Inventek Systems ISM78G1D-L31 Embedded Bluetooth Low Energy SIP Module **Data Sheet** # **Table of Contents** | 1 | | General Description | 3 | |----|------|-------------------------------------|------| | 2 | | Part Number Detail Description | 4 | | | 2.1 | Ordering Information | 4 | | 3 | | General Features | 4 | | | 3.1 | Limitations | 5 | | | 3.2 | Regulatory Compliance | 5 | | 4 | | Complementary Documents | 5 | | | 4.1 | Inventek Systems | 5 | | 5 | | Specifications | 6 | | | 5.1 | Block Diagram | 6 | | 6 | | Environmental Specifications | 6 | | 7 | | Hardware Electrical Specifications | 6 | | | 7.1 | Absolute Maximum Ratings | 6 | | | 7.2 | Recommended Operating Ratings | 7 | | | 7.3 | ADC Specifications | | | | Note | es 1. Current flowing to VDD. | 7 | | | 8 | Power Consumption | 7 | | | 8.1. | 1 Estimated Power Consumption | 8 | | 9 | | Module Pin Out | | | | 9.1 | Detailed Pin Description: | 9 | | 10 |) | AC Characteristics | . 10 | | 11 | | Bluetooth Low energy Specifications | . 10 | | | 11.1 | Transmitter RF Specifications | . 10 | | | Rec | eiver RF Specifications | . 11 | | 12 | 2 | Footprint | . 12 | | 13 | 3 | Product Compliance Considerations | . 13 | | 14 | ļ | Reflow Profile | . 13 | | 15 | 5 | Packaging Information | . 14 | | | 15.1 | MSL Level / Storage Condition | . 14 | | 16 | 5 | Revision Control | . 14 | | 17 | 7 | Contact Information | . 14 | # 1 General Description • The Inventek ISM78G1D-L31 module is an embedded wireless Bluetooth low energy (BLE) connectivity device, based on the Renesas RL78/G1D microcomputer incorporating the RL78 CPU core and low power consumption RF transceiver supporting the Bluetooth ver.4.1 (Low Energy Single mode) specifications. The Inventek ISM78G1D-L31 offers a RL78 CPU core is a 3-stage pipeline CISC architecture with an integrated BLE radio, on-board chip antenna, and 256KB ROM. The module provides a number of features and standard peripheral interfaces (see "Summary of Key Features" below), enabling connection to an embedded design. The low cost, small foot print, 11mmx13mm 31-Pin LGA package and ease of design-in make it ideal for a range of embedded applications. ### Summary of Key Features: - Bluetooth low energy (BLE)-compliant - CISC architecture with 3-stage pipeline - Minimum instruction execution time: Can be changed from high speed (0.03125 us: @ 32 MHz operation with high speed On-chip oscillator) to ultra-low speed (30.5 us: @ 32.768 kHz operation with subsystem clock) - Address space: 1 MB - o General-purpose registers: (8-bit register x 8) x 4 banks - On-chip RF transceiver - Bluetooth v4.1 Specification (Low Energy Single mode) - 2.4 GHz ISM band, GFSK modulation, TDMA/TDD frequency hopping (including AES encryption circuit) - Adaptivity, exclusively for use in operation as a slave device - Code flash memory - Code flash memory: 256KB - Block size: 1KB - Prohibition of block erase and rewriting (security function) - On-chip debug function - Self-programming (with boot swap function/flash shield window function) - Data flash memory - Data flash memory: 8KB - Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory. - Number of rewrites: 1,000,000 times (TYP.) - Voltage of rewrites: VDD = 1.8 to 3.6 V #### Typical Applications: The module has been designed to provide low power, low cost, and robust communications for applications operating in the globally available 2.4GHz unlicensed industrial, scientific, and medical (ISM) band. The following application profiles are supported in ROM: - o Battery Status - Blood Pressure Monitor - Find Me - Heart Rate Monitor - Proximity - o Thermometer - Weight Scale - Time Additional profiles that can be supported from RAM include: - Blood Glucose Monitor - o Temperature Alarm - Location # 2 Part Number Detail Description # 2.1 Ordering Information | Part Number | Description | Ordering | |-----------------|---------------------|-------------| | ISM78G1D-L31 | Bluetooth LE Module | Tube | | ISM78G1D-L31-TR | Bluetooth LE Module | Tape & Reel | # 3 General Features - Based on the Renesas RL78/G1D Bluetooth Low Energy 4.1 Baseband/Radio device. - Integrates Bluetooth embedded stack, and fully qualified application profiles in ROM - Power-saving mode allows the design of low-power applications. - Lead Free Design which is compliant with ROHS requirements. - FCC/CE Compliance Certified (In process) #### 3.1 Limitations Inventek Systems products are not authorized for use in safety-critical applications (such as life support) where a failure of the Inventek Systems product would reasonably be expected to cause severe personal injury or death. ### 3.2 Regulatory Compliance In Process FCC ID: 07P-78G1D IC: 1017A-78G1D There are specific regulatory requirements imposed by regulatory authorities around the world on radio devices. Customers using Renesas SIP modules are advised to engage with an accredited test lab to determine the overall system level regulatory requirements. Customers may be able to leverage Renesas' regulatory test reports. Please discuss the process with your test lab, such as FCC ID transfers. Renesas can provide authorizations as needed. # **4 Complementary Documents** ### 4.1 Inventek Systems - RL78/G1D Renesas Data Sheet - o P/N (R5F11AGJDNB#40) - ➤ ISM78G1D-L31 Product Brief - ➤ ISM78G1D-EVB Quick Start Guide - Renesas Tools and Design Environment - > FCC Test Report # 5 Specifications ## 5.1 Block Diagram Figure 1 ISM78G1D-L31 Block Diagram # **6 Environmental Specifications** | Item | Description | |-----------------------------|---------------------------| | Operating Temperature Range | -40 deg. C to +80 deg. C | | Storage Temperature Range | -65 deg. C to +150 deg. C | | Humidity | 95% max non-condensing | # 7 Hardware Electrical Specifications # 7.1 Absolute Maximum Ratings | Symbol | Description | Min | Max | Unit | |----------------|----------------------|-----|-------|------| | Supply Power | Input Supply Voltage | 1.8 | 3.6 | V | | Voltage Ripple | | 0 | +/-2% | | | VDD, VDD_RF | | 1.8 | 3.6 | V | ### 7.2 Recommended Operating Ratings | Symbol | Min | Тур | Max | Unit | |--------|-----|-----|-----|------| | VDD | - | 3.3 | - | V | | VDD_RF | - | 3.3 | - | V | # 7.3 ADC Specifications | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |-------------------|----------------------|----------------------|-----|-----|-----|------| | A/D converter | IADC ^{1, 2} | When conversion at | | 0.5 | 0.7 | mΑ | | operating current | | maximum speed | | | | | | | | AVREFP = VDD = 3.0 V | | | | | Notes 1. Current flowing to VDD. Notes 2. Current flowing only to the A/D converter. The current value of MCU is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode. ### 8 Power Consumption The Power Management Unit (PMU) provides power management features that can be invoked by software through power management registers or packet-handling in the baseband core. There are several Ultra-low power consumption technology operations: #### MCU part - Standby function HALT mode - STOP mode - SNOOZE mode #### RF part - Standby function POWER_DOWN mode - o RESET_RF mode - STANDBY RF mode - o IDLE_RF mode, - DEEP_SLEEP mode, SLEEP_RF mode #### RF transmission - o (RF normal mode): 4.3 mA (TYP.) (3.0 V/MCU part: STOP mode) - o (RF Low power mode): 2.6 mA (TYP.) (3.0 V/MCU part: STOP mode) #### RF reception - o (RF normal mode): 3.5 mA (TYP.) (3.0 V/MCU part: STOP mode) - o (RF Low power mode): 3.3 mA (TYP.) (3.0 V/MCU part: STOP mode) #### RF sleep (POWER_DOWN mode) operation: 0.10 uA (TYP.) (3.0 V/MCU part: STOP mode) # 8.1.1 Estimated Power Consumption | Operational Mode | Description | Тур. | Max. | Unit | |------------------|---|------|------|------| | Receive | Receiver and baseband are both operating, 100% — ON | 3.5 | | mA | | Transmit | Transmitter and baseband are both operating | 4.3 | | mΑ | | Sleep | Internal LPO is in use | 0.10 | - | uA | # 9 Module Pin Out Figure 2 Pin Mapping # 9.1 Detailed Pin Description: | Pin# | Pin Name | Туре | Description | |------|---|------|-------------------------------| | 1 | VDD RF | I | VDD | | 2 | GND | I | Ground | | 3 | P30,XTAL1_RF | I/O | Crystal oscillator (RF clock) | | 4 | P16/TI01/TO01/INTP5 | I/O | | | 5 | P15/SCK20/SCL20/(TI02)/(TO02) | I/O | | | 6 | P14/SI20/SDA20/(SCLA0)/(TI03)/(TO03) | I/O | | | 7 | P13/SO20/(SDAA0)/(TI04)/(TO04 | I/O | | | 0 | P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05) | I/O | TX | | 9 | P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) | I/O | RX | | 10 | P10/SCK00/SCL00/(TI07)/(TO07) | I/O | | | 11 | P147/ANI18 | I/O | | | 12 | P23/ANI3 | I/O | | | 13 | P22/ANI2 | I/O | | | 14 | P21/ANI1/AVREFM | I/O | | | 15 | P20/ANI0/AVREFP | I/O | | | 16 | P03/ANI16/RxD1 | I/O | | | 17 | P02/ANI17/TxD1 | I/O | | | 18 | P01/TO00 | I/O | | | 19 | P00/TI00 | I/O | | | 20 | VDD | I | VDD | | 21 | nReset | I | | | 22 | Tool0 | I/O | Data I/O Flash Programmer | | 23 | GND | I | Ground | | 24 | P120/ANI19 | I/O | | | 25 | P121/X1 | I | | | 26 | P137/INTP0 | I | | | 27 | P60/SCLA0 | I/O | | | 28 | P61/SDDA0 | I/O | | | 29 | GPIO1/TXSELL_RF | I/O | | | 30 | GPIO0/TXSELH_RF | I/O | | | 31 | GND | I | Ground | ### 10 AC Characteristics | Items | Symb | Conditions | MIN. | TYP. | MAX. | Unit | |-----------------------|------|------------|------|------|------|------| | | tRSL | | 10 | | | us | | RESET low-level width | | RESET | | | | | # 11 Bluetooth Low energy Specifications - On-Chip RF Transceiver - Bluetooth v4.1 Spec. (Low Energy, Single mode) - 2.4 GHz ISM Band, GFSK modulation, TDMA/TDD Frequency Hopping (included AES encryption circuit) - Adaptivity, exclusively for use in operation as a slave device - Single ended RF interface ### 11.1 Transmitter RF Specifications The module requires a keep out area for the antenna section outside the metal can. Do not put any metal directly below or above the antenna section and as this will reduce antenna performance. VDD=VDD_RF=3.3V, 25° C Frequency 2440 MHz RF transmitter active: 4.3 mA (TYP.) | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |-----------------|---------------------|--------------------------|------|-----|------|------| | Frequency | CF | | 2402 | | 2480 | MHZ | | Data Rate | | | | 1 | | Mbps | | Max | RF Power | @ RF output | -3 | 0 | 2.5 | dBm | | transmitted | | pin | | | | | | output power | | | | | | | | Transmit | | 0 | | | 0 | | | Output Settings | | | | | | | | Spurious | RF _{TXSP} | 30-88MHz | | -76 | | dBm | | radiation | | 88-216MHz | | -76 | | dBm | | | | 216-960 MHz | | -76 | | dBm | | | | 960-1000 | | -74 | | dBm | | | | MHz | | | | | | | | 1-12.7 GHz | | -74 | | dBm | | Harmonics | RF _{TXHC1} | 2 nd Harmonic | | -52 | | dBm | | | RF _{TXCH2} | 3 rd Harmonic | | -51 | | dBm | # Receiver RF Specifications | Parameter | Symbol | | Conditions | MIN. | TYP. | MAX. | Unit | | | |--------------------------------|------------------------------------|---|---------------------------|---------------|--------|------|-----------------|---|----| | RF input frequency | RFRXFRIN | | | 2402 | | 2480 | MHz | | | | Maximum input level | RFLEVL | PER ≤ 30.8% | RF low power mode | -10 | 0 | £2. | dBm | | | | | | RF input pin | RF normal mode | -10 | 3 | | dBm | | | | | | | RF high performance mode | -10 | 1 | | dBm | | | | Receiver sensitivity | RFSTY | PER ≤ 30.8% | RF low power mode | | -60 | -50 | dBm | | | | | | | RF normal mode | 127 | -90 | -70 | dBm | | | | | | | RF high performance mode | - | -92 | -70 | dBm | | | | Secondary radiation | RFRXSP | | 30 MHz to 1 GHz | | -72 | -57 | dBm/
100 kHz | | | | | 22.45 | | 1 GHz to 12 GHz | | -57 | -54 | dBm/
100 kHz | | | | Common channel rejection ratio | RFccR | PER ≤ 30.8%, P | PER ≤ 30.8%, Prf = -67dBm | | -12 | (4 | dB | | | | Adjacent channel | djacent channel RFADOR PER ≤ 30.8% | | ±1 MHz | -15 | -5 | - | dB | | | | rejection ratio | | | ratio | Prf = -67 dBm | ±2 MHz | 17 | 29 | - | dB | | | | | ±3 MHz | 27 | 34 | 靈 | dB | | | | Blocking | RFBLK | PER ≤ 30.8% | 30 MHz - 2000 MHz | -30 | -13 | - | dB | | | | | | Prf = -67 dBm | 2000 MHz to 2399 MHz | -35 | -30 | | dBm | | | | | | | 2484 MHz to 3000 MHz | -35 | -30 | - | dBm | | | | | 285 | | > 3000 MHz | -30 | -17 | - | dBm | | | | Frequency tolerance | RFRXFERR | PER ≤ 30.8% | PER ≤ 30.8% | | | +250 | kHz | | | | RSSI accuracy | RFRSSIS | T _A = +25°C, -70 dBm ≤ Prf ≤ -10 dBm | | -4 | 0 | 4 | dB | | | # **12 Footprint** ALL DIMENSIONS ARE IN MILLIMETERS Figure 3: Top View # 13 Product Compliance Considerations - RoHS: Restriction of Hazardous Substances (RoHS) directive has come into force since 1st July 2006 all electronic products sold in the EU must be free of hazardous materials, such as lead. Inventek is fully committed to being one of the first to introduce lead-free GPS products while maintaining backwards compatibility and focusing on a continuously high level of product and manufacturing quality. - **EMI/EMC:** The Inventek module design embeds EMI/EMC suppression features and accommodations to allow for higher operational reliability in noisier (RF) environments and easier integration compliance in host (OEM) applications. - FCC/CE: The module is compliant with FCC/CE ### 14 Reflow Profile # 15 Packaging Information 15.1 MSL Level / Storage Condition #### **16 Revision Control** | Document : ISM78G1D | | |---------------------|--| | External Release | | | Date | Author | Revision | Comment | |-----------|--------|----------|-----------------| | 7/27/2016 | AS | 1.0 | Preliminary | | 9/27/2016 | KT | 2.0 | General updates | ### 17 Contact Information Inventek Systems 2 Republic Road Billerica Ma, 01862 Tel: 978-667-1962 Sales@inventeksys.com #### www.inventeksys.com Inventek Systems reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. The information contained within is believed to be accurate and reliable. However Inventek Systems does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.