared due to a HW mechanism.                       | Writing to the register generates a strobe signal for the HW (1 pdi clock cycle) Register is readable and writable by SW.                                                      |  |  |  |

# Table 73Register Access Types



# Table 74 Registers Clock DomainsRegisters Clock Domains

| Clock Short Name | Description |
|------------------|-------------|
|                  |             |

# 6.2.1 PHY Registers



#### Control

| CTL<br>Contro | bl |      |     |                                                                             |                                                |                      |                             | iset<br><sup>)</sup> н                |       |     |   |     |   | Reset | Value<br>1000 <sub>H</sub> |
|---------------|----|------|-----|-----------------------------------------------------------------------------|------------------------------------------------|----------------------|-----------------------------|---------------------------------------|-------|-----|---|-----|---|-------|----------------------------|
| 15            | 14 | 13   | 12  | 11                                                                          | 10                                             | 9                    | 8                           | 7                                     | 6     | 5   | 4 | 3   | 2 | 1     | 0                          |
| RST           | LP | SS   | ANE | PD                                                                          | ISO                                            | RA                   | DM                          | ст                                    |       |     | 1 | Res | 1 |       |                            |
| rwsc          | rw | rw   | rw  | rw                                                                          | rw                                             | rwsc                 | rw                          | ro                                    |       | 1   | 1 |     |   |       |                            |
| Field         |    | Bits |     | Туре                                                                        | De                                             | scripti              | on                          |                                       |       |     |   |     |   |       |                            |
| RST           |    | 15   |     | rwsc                                                                        | <b>Re</b><br>0 <sub>В</sub><br>1 <sub>В</sub>  |                      | Norma<br>PHY F              | al opera<br>Reset                     | ation |     |   |     |   |       |                            |
| LP            |    | 14   |     | Image: rw     Loopback $0_B$ DL, Disable loopback $1_B$ EL, Enable loopback |                                                |                      |                             |                                       |       |     |   |     |   |       |                            |
| SS            |    | 13   |     | rw Speed Selection<br>$0_B$ 10M, 10 Mbit/s<br>$1_B$ 100M, 100 Mbit/s        |                                                |                      |                             |                                       |       |     |   |     |   |       |                            |
| ANE           |    | 12   |     | rw                                                                          | Αι<br>0 <sub>Β</sub><br>1 <sub>Β</sub>         |                      | N, Disa                     | <b>n Enab</b><br>ble auto<br>ble auto | o-neg |     |   |     |   |       |                            |
| PD            |    | 11   |     | rw                                                                          |                                                |                      |                             | al opera<br>Down                      | ation |     |   |     |   |       |                            |
| ISO           |    | 10   |     | rw                                                                          |                                                |                      |                             | al opera<br>ate PH                    |       | MII |   |     |   |       |                            |
| RA            |    | 9    |     | rwsc                                                                        | Re<br>1 <sub>B</sub>                           | start A<br>RAI       |                             | gotiatio                              |       |     |   |     |   |       |                            |
| DM            |    | 8    |     | rw                                                                          | <b>D</b> і<br>0 <sub>В</sub><br>1 <sub>В</sub> |                      | <b>lode</b><br>Half<br>Full |                                       |       |     |   |     |   |       |                            |
| СТ            |    | 7    |     | ro                                                                          | Co                                             | ollision<br>ot imple |                             | k                                     |       |     |   |     |   |       |                            |

#### SC

Self Clearing

# Reset

Reset this port only. This will cause the following:

1. Restart the auto-negotiation process.



2. Reset the registers to their default values. Note that this does not affect registers 20, 22, 30 or 31. These registers are not reset by this bit to allow test configurations to be written and then not affected by resetting the port.

Note: No reset is performed to analogue sections of the port. There is also no physical reset to any internal clock synthesisers or the local clock recovery oscillator which will continue to run throughout the reset period. However since the port is restarted and autoneg re-run the process of locking the frequency of the local oscillator (slave) to the reference oscillator (master) will be repeated as it is at the start of any link initialization process.

**Loopback**Loop back of transmit data to receive via a path as closed to the wire as possible. When set inhibits actual transmission on the wire.

**Speed Selection**Forces speed of Phy only when auto-negotiation is disabled. The default state of this bit will be determined by a power-up configuration pin in this case. Otherwise it defaults to 1.

**Auto-neg Enable**Defaults to pin programmed value. When cleared allows forcing of speed and duplex settings. When set (after being cleared) causes re-start of auto-neg process. Pin programming at power-up allows it to come up disabled and for software to write the desired capability before allowing the first negotiation to commence.

**Restart Negotiation**Only has effect when auto-negotiating. Restarts state machine.

**Power Down**Has no effect in this device. Test mode power down modes may be implemented in other specific modules.

**Isolate**Puts RMII receive signals into high impedance state and ignores transmit signals.

**Duplex Mode**When bit12 is cleared (i.e. autoneg disabled), this bit forces full duplex (bit = 1) or half duplex (bit = 0).

Collision TestAlways 0 because collision signal is not implemented.

#### Status

| STA<br>Status | i         |           |      |      |            |            | Off<br>1 | set<br>н |      |     |        |     |        | Reset  | Value<br>7849 <sub>H</sub> |
|---------------|-----------|-----------|------|------|------------|------------|----------|----------|------|-----|--------|-----|--------|--------|----------------------------|
| 15            | 14        | 13        | 12   | 11   | 10         | 9          | 8        | 7        | 6    | 5   | 4      | 3   | 2      | 1      | 0                          |
| 100T<br>4     | 100F<br>D | 100H<br>D | 10FD | 10HD | 100T<br>FD | 100T<br>HD | Re       | es       | MFPS | ANC | RF     | ANA | LS     | JD     | EC                         |
| ro            | ro        | ro        | ro   | ro   | ro         | ro         |          |          | ro   | ro  | ro, lh | ro  | ro, ll | ro, lh | ro                         |

| Field | Bits | Туре | Description                                                                                                          |
|-------|------|------|----------------------------------------------------------------------------------------------------------------------|
| 100T4 | 15   | ro   | 100 BASE T4<br>Not supported                                                                                         |
| 100FD | 14   | ro   | 100BASE-X Full Duplex0B100FDN, PHY is not 100BASE-X full duplex capable1B100FD, PHY is 100BASE-X full duplex capable |
| 100HD | 13   | ro   | 100BASE-X Half Duplex0B100HDN, PHY is not 100BASE-X half duplex capable1B100HD, PHY is 100BASE-X half duplex capable |
| 10FD  | 12   | ro   | 10 Mbit/s Full Duplex0B10FDN, PHY is not 10 Mbit/s Full duplex capable1B10FD, PHY is 10 Mbit/s Full duplex capable   |



| Field  | Bits | Туре   | Description                                                                                                                                                                                                             |
|--------|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10HD   | 11   | ro     | <ul> <li>10 Mbit/s Half Duplex</li> <li>0<sub>B</sub> 10HDN, PHY is not 10 Mbit/s Half duplex capable</li> <li>1<sub>B</sub> 10HD, PHY is 10 Mbit/s Half duplex capable</li> </ul>                                      |
| 100TFD | 10   | ro     | 100BASE-T2 Full Duplex<br>Not Supported                                                                                                                                                                                 |
| 100THD | 9    | ro     | 100BASE-T2 Half Duplex<br>Not Supported                                                                                                                                                                                 |
| MFPS   | 6    | ro     | <ul> <li>MF Preamble Suppression         <ul> <li>MFPSN, PHY cannot accept management frames with preamble suppression</li> <li>MFPS, PHY can accept management frames with preamble suppression</li> </ul> </li> </ul> |
| ANC    | 5    | ro     | Auto-neg Complete         0 <sub>B</sub> ANI, Auto-neg incomplete         1 <sub>B</sub> ANC, Auto-neg completed                                                                                                        |
| RF     | 4    | ro, lh | Remote Fault         0 <sub>B</sub> RFN, No remote fault detected         1 <sub>B</sub> RF, Remote fault detected                                                                                                      |
| ANA    | 3    | ro     | Auto-neg Ability0BANN, PHY cannot auto-negotiate1BAN, PHY can auto-negotiate                                                                                                                                            |
| LS     | 2    | ro, ll | Link Status<br>0 <sub>B</sub> LD, Link is down<br>1 <sub>B</sub> LU, Link is up                                                                                                                                         |
| JD     | 1    | ro, lh | Jabber Detect       1 <sub>B</sub> JCD, Jabber condition detected                                                                                                                                                       |
| EC     | 0    | ro     | Extended Capability $0_B$ BSC, Basic register set capabilities only $1_B$ EC, Extended register capabilities                                                                                                            |

Note: Jabber Detect Only used in 10Base-T mode. Read as 0 in 100Base-TX mode.

#### PHY Identifier 2 and 3

Each PHY has an identifier, which is assigned to the device.

The identifier contains a total of 32 bits, which consists of the following: 22 bits of a 24 bit organizationally unique identifier (OUI) for the manufacturer; a 6-bit manufacturer's model number; a 4-bit manufacturer's revision number. For an explanation of how the OUI maps to the register, please refer to IEEE 802-1990 clause 5.1



#### **PHY Identifier 1**

|   | IYI1<br>IY Id | lentifie | r 1 |    |    |    |   |        | iset<br>н |   |   |   |   |   |   | : Value<br>001D <sub>H</sub> |
|---|---------------|----------|-----|----|----|----|---|--------|-----------|---|---|---|---|---|---|------------------------------|
|   | 15            | 14       | 13  | 12 | 11 | 10 | 9 | 8      | 7         | 6 | 5 | 4 | 3 | 2 | 1 | 0                            |
|   |               | 1        |     |    |    |    |   | PF     | IYI       |   |   |   |   |   |   |                              |
| L |               | 1        | 1   | 1  | 1  | 1  | 1 | ,<br>r | 0         | 1 |   | 1 | 1 | 1 | 1 | 1]                           |

| Field | Bits | Туре | Description           |
|-------|------|------|-----------------------|
| PHYI  | 15:0 | ro   | PHY Identifier[31-16] |
|       |      |      | OUI (bits 3-18)       |

### PHY Identifier 2

| PHYI2<br>PHY Id |    | r 2 |     |    |    |   |   | fset<br><sub>Н</sub> |     |    |   | Reset Value<br>2411 <sub>H</sub> |    |     |   |
|-----------------|----|-----|-----|----|----|---|---|----------------------|-----|----|---|----------------------------------|----|-----|---|
| 15              | 14 | 13  | 12  | 11 | 10 | 9 | 8 | 7                    | 6   | 5  | 4 | 3                                | 2  | 1   | 0 |
|                 |    | PH  | YI1 |    |    |   |   | PH                   | YI2 |    |   |                                  | PH | YI3 |   |
| L               | 1  | r   | 0   | 1  | 1  |   | 1 | r                    | 0   | ro |   |                                  |    |     |   |

| Field | Bits  | Туре | Description                                                              |
|-------|-------|------|--------------------------------------------------------------------------|
| PHYI1 | 15:10 | ro   | PHY Identifier[15-10]                                                    |
|       |       |      | OUI (bits 19-24)                                                         |
| PHYI2 | 9:4   | ro   | PHY Identifier[9-4]                                                      |
|       |       |      | Manufacturer's Model Number (bits 5-0)                                   |
| PHYI3 | 3:0   | ro   | PHY Identifier[3-0]                                                      |
|       |       |      | Revision Number (bits 3-0);Register 3, bit 0 is LS bit of PHY Identifier |

Note: This uses the OUI of Infineon-ADMtek, device type of 1 and rev 0.



# Auto-Negotiation Advertisement

| ANA<br>Auto-N | Vegotia | tion A | dverti | sement |                                               |                                                                                                                                            |                           | fset<br>І <sub>н</sub> |               |                       |         |          |          | Reset   | Value<br>0001 <sub>H</sub> |  |
|---------------|---------|--------|--------|--------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------|-----------------------|---------|----------|----------|---------|----------------------------|--|
| 15            | 14      | 13     | 12     | 11     | 10                                            | 9                                                                                                                                          | 8                         | 7                      | 6             | 5                     | 4       | 3        | 2        | 1       | 0                          |  |
| NP            | Res     | RF     |        | NI     | PAU                                           | NI                                                                                                                                         | 100F<br>D                 | 100H<br>D              | 10FD          | 10HD                  |         | T        | SF       | 1       |                            |  |
| rw            |         | rw     | 1      | ro     | rw                                            | ro                                                                                                                                         | rw                        | rw                     | rw            | rw                    |         |          | ro       |         |                            |  |
| Field         |         | Bits   |        | Туре   | e De                                          | script                                                                                                                                     | ion                       |                        |               |                       |         |          |          |         |                            |  |
| NP            |         | 15     |        | rw     | Nе<br>0 <sub>В</sub><br>1 <sub>В</sub>        |                                                                                                                                            | <b>P</b> , Devi           |                        |               | se Next<br>ext Page   | -       | !        |          |         |                            |  |
| RF            |         | 13     |        | rw     | <b>Re</b><br>0 <sub>В</sub><br>1 <sub>В</sub> |                                                                                                                                            | D, No fa                  |                        |               | ent to lir            | ık part | ner      |          |         |                            |  |
| NI            |         | 12:1   | 1      | ro     |                                               |                                                                                                                                            | <b>emente</b><br>gy abili |                        | 47-A6         |                       |         |          |          |         |                            |  |
| PAU           |         | 10     |        | rw     |                                               | <b>use</b><br>chnolo                                                                                                                       | gy abili                  | tv bit A               | 5             |                       |         |          |          |         |                            |  |
| NI            |         | 9      |        | ro     | No                                            | t Impl                                                                                                                                     | <b>emente</b><br>gy abili | ed                     |               |                       |         |          |          |         |                            |  |
| 100FD         |         | 8      |        | rw     |                                               | chnolo<br><b>100</b>                                                                                                                       |                           | ty bit A<br>Jnit is r  | 3<br>lot capa | able of F<br>f Full D |         | ıplex    |          |         |                            |  |
| 100HD         | )       | 7      |        | rw     |                                               | <b>100BASE-TX Half Duplex</b><br>Technology ability bit A2<br>0 <sub>B</sub> <b>100NHD</b> , Unit is not capable of Half Duplex 100BASE-TX |                           |                        |               |                       |         |          |          |         |                            |  |
| 10FD          |         | 6      |        | rw     |                                               | chnolo<br>10N                                                                                                                              |                           | ty bit A<br>nit is no  | 1<br>ot capat | ble of Fi<br>Full Du  | •       |          |          | -       |                            |  |
| 10HD          |         | 5      | 5 rw   |        | 10                                            | chnolo<br>10N                                                                                                                              |                           | ty bit A<br>nit is no  | 0<br>ot capal | ole of H<br>Half Du   |         |          |          | ASE-T   |                            |  |
| SF            |         | 4:0    |        | ro     | Ide                                           | lector<br>entifies<br>fined.                                                                                                               |                           | messa                  | ige beir      | ng sent.              | Curre   | ently on | ly one \ | alue is |                            |  |



# Auto-Negotiation Link Partner Ability

The register is used to view the advertised capabilities of the link partner once auto negotiation is complete. The contents of this register should not be relied upon unless register 1 bit 5 is set (auto negotiation complete). After negotiation this register should contain a copy of the link partner's register 4. All bits are therefore defined in the same way as for register 4.All bits are readable only. This register is used for Base Page code word only. Base Page Register Format

|   | ANLP/<br>Auto-N | A<br>Negotia | tion Li | nk Par | tner A | bility |     |   | iset<br>н |   |   |   |   |    | Rese | t Value<br>0000 <sub>H</sub> |
|---|-----------------|--------------|---------|--------|--------|--------|-----|---|-----------|---|---|---|---|----|------|------------------------------|
| - | 15              | 14           | 13      | 12     | 11     | 10     | 9   | 8 | 7         | 6 | 5 | 4 | 3 | 2  | 1    | 0                            |
|   | NP              | АСК          | RF      |        |        |        | , т | A | 1         |   | 1 |   |   | SF | 1    |                              |
|   | ro              | ro           | ro      | I      | 1      |        | r   | ю | 1         |   | 1 |   | 1 | ro | 1    |                              |

| Field | Bits | Туре | Description                                                                                    |
|-------|------|------|------------------------------------------------------------------------------------------------|
| NP    | 15   | ro   | Next Page $0_B$ , Base Page is requested $1_B$ , Link Partner is requesting Next Page function |
| ACK   | 14   | ro   | Acknowledge<br>Link Partner acknowledgement bit                                                |
| RF    | 13   | ro   | Remote Fault<br>Link Partner is indicating a fault                                             |
| TA    | 12:5 | ro   | Technology AbilityLink Partner technology ability field.                                       |
| SF    | 4:0  | ro   | Selector Field<br>Link Partner selector field                                                  |

#### Auto-Negotiation Expansion

|   | ANE<br>Auto-N | Negotia | ition E | xpansi | on |     |   |   | set<br>н |   |   |        |      |     | Reset  | Value<br>0004 <sub>H</sub> |
|---|---------------|---------|---------|--------|----|-----|---|---|----------|---|---|--------|------|-----|--------|----------------------------|
| ſ | 15            | 14      | 13      | 12     | 11 | 10  | 9 | 8 | 7        | 6 | 5 | 4      | 3    | 2   | 1      | 0                          |
|   |               |         |         |        |    | Res |   |   |          |   |   | PDF    | LPNP | NPA | PR     | LPAN                       |
| l |               | I.      | 1       | 1      | 1  | 1   | I |   | I        | 1 | J | ro, lh | ro   | ro  | ro, lh | ro                         |

| Field | Bits | Туре   | Description                                                      |
|-------|------|--------|------------------------------------------------------------------|
| PDF   | 4    | ro, lh | Parallel Detection Fault                                         |
|       |      |        | 0 <sub>B</sub> <b>NFD</b> , No fault detected                    |
|       |      |        | 1 <sub>B</sub> <b>FD</b> , Local Device Parallel Detection Fault |


## **Registers Description**

| Field | Bits | Туре   | Description                                                                                                                        |
|-------|------|--------|------------------------------------------------------------------------------------------------------------------------------------|
| LPNP  | 3    | ro     | Link Partner Next Page Able0BNNP, Link Partner is not Next Page Able1BNP, Link Partner is Next Page Able                           |
| NPA   | 2    | ro     | Next Page Able         0 <sub>B</sub> , Local device is not Next Page Able         1 <sub>B</sub> , Local device is Next Page Able |
| PR    | 1    | ro, lh | Page Received         0 <sub>B</sub> NPR, A New Page has not been received         1 <sub>B</sub> PR, A New Page has been received |
| LPAN  | 0    | ro     | Link Partner Auto Negotiation Able0BNAN, Link Partner is not Auto negotiation able1BAN, Link Partner is Auto negotiation able      |



# 7 Electrical Characteristics

## 7.1 Absolute Maximum Ratings

## Table 75 Absolute Maximum Rating

| Parameter             | Symbol           |      | Valu | es   | Unit | Note / Test Condition      |
|-----------------------|------------------|------|------|------|------|----------------------------|
|                       |                  | Min. | Тур. | Max. |      |                            |
| Supply Voltage        | V <sub>DD</sub>  | -    | -    | 4.6  | V    | -                          |
| DC Input Voltage      | V <sub>IN</sub>  | -    | -    | 6    | V    | -                          |
| DC Output Voltage     | V <sub>OUT</sub> | -    | -    | 4.6  | V    | -                          |
| Power Consumption     | P <sub>C</sub>   | -    | -    | 126  | mA   | @ Idle State               |
|                       |                  | -    | -    | 7    | mA   | @ Suspend Mode             |
|                       |                  | -    | -    | 142  | mA   | @ 10M Full Duplex<br>Mode  |
|                       |                  | -    | -    | 152  | mA   | @ 100M Full Duplex<br>Mode |
| Storage Temperature   | T <sub>STG</sub> | -65  | -    | 150  | °C   | -                          |
| Operation Temperature | $T_{AMB}$        | -40  | -    | 125  | W    | -                          |
| ESD Rating            | $V_{ESD}$        | -    | -    | 2000 | V    | -                          |

# 7.2 Operating Condition

### Table 76Operating Condition

| Parameter      | Symbol          |      | Valu | es   | Unit | Note / Test Condition |
|----------------|-----------------|------|------|------|------|-----------------------|
|                |                 | Min. | Тур. | Max. |      |                       |
| Supply Voltage | V <sub>DD</sub> | 3.0  | -    | 3.6  | V    | -                     |
| Supply Current | I <sub>DD</sub> | _    | -    | 150  | mA   | -                     |

## 7.3 DC Specifications

## 7.3.1 USB Interface DC Specification

### Table 77 USB Interface DC Specification

| Parameter                      | Symbol          |      | Values | S    | Unit | Note / Test Condition |
|--------------------------------|-----------------|------|--------|------|------|-----------------------|
|                                |                 | Min. | Тур.   | Max. |      |                       |
| Input High Voltage             | V <sub>IH</sub> | 2.0  | -      | -    | V    | -                     |
| Input Low Voltage              | V <sub>IL</sub> | -    | -      | 0.8  | V    | -                     |
| Differential Input Sensitivity | V <sub>DI</sub> | 0.2  | -      | _    | V    | -                     |



#### **EEPROM Interface DC Specification**

| Parameter                          | Symbol           |      | Value | s    | Unit | Note / Test Condition |
|------------------------------------|------------------|------|-------|------|------|-----------------------|
|                                    |                  | Min. | Тур.  | Max. |      |                       |
| Differential Common Mode<br>Range  | V <sub>CM</sub>  | 0.8  | -     | 2.5  | V    | -                     |
| Output High Voltage                | V <sub>CH</sub>  | 2.8  | -     | 3.6  | V    | -                     |
| Output Low Voltage                 | V <sub>OL</sub>  | 0.0  | _     | 0.3  | V    | -                     |
| Output Signal Crossover<br>Voltage | V <sub>CRS</sub> | 1.3  | -     | 2.0  | V    | -                     |

## Table 77USB Interface DC Specification (cont'd)

# 8 EEPROM Interface DC Specification

## 8.1 Recommended Operating Conditions

### Table 78 EEPROM Interface DC Specification

| Parameter             | Symbol          |      | Value | s      | Unit | Note / Test Condition       |
|-----------------------|-----------------|------|-------|--------|------|-----------------------------|
|                       |                 | Min. | Тур.  | Max.   |      |                             |
| Input High Voltage    | V <sub>IH</sub> | 1.8  | -     | 5.5    | V    | -                           |
| Input Low Voltage     | V <sub>IL</sub> | -0.5 | -     | 1.0    | V    | -                           |
| Input Leakage Current | I               | ± 1  | -     | ± 1000 | nA   | V <sub>IN</sub> 3.3V or 0 V |
| Output High Voltage   | V <sub>OH</sub> | 2.4  | -     | -      | V    | -                           |
| Output Low Voltage    | V <sub>OL</sub> | -    | -     | 0.4    | V    | -                           |
| Input Pin Capacitance | $C_{\sf IN}$    | -    | -     | 5.66   | pF   | -                           |

## 8.2 GPIO Interface DC Specification

### Table 79 GPIO Interface DC Specification

| Parameter             | Symbol          |      | Value | s      | Unit | Note / Test Condition        |
|-----------------------|-----------------|------|-------|--------|------|------------------------------|
|                       |                 | Min. | Тур.  | Max.   |      |                              |
| Input High Voltage    | V <sub>IH</sub> | 1.8  | _     | 5.5    | V    | -                            |
| Input Low Voltage     | V <sub>IL</sub> | -0.5 | -     | 1.0    | V    | -                            |
| Input Leakage Current | I               | ± 1  | _     | ± 1000 | nA   | V <sub>IN</sub> 3.3 V or 0 V |
| Output High Voltage   | V <sub>OH</sub> | 2.4  | -     | -      | V    | -                            |
| Output Low Voltage    | V <sub>OL</sub> | -    | -     | 0.4    | V    | -                            |
| Input Pin Capacitance | C <sub>IN</sub> | -    | -     | 5.64   | pF   | -                            |

# 9 Timing



## 9.1 Reset Timing

ADM8513/X can be reset either by hardware, software or USB reset.

- A hardware reset is accomplished by asserting the RST# pin after powering up the device. It should have a duration of at least 100 ms to ensure the external 12 MHz and crystal is in stable and correct frequency. All registers will be reset to default values.
- A software reset is accomplished by setting the reset bit (bit 4) of the Ethernet Control Register (address 01<sub>H</sub>). This software reset will reset all registers to default values.
- When ADM8513/X sees an SE0 on USB bus for more than 2.5 s. This USB reset will reset all registers to default values

## 9.2 USB Interface Timing

| Parameter                   | Symbol       |      | Values | 5      | Unit | Note / Test Condition                             |
|-----------------------------|--------------|------|--------|--------|------|---------------------------------------------------|
|                             |              | Min. | Тур.   | Max.   |      |                                                   |
| Rise Time                   | $T_{FR}$     | 4    | -      | 20     | ns   | C <sub>L</sub> =50 pF                             |
| Fall Time                   | $T_{\rm FF}$ | 4    | -      | 20     | ns   | C <sub>L</sub> =50 pF                             |
| Rise and fall time matching | $T_{FRFF}$   | 90   | -      | 111.11 | %    | $T_{\text{FRFF}} = T_{\text{FR}} / T_{\text{FF}}$ |

### Table 80 GPIO Interface DC Specification

## 9.3 EEPROM Interface Timing

#### Table 81 EEPROM Interface Timing

| Parameter                       | Symbol             |      | Values | S    | Unit | Note / Test Condition |
|---------------------------------|--------------------|------|--------|------|------|-----------------------|
|                                 |                    | Min. | Тур.   | Max. |      |                       |
| EESK Clock Frequency            | t <sub>EESK</sub>  | 0    | -      | 1    | MHz  | -                     |
| EECS Setup Time to EESK         | t <sub>EECSS</sub> | 0.2  | -      | _    | μS   | -                     |
| EECS Hold Time from EESK        | t <sub>EECSH</sub> | 0    | -      | -    | ns   | -                     |
| EEDO Hold Time from EESK        | t <sub>EEDOH</sub> | 70   | -      | _    | ns   | -                     |
| EEDO Output Delay to "1" or "0" | t <sub>EEDOP</sub> | -    | -      | 2    | μS   | -                     |
| EEDI Setup Time to EESK         | t <sub>EEDIS</sub> | 0.4  | -      | -    | μS   | -                     |
| EEDI Hold Time from EESK        | t <sub>EEDIH</sub> | 0.4  | -      | -    | μS   | -                     |



### **EEPROM Interface & Example**



### Figure 5 EEPROM Interface Timing

# 10 EEPROM Interface & Example

If the EEPROM contents from offset 0 to offset 5 is "FF\_FF\_FF\_FF\_FF\_FF, the EEPROM isn't programmed correctly. The default values for every field are used instead of loading from EEPROM.

| Offset(Byte) | Field         | Description                                                               |
|--------------|---------------|---------------------------------------------------------------------------|
| 00           | node_id0      | The 1st byte of Ethernet node ID.                                         |
| 01           | node_id1      | The 2st byte of Ethernet node ID.                                         |
| 02           | node_id2      | The 3st byte of Ethernet node ID.                                         |
| 03           | node_id3      | The 4st byte of Ethernet node ID.                                         |
| 04           | node_id4      | The 5st byte of Ethernet node ID.                                         |
| 05           | node_id5      | The 6st byte of Ethernet node ID.                                         |
| 06-07        | Reserved      |                                                                           |
| 08           | Max_Pwr       | The maximum USB power consumption.                                        |
| 09           | Ep3_Interval  | The polling interval for endpoint 3. If this value is 0, EP3 is disabled. |
| 0A[0]        | Reserved      |                                                                           |
| 0A[1]        | USB_Sel       | 0A[1] = 1: select internal USB transceiver.                               |
| 0A[4:2]      | PHY Mode      | 0A[4:2]= 000                                                              |
| 0B[0]        | Reserved      |                                                                           |
| 0B[5:1]      | Reserved      |                                                                           |
| 0B[7:6]      | LED Mode      | Refer to Pin assignment                                                   |
| 0C           | Languageid_lo | The low byte of language ID.                                              |
| 0D           | Languageid_hi | The high byte of language ID.                                             |
| 0E-0F        | Reserved      |                                                                           |
| 10           | Manuid_lo     | The low byte of manufacture ID.                                           |
| 11           | Manuid_hi     | The high byte of manufacture ID.                                          |

#### Table 82 EEPROM Interface



### **EEPROM Interface & Example**

| Offset(Byte) | Field           | Description                                      |  |  |  |  |  |
|--------------|-----------------|--------------------------------------------------|--|--|--|--|--|
| 12           | ProID_lo        | The low byte of product ID.                      |  |  |  |  |  |
| 13           | ProID_hi        | The high byte of product ID.                     |  |  |  |  |  |
| 14           | Manu_str_len    | The length for manufacture string.               |  |  |  |  |  |
| 15           | Manu_str_offset | The word offset address of manufacture string.   |  |  |  |  |  |
| 16           | Pro_str_len     | The length for product string.                   |  |  |  |  |  |
| 17           | Pro_str_offset  | The word offset address of product string.       |  |  |  |  |  |
| 18           | Seri_str_len    | The length for serial number string.             |  |  |  |  |  |
| 19           | Seri_str_offset | The word offset address of serial number string. |  |  |  |  |  |

# Table 82 EEPROM Interface (cont'd)

# 10.1 Example

| offset(byte)        | Value                      |
|---------------------|----------------------------|
| 0000 <sub>H</sub> : | 00, 00 E8 00 02 2C 00 00,  |
| 0008 <sub>H</sub> : | 50 01 02 00 09 04 00 00    |
| 0010 <sub>H</sub> : | A6 07 13 85 0E 10 2A 20    |
| 0018 <sub>H</sub> : | 0A 38 00 00 00 00 00 00    |
| 0020 <sub>H</sub> : | 0E 03 41 00 44 00 4D 00    |
| 0028 <sub>H</sub> : | 74 00 65 00 6B 00 00 00    |
| 0030 <sub>H</sub> : | 1E 00 55 00 53 00 42 00    |
| 0038 <sub>H</sub> : | 20 00 31 00 30 00 2F 00    |
| 0040 <sub>H</sub> : | 2A 03 55 00 53 00 42 00    |
| 0048 <sub>H</sub> : | -20 00 54 00 6F 00 20 00   |
| 0050 <sub>H</sub> : | 4C 00 41 00 4E 00 20 00    |
| 0058 <sub>H</sub> : | 43 00 6F 00 6E 00 76 00    |
| 0060 <sub>H</sub> : | 65 00 72 00 74 00 65 00    |
| 0068 <sub>H</sub> : | 72 00 00 00 00 00 00 00 00 |
| 0070 <sub>H</sub> : | 0A 03 30 00 30 00 30 00    |
| 0078 <sub>H</sub> : | 31 00 00 00 00 00 00 00 00 |
|                     |                            |

| Table 83 | EEPROM Example |
|----------|----------------|
|----------|----------------|

| Offset(Byte) | Value                 | Description                                                                                                    |
|--------------|-----------------------|----------------------------------------------------------------------------------------------------------------|
| 00-05        | 00_00_E8_10<br>_46_02 | NIC node ID                                                                                                    |
| 08           | 50                    | maximum power 160mA                                                                                            |
| 09           | 01                    | interrupt endpoint 3 polling interval 1ms                                                                      |
| 0A           | 02                    | isochronous endpoint disables, selects internal USB transceiver<br>Uses internal Ethernet PHY, Wakes on Lan en |
| 0C-0D        | 0904                  | Language ID 0409                                                                                               |
| 10-11        | A607                  | manufacture ID 07A6                                                                                            |
| 12-13        | 8513                  | product ID 8513                                                                                                |
| 14           | 0E                    | manufacture string length 0E bytes                                                                             |
| 15           | 10                    | manufacture string starts from word offset 10h, thus byte offset 20 <sub>H</sub> .                             |



### **EEPROM Interface & Example**

| Offset(Byte) | Value                                           | Description                                                                          |
|--------------|-------------------------------------------------|--------------------------------------------------------------------------------------|
| 16           | 1E                                              | product string length 1E bytes                                                       |
| 17           | 18                                              | product string starts from word offset 18h, thus byte offset 30 <sub>H</sub> .       |
| 18           | 0A                                              | serial number string length 0A bytes                                                 |
| 19           | 38                                              | serial number string starts from word offset 38h, thus byte offset 70 <sub>H</sub> . |
| 20-2E        | 0E 03 41 00 44<br>00 4D 00 74 00<br>65 00 6B 00 | 0E:descriptor size 14 bytes<br>03: string descriptor<br>41: UNICODE encoded string   |
| 30-4E        | 1E 03 55 00 53<br>00 42 00<br>20<br>00          | 1E:descriptor size 30 bytes<br>03: string descriptor<br>55: UNICODE encoded string   |
| 50-5A        | 0A 03 30 00 30<br>00 30 00<br>31 00             | 0A: descriptor size 10 bytes<br>03: string descriptor<br>30: UNICODE encoded string  |



# 11 Package







Note: This diagram has a 32pin. But, the relative parameters presents 48pin package data. So, please ignore the pin number and regard the diagram as 48pin. Make an example: Parameter "E" (9mm) means the distance between the two opposite sides. Parameter "e" (0.8mm) means the distance between two adjacent pins. D&E1 means body size.



| Symbol         | Millimeter (mm) |           |                 | Inch       |            |       |  |  |
|----------------|-----------------|-----------|-----------------|------------|------------|-------|--|--|
|                | Min.            | Тур.      | Max.            | Min.       | Тур.       | Max.  |  |  |
| А              | _               | _         | 1.60            | _          | _          | 0.063 |  |  |
| A <sub>1</sub> | 0.05            | -         | 0.15            | 0.002      | _          | 0.006 |  |  |
| A <sub>2</sub> | 1.35            | 1.40      | 1.45            | 0.053      | 0.005      | 0.057 |  |  |
| D              |                 | 9.00 BSC. |                 |            | 0.354 BSC. |       |  |  |
| D <sub>1</sub> |                 | 7.00 BSC  |                 | 0.276 BSC. |            |       |  |  |
| Е              |                 | 9.00 BSC  |                 | 0.354 BSC. |            |       |  |  |
| E <sub>1</sub> |                 | 7.00 BSC  |                 |            | 0.276 BSC. |       |  |  |
| R <sub>2</sub> | 0.08            | -         | 0.20            | 0.003      | _          | 0.008 |  |  |
| R <sub>1</sub> | 0.08            | _         | _               | 0.003      | _          | _     |  |  |
| Θ              | 0°              | 3.5°      | <b>7</b> °      | 0°         | 3.5°       | 7°    |  |  |
| Θ <sub>1</sub> | 0°              | -         | _               | 0°         | _          | _     |  |  |
| $\Theta_2$     | 11°             | 12°       | 13°             | 11°        | 12°        | 13°   |  |  |
| $\Theta_3$     | 11°             | 12°       | 13°             | 11°        | 12°        | 13°   |  |  |
| С              | 0.09            | _         | 0.20            | 0.004      | _          | 0.008 |  |  |
| L              | 0.45            | 0.60      | 0.75            | 0.018      | 0.024      | 0.030 |  |  |
| L <sub>1</sub> |                 | 1.00 Ref. |                 |            | 0.039 Ref. |       |  |  |
| S              | 0.20            | _         | _               | 0.008      | _          | _     |  |  |
| 32L            |                 |           |                 |            |            |       |  |  |
| b              | 0.30            | 0.35      | 0.45            | 0.0012     | 0.0014     | 0.018 |  |  |
| е              |                 | 0.80 BSC. |                 |            | 0.031 BSC. |       |  |  |
| $D_2$          |                 | 5.60      |                 | 0.220      |            |       |  |  |
| E <sub>2</sub> |                 | 5.60      |                 | 0.220      |            |       |  |  |
|                |                 | Tolerar   | nce of Form and | Position   |            |       |  |  |
| aaa            |                 | 0.20      |                 |            | 0.008      |       |  |  |
| bbb            | 0.20            |           | 0.008           |            |            |       |  |  |
| CCC            | 0.10            |           |                 | 0.003      |            |       |  |  |
| ddd            |                 | 0.20      |                 | 0.008      |            |       |  |  |
|                |                 |           | 34L             | I          |            |       |  |  |
| b              | 0.17            | 0.20      | 0.27            | 0.007      | 0.008      | 0.011 |  |  |
| е              |                 | 0.50 BSC. |                 |            | 0.020 BSC. |       |  |  |
| $D_2$          | 5.00            |           |                 | 0.197      |            |       |  |  |
| E <sub>2</sub> | 5.00            |           |                 | 0.197      |            |       |  |  |
|                |                 | Tolerar   | nce of Form and | Position   |            |       |  |  |
| aaa            |                 | 0.20      |                 |            | 0.008      |       |  |  |
| bbb            | 0.20            |           |                 | 0.008      |            |       |  |  |
| CCC            | 0.08            |           |                 | 0.003      |            |       |  |  |
| ddd            | 0.08            |           |                 | 0.003      |            |       |  |  |
|                | 1               |           | 48L             | 1          |            |       |  |  |
| b              | 0.17            | 0.20      | 0.27            | 0.007      | 0.008      | 0.011 |  |  |

### Table 84 Dimensions for 48 Pin LQFP Package



| Symbol         | Millimeter (mm)         | Inch       |  |  |
|----------------|-------------------------|------------|--|--|
| e              | 0.50 BSC.               | 0.020 BSC. |  |  |
| D <sub>2</sub> | 5.50                    | 0.217      |  |  |
| E <sub>2</sub> | 5.50                    | 0.217      |  |  |
|                | Tolerance of Form and F | Position   |  |  |
| aaa            | 0.20                    | 0.008      |  |  |
| bbb            | 0.20                    | 0.008      |  |  |
| CCC            | 0.08                    | 0.003      |  |  |
| ddd            | 0.08                    | 0.003      |  |  |

### Table 84 Dimensions for 48 Pin LQFP Package (cont'd)



# 12 Appendix Layout Guide

### Placement:

- At USB side, place ADM8513/X and USB connector as close as possible.
- At Ethernet side, place ADM8513/X, transformer and RJ45 as close as possible.
- The crystal or OSC device should be closed to ADM8513/X and away from the following items
  - Any analog signal
  - PCB edge
  - Any other high frequency components and their associated traces.

If you can't avoid those designs, please add a Resistor between Crystal (or OSC) and ADM8513/X chip clk48\_I pin as figure show:



#### Figure 7 Placement 1

 Place the filtering capacitor as closed as possible at the Vcc pin of ADM8513/X and its trace must be short and wide.



Figure 8 Placement 2



### Trace routing

- Keep USB differential pair data signal D+ and D-:
  - Trace width should be as wide as possible.
  - Make D+ and D- traces route at the same signal plane and not pass through the other plane.
  - Inhibit crossover on D+ and D-
  - The termination resistance (R2,R3) and decoupling capacitors (C1,C2) should be closed to ADM8513/X.
  - D+ and D- Signal trace length should be equal and as short as possible.
- Arrangement Tx and Rx trace
  - Tx+/- and Rx+/- trace avoid right angle and round angle >90 degree, suggested.
  - Trace width must be wide and should be wider than 8 mils.
  - Signal trace length between Tx+/- differential pairs should be crossed and have equal length. The total length should be no longer than 2 cm. The same requirement applies to Rx+/- also.
  - Make Tx and Rx trace route at the same signal plane and not pass through the other plane.
  - Every differential pairs as cross as possible, but no less than 8 mils and space should be almost equal.
  - Keep space large between Tx and Rx differential pairs, even separated ground planes underneath Tx and Rx signal pairs.
  - Away from clock and power traces.
  - If Tx routed trace must cross, the trace can be swapped between chip and transformer, and transformer to RJ45,too.







Figure 10 Trace Routing 2

• Digital signal should be away from analog signal and Vcc traces. If you can't avoid this situation, analog signal or Vcc trace should cross over 90 degree at other plane.







• Vcc trace should be short and prefer route in the format of the plane a special for GND.

### **Power and Ground**

- All of the Vcc pin should have a 0.1uF SMD capacitors which placed with it. To be effective, the capacitors should be placed as close as possible at the pin.
- The chassis ground plane connected to the USB B type and network connector chassis should be isolated from the signal plane with 0.1uF capacitors or bead to prevent any radiation from leaking and resulting in EMI failure.
- Right angle is recommend when partition Vcc as well as GND planes.
- Avoid Vcc and ground planes placing directly under the transformer. See the Figure as below.



Figure 12 Power and Ground 1

• If you use a captive cable (plus the shield wire) it may require additional filtering for EMI test pass and the length of unshielded cable should be limited to 3cm or less.



Figure 13 Power and Ground 2





 Please connect 10K Ohm Ribb resistance gnd, pin40(GndRef) and pin37(GndR) first then use signal via to Gnd (Specially for 2 layers board design).

Figure 14 Power and Ground 3

www.infineon.com