# Power MOSFET 65 A, 24 V N-Channel TO-220, D<sup>2</sup>PAK

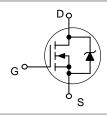
### **Features**

- Planar HD3e Process for Fast Switching Performance
- Low R<sub>DSon</sub> to Minimize Conduction Loss
- Low C<sub>iss</sub> to Minimize Driver Loss
- Low Gate Charge
- Pb-Free Packages are Available\*

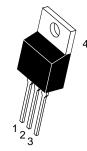
## MAXIMUM RATINGS (T<sub>J</sub> = 25°C Unless otherwise specified)

| Parameter                                                                                                                                                                         | Symbol                                               | Value              | Unit           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|----------------|
| Drain-to-Source Voltage                                                                                                                                                           | $V_{DSS}$                                            | 25                 | $V_{dc}$       |
| Gate-to-Source Voltage - Continuous                                                                                                                                               | V <sub>GS</sub>                                      | ±20                | $V_{dc}$       |
| Thermal Resistance – Junction–to–Case Total Power Dissipation @ T <sub>C</sub> = 25°C Drain Current –                                                                             | R <sub>θJC</sub><br>P <sub>D</sub>                   | 2.0<br>62.5        | °C/W<br>W      |
| Continuous @ $T_C$ = 25°C, Chip<br>Continuous @ $T_C$ =25°C, Limited by Package<br>Single Pulse ( $t_p$ = 10 $\mu$ s)                                                             | I <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub>  | 65<br>58<br>160    | A<br>A<br>A    |
| Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ T <sub>A</sub> = 25°C Drain Current – Continuous @ T <sub>A</sub> = 25°C                              | R <sub>θJA</sub><br>P <sub>D</sub><br>I <sub>D</sub> | 67<br>1.86<br>10   | °C/W<br>W<br>A |
| Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ T <sub>A</sub> = 25°C Drain Current – Continuous @ T <sub>A</sub> = 25°C                              | R <sub>θJA</sub><br>P <sub>D</sub><br>I <sub>D</sub> | 120<br>1.04<br>7.6 | °C/W<br>W<br>A |
| Operating and Storage Temperature Range                                                                                                                                           | T <sub>J</sub> and<br>T <sub>stg</sub>               | –55 to<br>150      | °C             |
| Single Pulse Drain–to–Source Avalanche Energy – Starting $T_J$ = 25°C ( $V_{DD}$ = 50 $V_{dc}$ , $V_{GS}$ = 10 $V_{dc}$ , $I_L$ = 11 $A_{pk}$ , $L$ = 1 mH, $R_G$ = 25 $\Omega$ ) | E <sub>AS</sub>                                      | 60                 | mJ             |
| Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds                                                                                                    | TL                                                   | 260                | °C             |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


- 1. When surface mounted to an FR4 board using 1 in. pad size, (Cu Area 1.127 in<sup>2</sup>).
- When surface mounted to an FR4 board using minimum recommended pad size, (Cu Area 0.412 in<sup>2</sup>).




# ON Semiconductor®

## http://onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> TYP | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 24 V                 | 8.4 mΩ @ 10 V           | 65 A               |



## MARKING DIAGRAMS



TO-220AB CASE 221A STYLE 5





D<sup>2</sup>PAK CASE 418AA STYLE 2



65N02R = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

## PIN ASSIGNMENT

| PIN | FUNCTION |
|-----|----------|
| 1   | Gate     |
| 2   | Drain    |
| 3   | Source   |
| 4   | Drain    |

#### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

<sup>\*</sup>For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

# **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ Unless otherwise specified)

|                                                                                                                                                           | Symbol                                                                                                                                                                                                                 | Min                 | Тур                | Max                  | Unit                     |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|----------------------|--------------------------|------------------|
| OFF CHARACTERISTICS                                                                                                                                       |                                                                                                                                                                                                                        |                     |                    |                      |                          | _                |
| $\begin{array}{l} \text{Drain-to-Source Breakdown} \\ (\text{V}_{GS} = 0 \text{ V}_{dc}, \text{I}_{D} = 250  \mu\text{A} \\ Temperature Coefficient (Pos$ | V <sub>(BR)DSS</sub>                                                                                                                                                                                                   | 24<br>-             | 27.5<br>25.5       | _<br>_               | V <sub>dc</sub><br>mV/°C |                  |
| Zero Gate Voltage Drain Current $(V_{DS} = 20 V_{dc}, V_{GS} = 0 V_{dc})$ $(V_{DS} = 20 V_{dc}, V_{GS} = 0 V_{dc}, T_{J} = 150^{\circ}C)$                 |                                                                                                                                                                                                                        | I <sub>DSS</sub>    | -<br>-             | -<br>-               | 1.5<br>10                | μA <sub>dc</sub> |
| Gate-Body Leakage Current<br>(V <sub>GS</sub> = ±20 V <sub>dc</sub> , V <sub>DS</sub> = 0 V                                                               | / <sub>dc</sub> )                                                                                                                                                                                                      | I <sub>GSS</sub>    | -                  | -                    | ±100                     | nA <sub>dc</sub> |
| ON CHARACTERISTICS (No                                                                                                                                    | ote 3)                                                                                                                                                                                                                 |                     |                    |                      |                          |                  |
| Gate Threshold Voltage (Not $(V_{DS} = V_{GS}, I_D = 250 \mu A_d)$<br>Threshold Temperature Coef                                                          | V <sub>GS(th)</sub>                                                                                                                                                                                                    | 1.0                 | 1.5<br>4.1         | 2.0                  | V <sub>dc</sub>          |                  |
| Static Drain-to-Source On-F<br>$(V_{GS} = 4.5 V_{dc}, I_D = 15 A_c)$<br>$(V_{GS} = 10 V_{dc}, I_D = 20 A_d)$<br>$(V_{GS} = 10 V_{dc}, I_D = 30 A_d)$      | R <sub>DS(on)</sub>                                                                                                                                                                                                    | -<br>-<br>-         | 11.2<br>8.4<br>8.2 | 12.5<br>10.5<br>–    | mΩ                       |                  |
| Forward Transconductance ( $V_{DS} = 10 V_{dc}$ , $I_D = 15 A_d$                                                                                          | 9FS                                                                                                                                                                                                                    | -                   | 27                 | _                    | Mhos                     |                  |
| DYNAMIC CHARACTERIST                                                                                                                                      | ics                                                                                                                                                                                                                    |                     |                    |                      |                          |                  |
| Input Capacitance                                                                                                                                         |                                                                                                                                                                                                                        | C <sub>iss</sub>    | -                  | 948                  | 1330                     | pF               |
| Output Capacitance                                                                                                                                        | $(V_{DS} = 20 V_{dc}, V_{GS} = 0 V, f = 1 MHz)$                                                                                                                                                                        | C <sub>oss</sub>    | -                  | 456                  | 640                      | 1                |
| Transfer Capacitance                                                                                                                                      |                                                                                                                                                                                                                        | C <sub>rss</sub>    | _                  | 160                  | 225                      | 1                |
| SWITCHING CHARACTERIS                                                                                                                                     | STICS (Note 4)                                                                                                                                                                                                         |                     |                    |                      |                          |                  |
| Turn-On Delay Time                                                                                                                                        |                                                                                                                                                                                                                        | t <sub>d(on)</sub>  | _                  | 7.0                  | _                        | ns               |
| Rise Time                                                                                                                                                 | $(V_{GS} = 10 V_{dc}, V_{DD} = 10 V_{dc},$                                                                                                                                                                             | t <sub>r</sub>      | -                  | 53                   | -                        | 1                |
| Turn-Off Delay Time                                                                                                                                       | $I_D = 30 \text{ A}_{dc}, R_G = 3 \Omega)$                                                                                                                                                                             | t <sub>d(off)</sub> | -                  | 14                   | -                        | 1                |
| Fall Time                                                                                                                                                 |                                                                                                                                                                                                                        | tf                  | -                  | 10                   | -                        |                  |
| Gate Charge                                                                                                                                               | $(V_{GS} = 4.5 V_{dc}, I_D = 30 A_{dc}, V_{DS} = 10 V_{dc})$ (Note 3)                                                                                                                                                  | Q <sub>T</sub>      | -                  | 9.5                  | -                        | nC               |
|                                                                                                                                                           |                                                                                                                                                                                                                        | Q <sub>1</sub>      | -                  | 3.0                  | -                        | 1                |
|                                                                                                                                                           |                                                                                                                                                                                                                        | Q <sub>2</sub>      | _                  | 4.4                  | -                        | 1                |
| SOURCE-DRAIN DIODE CH                                                                                                                                     | IARACTERISTICS                                                                                                                                                                                                         | •                   | •                  | •                    |                          |                  |
| Forward On-Voltage                                                                                                                                        | $ \begin{array}{c} (I_S = 20 \ A_{dc}, \ V_{GS} = 0 \ V_{dc}) \ (\text{Note 3}) \\ (I_S = 30 \ A_{dc}, \ V_{GS} = 0 \ V_{dc}) \\ (I_S = 15 \ A_{dc}, \ V_{GS} = 0 \ V_{dc}, \ T_J = 125^{\circ}\text{C}) \end{array} $ | V <sub>SD</sub>     | -<br>-<br>-        | 0.88<br>1.10<br>0.80 | 1.2<br>-<br>-            | V <sub>dc</sub>  |
| Reverse Recovery Time                                                                                                                                     |                                                                                                                                                                                                                        | t <sub>rr</sub>     | -                  | 29.1                 | -                        | ns               |
|                                                                                                                                                           | (4. 20.4. )/ 2.1/                                                                                                                                                                                                      | t <sub>a</sub>      | -                  | 13.6                 | -                        | 1                |
|                                                                                                                                                           | $(I_S = 30 \text{ A}_{dc}, V_{GS} = 0 \text{ V}_{dc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 3)}$                                                                                                        | t <sub>b</sub>      | -                  | 15.5                 | _                        | 1                |
| Reverse Recovery Stored<br>Charge                                                                                                                         | 1                                                                                                                                                                                                                      | Q <sub>RR</sub>     | -                  | 0.02                 | -                        | μС               |

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

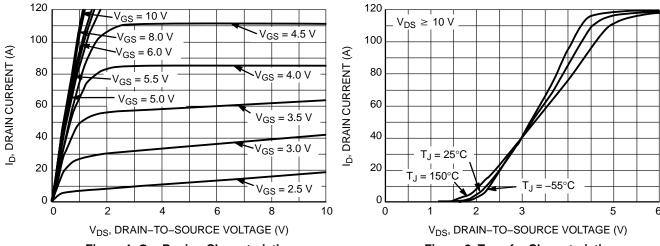



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

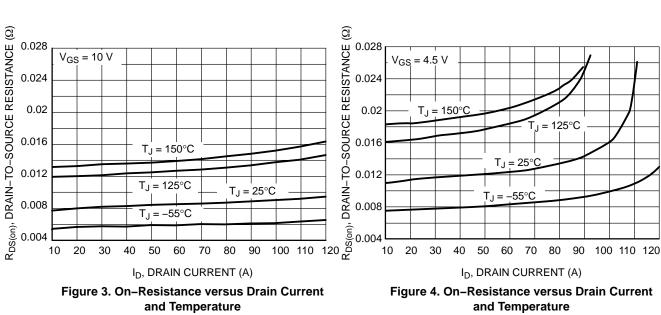



Figure 3. On-Resistance versus Drain Current and Temperature

Figure 4. On-Resistance versus Drain Current and Temperature

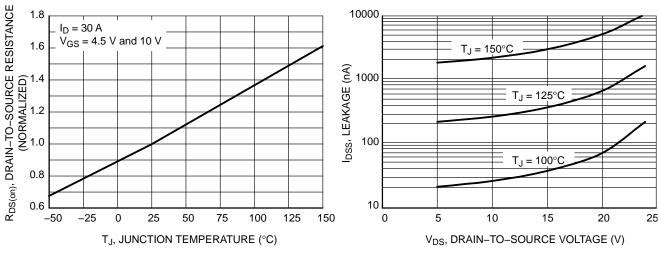
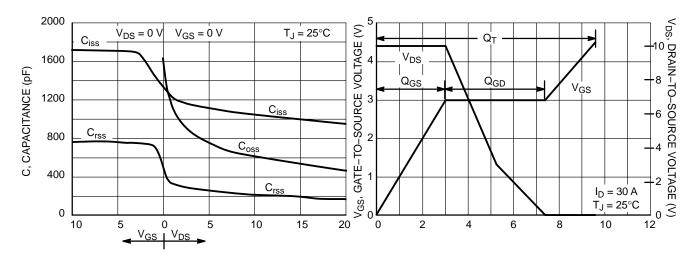




Figure 5. On-Resistance Variation with **Temperature** 

Figure 6. Drain-to-Source Leakage Current versus Voltage



GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE

Figure 7. Capacitance Variation

Q<sub>q</sub>, TOTAL GATE CHARGE (nC)

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

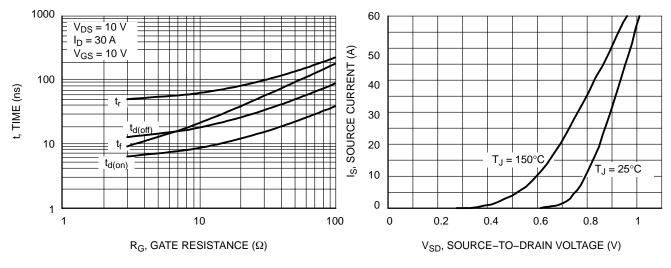



Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

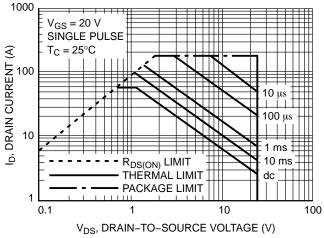



Figure 11. Maximum Rated Forward Biased Safe Operating Area

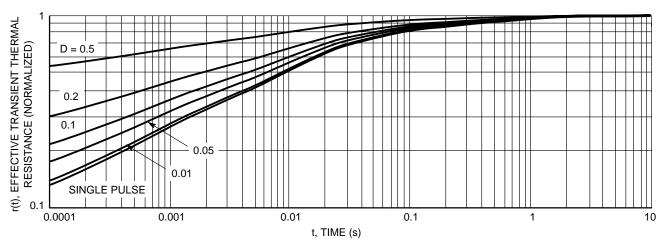


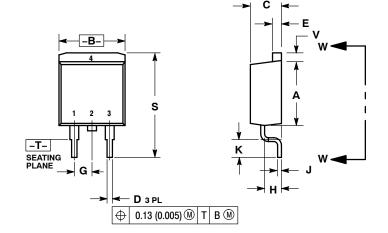

Figure 12. Thermal Response

## **ORDERING INFORMATION**

| Device       | Package                         | Shipping <sup>†</sup> |
|--------------|---------------------------------|-----------------------|
| NTB65N02R    | D <sup>2</sup> PAK              | 50 Units / Rail       |
| NTB65N02RG   | D <sup>2</sup> PAK<br>(Pb-Free) | 50 Units / Rail       |
| NTB65N02RT4  | D <sup>2</sup> PAK              | 800 / Tape & Reel     |
| NTB65N02RT4G | D <sup>2</sup> PAK<br>(Pb-Free) | 800 / Tape & Reel     |
| NTP65N02R    | TO-220AB                        | 50 Units / Rail       |
| NTP65N02RG   | TO-220AB<br>(Pb-Free)           | 50 Units / Rail       |

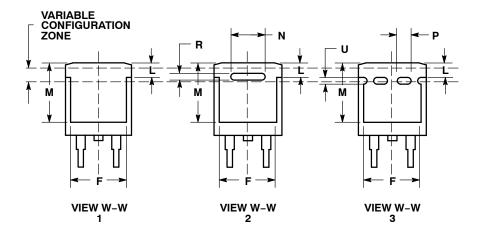
<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# **MECHANICAL CASE OUTLINE**






D<sup>2</sup>PAK 3 CASE 418B-04 **ISSUE L** 


**DATE 17 FEB 2015** 

## SCALE 1:1



- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
   CONTROLLING DIMENSION: INCH.
- 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

|    | INC       | HES   | MILLIM    | IETERS |
|----|-----------|-------|-----------|--------|
| ым | MIN       | MAX   | MIN       | MAX    |
|    |           |       |           |        |
| Α  | 0.340     | 0.380 | 8.64      | 9.65   |
| В  | 0.380     | 0.405 | 9.65      | 10.29  |
| С  | 0.160     | 0.190 | 4.06      | 4.83   |
| D  | 0.020     | 0.035 | 0.51      | 0.89   |
| E  | 0.045     | 0.055 | 1.14      | 1.40   |
| F  | 0.310     | 0.350 | 7.87      | 8.89   |
| G  | 0.100 BSC |       | 2.54 BSC  |        |
| Н  | 0.080     | 0.110 | 2.03 2.7  |        |
| J  | 0.018     | 0.025 | 0.46 0.6  |        |
| K  | 0.090     | 0.110 | 2.29 2.79 |        |
| L  | 0.052     | 0.072 | 1.32      | 1.83   |
| M  | 0.280     | 0.320 | 7.11      | 8.13   |
| N  | 0.197 REF |       | 5.00      | REF    |
| Р  | 0.079 REF |       | 2.00 REF  |        |
| R  | 0.039 REF |       | 0.99 REF  |        |
| S  | 0.575     | 0.625 | 14.60     | 15.88  |
| V  | 0.045     | 0.055 | 1.14      | 1.40   |



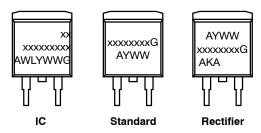
STYLE 1: PIN 1. BASE 2. COLLECTOR
3. EMITTER
4. COLLECTOR STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

STYLE 4:

PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 5: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 6: PIN 1. NO CONNECT 2. CATHODE 3. ANODE 4. CATHODE


# **MARKING INFORMATION AND FOOTPRINT ON PAGE 2**

| DOCUMENT NUMBER: | 98ASB42761B          | Electronic versions are uncontrolled except when accessed directly from the Document Reposit<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | D <sup>2</sup> PAK 3 | •                                                                                                                                                                               | PAGE 1 OF 2 |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

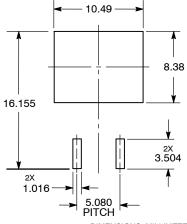
**DATE 17 FEB 2015** 

# GENERIC MARKING DIAGRAM\*



xx = Specific Device Code A = Assembly Location

 WL
 = Wafer Lot


 Y
 = Year

 WW
 = Work Week

 G
 = Pb-Free Package

 AKA
 = Polarity Indicator

## **SOLDERING FOOTPRINT\***



DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98ASB42761B          | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | D <sup>2</sup> PAK 3 |                                                                                                                                                                                | PAGE 2 OF 2 |  |

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

<sup>\*</sup>This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales