ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

NL17SH126

Noninverting 3-State Buffer

The NL17SH126 is an advanced high speed CMOS noninverting 3-state buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffered 3-state output which provides high noise immunity and stable output.

The NL17SH126 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the NL17SH126 to be used to interface 5 V circuits to 3 V circuits.

Features

- High Speed: $t_{PD} = 3.5$ ns (Typ) at $V_{CC} = 5$ V
- Low Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- These are Pb-Free Devices

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

J = Specific Device Code

M = Month Code

PIN ASSIGNMENT						
1	IN A					
2	GND					
3	OE					
4	OUT Y					
5	V _{CC}					

FUNCTION TABLE

A Input	OE Input	Y Output
L	н	L
н	н	н
Х	L	Z

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{IN}	DC Input Voltage	-0.5 to +7.0	V
V _{OUT}	DC Output Voltage V _{CC} = 0 High or Low State	-0.5 to 7.0 -0.5 to V _{CC} + 0.5	V
Ι _{ΙΚ}	Input Diode Current	-20	mA
I _{OK}	$\label{eq:Vour} Output \ Diode \ Current \qquad \qquad V_{OUT} < GND; \ V_{OUT} > V_{CC}$	±20	mA
I _{OUT}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND	50	mA
PD	Power dissipation in still air	50	mW
ΤL	Lead temperature, 1 mm from case for 10 secs	260	°C
TJ	Junction temperature under bias	+150	°C
T _{stg}	Storage temperature	-65 to +150	°C
I _{Latchup}	Latchup Performance Above V _{CC} and Below GND at 125°C (Note 1)	±100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics			Max	Unit
V _{CC}	DC Supply Voltage	2.0	5.5	V	
V _{IN}	DC Input Voltage			5.5	V
V _{OUT}	DC Output Voltage			V _{CC}	V
T _A	Operating Temperature Range			+125	°C
t _r , t _f	Input Rise and Fall Time Vo	_{CC} = 3.3 V ± 0.3 V _{CC} = 5.0 V ± 0.5 V	0 0	100 20	ns/V

Device Junction Temperature versus Time to 0.1% Bond Failures

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

		Ve	Vcc	Т	T _A = 25°C		T _A ≤	85°C	$-55 \le T_A$	≤ 125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
V _{IL}	Maximum Low-Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
V _{OH}	Minimum High–Level Output Voltage $V_{IN} = V_{IH}$ or V_{IL}		2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = -4 \text{ mA} \\ I_{OH} = -8 \text{ mA} \end{array}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage $V_{IN} = V_{IH}$ or V_{IL}		2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
			3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{OZ}	Maximum 3-State Leakage Current	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$	5.5			±0.2 5		±2.5		±2.5	μA
I _{IN}	Maximum Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 5.5			±0.1		±1.0		±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5			1.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS $C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ ns}$

Power Dissipation Capacitance (Note 2)

				Т	_A = 25°	С	TA ≤	85°C	-55 ≤ T _A	≤ 125°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Y	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	C _L = 15 pF C _L = 50 pF		4.5 6.4	8.0 11.5		9.5 13.0		12.0 16.0	ns
	(Figures 3. and 5.)	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	C _L = 15 pF C _L = 50 pF		3.5 4.5	5.5 7.5		6.5 8.5		8.5 10.5	
	Maximum Output Enable Time, Input OE to Y	$\begin{array}{l} V_{CC} = 3.3 \pm 0.3 \; V \\ R_L = 1000 \; \Omega \end{array}$			4.5 6.4	8.0 11.5		9.5 13.0		11.5 15.0	ns
	(Figures 4. and 5.)	$\begin{array}{l} V_{CC} = 5.0 \pm 0.5 \; V \\ R_{L} = 1000 \; \Omega \end{array}$			3.5 4.5	5.1 7.1		6.0 8.0		8.5 10.5	
t _{PLZ} , t _{PHZ}	Maximum Output Disable Time, Input OE to Y	$\begin{array}{l} V_{CC} = 3.3 \pm 0.3 \; V \\ R_L = 1000 \; \Omega \end{array}$			6.5 8.0	9.7 13.2		11.5 15.0		14.5 18.0	ns
	(Figures 4. and 5.)	$\begin{array}{l} V_{CC} = 5.0 \pm 0.5 \; V \\ R_{L} = 1000 \; \Omega \end{array}$			4.8 7.0	6.8 8.8		8.0 10.0		10.0 12.0	
C _{IN}	Maximum Input Capacitance				4.0	10		10		10	pF
C _{OUT}	Maximum 3-State Output Capacitance (Output in High Impedance State)				6.0						pF
				Typical @ 25°C, V _{CC} = 5.0 V							

C_{PD} 2. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

8.0

pF

NL17SH126

SWITCHING WAVEFORMS

Figure 4. Switching Waveforms

*Includes all probe and jig capacitance

Figure 6. Test Circuit

*Includes all probe and jig capacitance

Figure 7. Test Circuit

Figure 8. Input Equivalent Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
NL17SH126P5T5G	SOT-953 (Pb-Free)	8000 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-953 CASE 527AE ISSUE E

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS
- CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE
- MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS							
DIM	MIN	MAX						
Α	0.34	0.37	0.40					
b	0.10	0.15	0.20					
С	0.07	0.12	0.17					
D	0.95	1.00	1.05					
E	0.75	0.80	0.85					
е		0.35 BS	C					
HE	0.95	1.00	1.05					
L	0.175 REF							
L2	0.05	0.10	0.15					
L3			0.15					

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and

Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use evenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NL17SH126/D