

Adafruit DotStar LEDs

Created by Phillip Burgess

https://learn.adafruit.com/adafruit-dotstar-leds

Last updated on 2023-03-06 03:26:58 PM EST

©Adafruit Industries Page 1 of 45

5

7

7

13

17

19

22

22

25

33

40

Table of Contents

Overview

• DotStars vs NeoPixels

• DotStars

• NeoPixels

Form Factors

DotStar Strips

• RGB DotStar Strips

• White DotStar Strips

• Finer Details About Flexible DotStar Strips

• Rigid Ultra High Density DotStar LED PCB Bar

DotStar Matrices

• Flexible DotStar Matrices

• Rigid DotStar Matrices

• Finer Details About DotStar Matrices

Individual DotStars

• SMT DotStars

• Datasheets

Power and Connections

• Powering DotStar LEDs

• Connecting DotStar LEDs

Software

Arduino Library Installation

• Install Adafruit_DotStar via Library Manager

• Manually Install Adafruit_DotStar Library

• A Simple Code Example: strandtest

• Help!

Arduino Library Use

• HSV (Hue-Saturation-Value) Colors…

• …and Gamma Correction

• Help!

• Most NeoPixel Code Adapts Easily to DotStars

• Pixels Gobble RAM

DotStarMatrix Library

• Layouts

• Tiled Matrices

• Other Layouts

• RAM Again

• Gamma Correction

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

©Adafruit Industries Page 2 of 45

45

• CircuitPython Installation of DotStar Library

• Python Installation of DotStar Library

• CircuitPython & Python Usage

• Full Example Code

Python Docs

©Adafruit Industries Page 3 of 45

©Adafruit Industries Page 4 of 45

Overview

NeoPixel LEDs are the bee's knees, but in a few scenarios they come up short…

connecting odd microcontrollers that can’t match their strict timing, or fast-moving

persistence-of-vision displays. Adafruit DotStar LEDs deliver high speed PWM and an

easy-to-drive two-wire interface, bridging the gaps in the spectrum of awesome.

DotStars vs NeoPixels

The basic idea behind DotStars and NeoPixels is the same: a continuous string of

individually-addressable RGB LEDs, driven by a microcontroller. The way each goes

about it is a little different. DotStars aren’t necessarily a better thing in every

situation…there are tradeoffs, each has its pros and cons to consider…

DotStars NeoPixels

©Adafruit Industries Page 5 of 45

1
 Up to 8 MHz on Arduino, up to 32 MHz on Raspberry Pi.

2
 Varies among component generations; 1.2 KHz, 4.6 KHz, 19.2 KHz reported.

+ Extremely fast data
1

and PWM
2

rates,

suitable for persistence-of-vision

displays.

+ Easier to interface to a broader range

of devices; no strict signal timing

requirements.

+ Don't have to worry about special pins,

DMA requirements, interrupt

management (e.g. Arduino Servo library

or tone() function on the popular ATmega

series).

– Slightly more expensive.

– Fewer available form factors.

– Needs two pins for control.

+ More affordable.

+ Wide range of form-factors (pixels,

rings, matrices, etc.).

+ Works from a single microcontroller

pin.

+ RGBW (RGB+white) variants available.

+ DMA support on many popular

platforms - for examples SAMD21,

SAMD51, ESP8266/ESP32 (and more!)

+ FadeCandy compatible

– Strict 800 KHz data rate; not all

systems can generate this, and speed is

a bottleneck on very long strands if you

don't have DMA support.

– 400 Hz refresh/PWM rate not suitable

for persistence-of-vision effects. Light

painting may be OK!

– Not compatible with some platforms

that don't have DMA and require

interrupts (e.g. Arduino Servo library or

tone() function on the popular ATmega

series).

– Requires special pins on some

platforms - for example ESP8266 DMA

support, one of the few DMA supported

pins on Raspberry Pi, etc.

©Adafruit Industries Page 6 of 45

https://github.com/adafruit/Adafruit_NeoPixel_ZeroDMA
https://github.com/adafruit/Adafruit_NeoPixel_ZeroDMA
https://github.com/Makuna/NeoPixelBus
https://www.adafruit.com/product/1689
https://github.com/Makuna/NeoPixelBus/
https://github.com/Makuna/NeoPixelBus/
https://pypi.org/project/rpi-ws281x/
https://pypi.org/project/rpi-ws281x/

Form Factors

DotStar products are available in numerous form factors…from individual tiny pixels to

huge matrices…plus strips, FeatherWings and a few surprises.

Pick a category from the left column for product links and tips & tricks specific to each

type of DotStar offering.

DotStar Strips

The most popular type of DotStars are these flexible LED strips…they can be cut to

length and fit into all manner of things. There are many varieties! Two vital things to

be aware of:

Though strips are described as “flexible,” they do not tolerate continuous and

repeated bending. “Formable” might be a better word. A typical application

is architecture, where they can be curved around columns and then stay put.

Repeated flexing (as on costumes) will soon crack the solder connections. For

wearable use, affix shorter segments to a semi-rigid base (e.g. a hat, BMX armor,

etc.).

Watch your power draw. Though each pixel only needs a little current, it adds up

fast…DotStar strips are so simple to use, one can quickly get carried away! We’ll

explain more on the “Power and Connections” page.

•

•

©Adafruit Industries Page 7 of 45

RGB DotStar Strips

DotStar Digital RGB LED Weatherproof

Strip is available in three different

“densities”: 30, 60 and 144 LEDs per

meter, on a white or black backing strip.

30 LEDs per meter, white strip ()

30 LEDs per meter, black strip ()

60 LEDs per meter, white strip ()

60 LEDs per meter, black strip ()

144 LEDs per meter, white strip ()

144 LEDs per meter, black strip ()

144/m white strip, half-meter ()

144/m black strip, half-meter ()

The approximate peak power use (all LEDs

on at maximum brightness) per meter is:

30 LEDs: 9 Watts (about 1.8 Amps at 5

Volts).

60 LEDs: 18 Watts (about 3.6 Amps at 5

Volts).

144 LEDs : 43 watts (8.6 Amps at 5 Volts).

Mixed colors and lower brightness settings

will use proportionally less power.

©Adafruit Industries Page 8 of 45

https://learn.adafruit.com//assets/63248
https://learn.adafruit.com//assets/63248
https://learn.adafruit.com//assets/63249
https://learn.adafruit.com//assets/63249
https://learn.adafruit.com//assets/63250
https://learn.adafruit.com//assets/63250
https://www.adafruit.com/product/2238
https://www.adafruit.com/product/2238
https://www.adafruit.com/product/2237
https://www.adafruit.com/product/2237
https://www.adafruit.com/product/2240
https://www.adafruit.com/product/2240
https://www.adafruit.com/product/2239
https://www.adafruit.com/product/2239
https://www.adafruit.com/product/2242
https://www.adafruit.com/product/2242
https://www.adafruit.com/product/2241
https://www.adafruit.com/product/2241
https://www.adafruit.com/product/2329
https://www.adafruit.com/product/2329
https://www.adafruit.com/product/2328
https://www.adafruit.com/product/2328

©Adafruit Industries Page 9 of 45

https://learn.adafruit.com//assets/63251
https://learn.adafruit.com//assets/63251
https://learn.adafruit.com//assets/63252
https://learn.adafruit.com//assets/63252
https://learn.adafruit.com//assets/63253
https://learn.adafruit.com//assets/63253

White DotStar Strips

A recent addition is White DotStar strips.

Rather than red, green and blue, these

contain three identical white LED elements

— either “cool” or “warm” white. For

monochrome applications, white DotStars

are more “true” and pleasing to the eye

than white mixed from red+green+blue.

Like the RGB strips, they’re available in

different pixel densities.

30 Cool White LEDs per meter ()

30 Warm White LEDs per meter ()

60 Cool White LEDs per meter ()

60 Warm White LEDs per meter ()

144 Cool White LEDs per meter ()

144 Warm White LEDs per meter ()

Approximate color temperature:

Cool white: 6000–6500K

Warm white: 3000K

White DotStars are only available with the

white backing strip. Power consumption is

comparable to the RGB strips. Half-meter

strips not offered.

©Adafruit Industries Page 10 of 45

https://learn.adafruit.com//assets/63257
https://learn.adafruit.com//assets/63257
https://learn.adafruit.com//assets/63258
https://learn.adafruit.com//assets/63258
https://learn.adafruit.com//assets/63259
https://learn.adafruit.com//assets/63259
https://www.adafruit.com/product/2432
https://www.adafruit.com/product/2432
https://www.adafruit.com/product/2435
https://www.adafruit.com/product/2435
https://www.adafruit.com/product/2433
https://www.adafruit.com/product/2433
https://www.adafruit.com/product/2436
https://www.adafruit.com/product/2436
https://www.adafruit.com/product/2434
https://www.adafruit.com/product/2434
https://www.adafruit.com/product/2437
https://www.adafruit.com/product/2437

Finer Details About Flexible DotStar Strips

144 pixel/m DotStar strips are sold in one meter (RGB or white) and half meter (R

GB only) lengths. Each of these is a separate strip with end connectors. Longer

contiguous lengths are not offered in 144 pixels/m.

30 and 60 pixel/m DotStar strips are sold in one meter multiples. Orders for

multiple meters will be a single contiguous strip, up to a limit: 4 meters for 60

pixels/m strip, 5 meters for 30 pixels/m.

•

•

©Adafruit Industries Page 11 of 45

https://learn.adafruit.com//assets/63260
https://learn.adafruit.com//assets/63260
https://learn.adafruit.com//assets/63261
https://learn.adafruit.com//assets/63261
https://learn.adafruit.com//assets/63262
https://learn.adafruit.com//assets/63262

For 30 and 60 pixels/meter strips, if purchasing less than a full reel (4 or 5

meters, respectively), the strip may or may not have 4-pin JST plugs soldered at

one or both ends. These plugs are for factory testing and might be at either end

— the plug does not always indicate the input end! Arrows printed on the strip

show the actual data direction. You may need to solder your own wires or plug.

The flex strips are enclosed in a weatherproof silicone sleeve, making them

immune to rain and splashes, but are not recommended for continuous

submersion.

The silicone sleeve can be cut and removed for a slimmer profile, but this

compromises the strip's weather resistance.

Very few glues will adhere to the weatherproof silicone sleeve. Using zip ties for

a “mechanical” bond is usually faster and easier. The only reliable glues we’ve

found are Permatex 66B Clear RTV Silicone (not all silicone glues will work!) and

Loctite Plastics Bonding System, a 2-part cyanoacrylate glue. Customers have

reported excellent results with Permatex Ultra Grey Silicone Gasket Maker as

well.

However, do not use Permatex 66B silicone to seal the open end of a cut strip! L

ike many RTV silicones, 66B releases acetic acid when curing, which can

destroy electronics. It’s fine on the outside of the strip, but not the inside. Use G

E Silicone II for sealing strip ends, or good ol’ hot melt glue.

2-sided carpet tape provides a light grip on the silicone sleeve; something like a

Post-It Note. Or you can try clear duct tape over the top.

All LED strips are manufactured in 1/2 meter segments that are then joined into a

longer strip. The pixel spacing across these joins is usually 2-3 millimeters

different than the rest. This is not a manufacturing mistake, just physical reality.

•

•

•

•

•

•

•

©Adafruit Industries Page 12 of 45

Rigid Ultra High Density DotStar LED PCB

Bar

Another linear form factor similar to a strip,

but this one is not flexible. It features 128

tiny DotStar LEDs packed into a 400

millimeter bar with wires at each end with

4-pin JST connectors.

The aluminum-backed PCB is rigid but

requires support so it doesn't droop and

crack. It's not intended to be bent or

curved at all. Also unlike strips, this bar is

not weatherproof.

Ultra High Density DotStar LED PCB Bar -

128 LEDs ()

DotStar Matrices

DotStar matrices are two-dimensional grids of DotStar LEDs, all controlled from two

microcontroller pins.

©Adafruit Industries Page 13 of 45

https://learn.adafruit.com//assets/63263
https://learn.adafruit.com//assets/63263
https://learn.adafruit.com//assets/63264
https://learn.adafruit.com//assets/63264
https://www.adafruit.com/product/3776
https://www.adafruit.com/product/3776

Flexible DotStar Matrices

©Adafruit Industries Page 14 of 45

Flexible DotStar matrices are available in

three different sizes:

8x8 RGB pixels ()

16x16 RGB pixels ()

8x32 RGB pixels ()

Size Dimensions
Total # of

LEDs
Max Power Draw (approx)

8x8 80 mm / 3.15" square 64
19 Watts (3.8 Amps at 5

Volts)

©Adafruit Industries Page 15 of 45

https://learn.adafruit.com//assets/63265
https://learn.adafruit.com//assets/63265
https://learn.adafruit.com//assets/63266
https://learn.adafruit.com//assets/63266
https://learn.adafruit.com//assets/63267
https://learn.adafruit.com//assets/63267
https://www.adafruit.com/product/2734
https://www.adafruit.com/product/2734
https://www.adafruit.com/product/2735
https://www.adafruit.com/product/2735
https://www.adafruit.com/product/2736
https://www.adafruit.com/product/2736

Flex matrices are about 2 millimeters (0.08 inches) thick.

Though called “flexible,” these matrices do not tolerate continuous and repeated

bending. “Formable” might be a better word — they can be bent around a rigid or

semi-rigid shape, like a hat. Repeated flexing (as on costumes) will soon crack the

solder connections. (The videos on the product pages are to highlight just how

flexible these matrices are, but this really is a “don’t try this at home” thing.)

Flex matrices are available with RGB pixels only; pure white is not offered.

Rigid DotStar Matrices

A couple of small, non-flexible variants are available:

Adafruit DotStar High Density 8x8 Grid ()

This is the tiniest little LED grid we could

make, with 64 full RGB color pixels in a

square that is only 1" by 1" square (25.4mm

x 25.4mm). Best of all, these are little

DotStar LEDs, with built in PWM drivers, so

you only need two digital I/O pins to get a-

glowin'.

16x16 160 mm / 6.3" square 256
77 Watts (15 Amps at 5

Volts)

8x32
320 mm x 80 mm / 12.6" x

3"
256

77 Watts (15 Amps at 5

Volts)

©Adafruit Industries Page 16 of 45

https://learn.adafruit.com//assets/63272
https://learn.adafruit.com//assets/63272
https://www.adafruit.com/product/3444
https://www.adafruit.com/product/3444

Adafruit DotStar FeatherWing ()

Stacks atop any of our Feather

microcontroller boards. Arranged in a 6x12

matrix, each 2mm by 2mm sized RGB pixel

is individually addressable. Only two pins

are required to control all the LEDs.

Finer Details About DotStar Matrices

As mentioned on the DotStar Strips page, keep power consumption in mind when

working with DotStar matrices. With so many pixels at your disposal, it’s easy to get

carried away.

If you need a size or shape of DotStar matrix that’s not offered here, it’s possible to cr

eate your own using sections of DotStar strip!

DotStar matrices don’t enforce any particular “topology” — some may have rows of

pixels arranged left-to-right, others may alternate left-to-right and right-to-left rows, or

they could be installed in vertical columns instead. This will require some planning in

your code. Our DotStarMatrix library supports most matrix topologies.

Individual DotStars

For advanced users needing fully customized designs, discrete DotStar components

are available. You’ll need to provide your own PCB and surface-mount soldering skill.

©Adafruit Industries Page 17 of 45

https://learn.adafruit.com//assets/63273
https://learn.adafruit.com//assets/63273
https://www.adafruit.com/product/3449
https://www.adafruit.com/product/3449

SMT DotStars

Surface-mount “5050” (5 millimeter

square) DotStars are available in a few

varieties:

5050 RGB LED — 10 Pack ()

5050 Cool White LED — 10 Pack ()

5050 Warm White LED — 10 Pack ()

Approximate color temperature:

Cool white: 6000–6500K

Warm white: 3000K

©Adafruit Industries Page 18 of 45

https://learn.adafruit.com//assets/63274
https://learn.adafruit.com//assets/63274
https://learn.adafruit.com//assets/63275
https://learn.adafruit.com//assets/63275
https://learn.adafruit.com//assets/63276
https://learn.adafruit.com//assets/63276
https://www.adafruit.com/product/2343
https://www.adafruit.com/product/2343
https://www.adafruit.com/product/2351
https://www.adafruit.com/product/2351
https://www.adafruit.com/product/2350
https://www.adafruit.com/product/2350

Tiny surface-mount “2020” (2.0 millimeters

square) DotStars are available in RGB (no

pure white option):

DotStar Micro LEDs — 10 Pack ()

Datasheets

The manufacturer’s product datasheets refer to these as “APA102” LEDs, though in

reality the 5mm parts are SK9822 LEDs — “APA102 compatible” both in pinout and

protocol.

5mm “5050” RGB DotStars —

SK9822 Datasheet — PDF

Download

5mm “5050” White DotStars —

SK9822 Datasheet — PDF

Download

2mm “2020” RGB DotStars —

APA102 Datasheet — PDF Download

Power and Connections

Powering DotStar LEDs

The power requirements for DotStars are pretty much identical to NeoPixels…in fact,

we’ll simply refer you to the relevant page of the NeoPixel Überguide for pointers on

estimating and routing power (). In summary:

Estimate up to 60 milliamps peak for each pixel at full brightness white.•

©Adafruit Industries Page 19 of 45

https://learn.adafruit.com//assets/63277
https://learn.adafruit.com//assets/63277
https://www.adafruit.com/product/3341
https://www.adafruit.com/product/3341
https://cdn-learn.adafruit.com/assets/assets/000/084/591/original/APA102_LED.pdf?1574117503
https://cdn-learn.adafruit.com/assets/assets/000/084/592/original/APA102_White_LED.pdf?1574117639
https://cdn-learn.adafruit.com/assets/assets/000/084/593/original/APA102-2020_SMD_LED.pdf?1574117728
file:///home/deploy/adafruit-neopixel-uberguide/power
file:///home/deploy/adafruit-neopixel-uberguide/power

A ground connection is required between the microcontroller and strip, in

addition to the signal lines.

For long strips, try to add a power tap every meter or so. This prevents a brown-

out effect toward the end of the strip.

As with NeoPixels, adding a 1000µF (6.3V or higher) capacitor close to the strip

(between 5V and GND wires) is a good idea, do it!

Another guide, this one about minimizing NeoPixel power draw (), is also 100%

applicable to DotStars!

Connecting DotStar LEDs

Our LED suppliers sometimes make unannounced production changes to the wiring.

Therefore, the best way to identify connections is a close visual examination of the

strip.

First, look for arrows printed along the strip next to each LED. These show the

direction of data moving down the strip…your microcontroller connects at the

originating (“in”) end, the arrows point toward the “out” end. (In the photo above, our

microcontroller would be located off the left side.)

Second, look for labels on the strip to identify the function and order of the four wires:

ground, 5 Volts, data and clock…usually labeled GND, 5V, D or DI (data input) and C or

CI (clock input). These will go to corresponding pins on your microcontroller and

power supply.

Again, due to production variations, you can’t always count on wire colors or plug

genders as a reliable indication of function, even if ordered at the same time. Take a

close look to confirm before connecting anything.

•

•

•

©Adafruit Industries Page 20 of 45

https://learn.adafruit.com/sipping-power-with-neopixels

The simplest wiring is if you can power the

strip off of the microcontroller board itself.

This is fine for small projects (one or two

dozen DotStars max) because we don't

light up a lot of LEDs at once.

Connect the strip 5V pin to the board 5V

Connect the strip GND pin to board GND

Connect the strip CI (Clock input) and DI

(Data input) to the board’s SPI SCK and

MOSI pins (if using an SPI bus) or any two

digital pins (if “bitbanging” the signals).

We’ll explain this in more detail in the

“Software” section of this guide.

For longer strips, when you need more

than 1 Amp of current, you should power

with an external 5V power adapter like so.

Connect the strip 5V pin to the power

adapter 5V

Connect the strip GND pin to board GND

and power adapter GND

Connect the strip CI (Clock input) and DI

(Data input) to two digital or SPI pins as

explained above.

Important: three points are connected to

ground: power supply, microcontroller and

DotStar strip. If there’s no common ground

between the microcontroller and strip, the

LED’s won’t function properly.

DotStars are 5 Volt devices. They may

respond to 3.3V signals, but this is not a

guaranteed thing. If using a 3.3V controller

(Feather, Raspberry Pi, etc.), add a logic

level shifter to boost 3V logic to 5V…

something like a 74AHCT125 () on the data

and clock pins.

©Adafruit Industries Page 21 of 45

https://learn.adafruit.com//assets/63278
https://learn.adafruit.com//assets/63278
https://learn.adafruit.com//assets/63279
https://learn.adafruit.com//assets/63279
https://learn.adafruit.com//assets/63125
https://learn.adafruit.com//assets/63125
https://www.adafruit.com/product/1787

Software

DotStars got their start on Arduino, but have since branched out to other boards and

languages.

Pick a category from the left column for information specific to each coding

environment.

Arduino Library Installation

Controlling DotStars “from scratch” is tedious, so we provide a library letting you

focus on the fun and interesting bits. The library works with most mainstream Arduino

boards and derivatives: Uno, Mega, Adafruit Feather, etc.

Install Adafruit_DotStar via Library Manager

Recent versions of the Arduino IDE (1.6.2 and later) make library installation super

easy via the Library Manager interface. From the Sketch menu, > Include Library > Ma

nage Libraries... In the text input box type in "DotStar". Look for "Adafruit DotStar by

Adafruit" and select the latest version by clicking on the popup menu next to the Insta

ll button. Then click on the Install button. After installation, you can click the "close"

button.

©Adafruit Industries Page 22 of 45

Manually Install Adafruit_DotStar Library

If you’re using an older version of the IDE, or just want to set things up manually,

“classic” installation of the library is as follows: you can visit the Adafruit_DotStar

library page () at Github and download from there, or just click this button:

Download Adafruit_DotStar for

Arduino

Uncompress the ZIP file after it’s finished downloading.

The resulting folder should contain the files Adafruit_DotStar.cpp, Adafruit_DotS

tar.h and an “examples” sub-folder. Sometimes in Windows you’ll get an

intermediate-level folder and need to move things around.

Rename the folder (containing the .cpp and .h files) to Adafruit_DotStar (with the

underscore and everything), and place it alongside your other Arduino libraries,

typically in your (home folder)/Documents/Arduino/Libraries folder. Libraries

should never be installed in the “Libraries” folder alongside the Arduino

application itself…put them in the subdirectory of your home folder!

Re-start the Arduino IDE if it’s currently running.

Here’s a tutorial () that walks through the process of correctly installing Arduino

libraries manually.

Another option for Arduino is the FastLED library (), featuring cutting-edge code with

more color-handling and mathematical support functions. However, it’s a little more

tricky to use…so, if connecting DotStars for the first time, we ask that you start with

the Adafruit_DotStar library. Once the hardware is confirmed working, you can then

graduate to whatever code or library you’d like!

A Simple Code Example: strandtest

Launch the Arduino IDE. From the File menu, select Sketchbook→Libraries→Adafruit_

DotStar→strandtest

1.

2.

3.

4.

©Adafruit Industries Page 23 of 45

https://github.com/adafruit/Adafruit_DotStar
https://github.com/adafruit/Adafruit_DotStar
https://github.com/adafruit/Adafruit_DotStar/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://fastled.io
http://fastled.io

(If the Adafruit_DotStar rollover menu is not present, the library has not been correctly

installed, or the IDE needs to be restarted after installation. Check the installation

steps above to confirm it’s properly named and located.)

The “strandtest” example shows basic library use; declaring a strip object, setting LED

colors and pushing this data to the strip via the show() method. For more advanced

examples, nearly any NeoPixel code should compile and run with DotStars, just

changing the library #include and the strip declaration.

Select your board type and serial port from the Tools menu, and try uploading to the

board. If the DotStars are connected and powered as previously described, you

should see a little light show.

If using a one-meter strip or less, it’s

usually OK to power off the

microcontroller’s 5V pin. Here’s how it

might look on an Arduino Uno or Adafruit

Metro board:

Connect the strip 5V pin to the board 5V

Connect the strip GND pin to board GND

Connect the strip CI (Clock input) to digital

pin 5.

Connect the strip DI (Data input) to digital

pin 4.

For longer strips, see the “Power and

Connections” page for guidance.

Some microcontroller boards won’t have a

pin 4 or 5. Not to worry, we’ll show on the

next page how to change the software for

different connections.

©Adafruit Industries Page 24 of 45

https://learn.adafruit.com//assets/63281
https://learn.adafruit.com//assets/63281

Help!

Nothing happens!

Check your connections. The most common mistake is connecting to the output

end of a strip rather than the input.

Something happens but the LEDs are blinking in a weird

way!

99% of the time this is due to not having a shared ground wire connected to the

Arduino. Make sure the Ground wire from the DotStars connects to BOTH your

power supply ground AND the Arduino ground.

Another common mistake is getting the data and clock wires reversed. If you get no

response from the LEDs, or they flash in an unexpected way, try swapping those two

wires.

Arduino Library Use

Doxygen-generated documentation for the Adafruit_DotStar library is available here. (

)

It’s assumed at this point that you have the Adafruit_DotStar library for Arduino

installed and have run the strandtest example sketch successfully. If not, return to the

prior page for directions to set that up.

To learn about writing your own DotStar sketches, let’s begin by dissecting the

strandtest sketch…

All DotStar sketches begin by including the header file:

#include <Adafruit_DotStar.h>

Just below this in the strandtest example are some extra lines that are sometimes

needed…

Most microcontrollers have some kind of SPI bus (a high-speed serial interface to

devices). If so, there’s an SPI-related header file that must be included. But a few

©Adafruit Industries Page 25 of 45

https://adafruit.github.io/Adafruit_DotStar/html/index.html

microcontrollers (such as the diminutive Adafruit Gemma and Trinket) don’t have SPI,

in which case that line should be commented out (preceded with a “//”) or simply

deleted.

Speaking of Gemma and Trinket…the next line, normally commented out, should be

enabled (remove the “//”) if using one of those boards.

// Because conditional #includes don't work w/Arduino sketches...

#include <SPI.h> // COMMENT OUT THIS LINE FOR GEMMA OR TRINKET

//#include <avr/power.h> // ENABLE THIS LINE FOR GEMMA OR TRINKET

The next few lines define the length of the strip (30 pixels in our example, but you can

change this to more or less to match your setup) and which pins to use for the data

and clock signals. The wiring diagrams previously shown had these on 4 and 5…but

they can usually be any two pins, whatever works best for you and matches your

wiring:

#define NUMPIXELS 30 // Number of LEDs in strip

// Here's how to control the LEDs from any two pins:

#define DATAPIN 4

#define CLOCKPIN 5

Adafruit_DotStar strip(NUMPIXELS, DATAPIN, CLOCKPIN, DOTSTAR_BRG);

This is how we declare a DotStar object. We’ll refer to this by name later to control the

strip of pixels.

The last parameter is optional — this is the color data order of the DotStar strip, which

has changed over time in different production runs. Default is DOTSTAR_BRG, so

change this if you have an earlier strip. If the LEDs are basically working but coming

up the wrong colors, this is usually the reason why…swap around the R, G and B until

things look right.

If using an SPI-capable microcontroller, this usually provides better performance.

However, this must be wired to specific pins, and it varies among microcontrollers. For

example, on the Arduino Uno the SPI MOSI and SCK signals are on pins 11 and 13

respectively. You’ll need a pinout diagram for other boards, look for the SPI MOSI and

SCK pins!

The object declaration in this case is a little different…simply leave out the data and

clock pin numbers:

Adafruit_DotStar strip(NUMPIXELS, DOTSTAR_BRG);

©Adafruit Industries Page 26 of 45

The SPI-or-not decision affects the wiring and strip declaration, but after that

everything is the same regardless.

Now, in the setup() function, call begin() to prepare the data and clock pins for

DotStar output:

void setup() {

 strip.begin();

 strip.show(); // Initialize all pixels to 'off'

}

The second line, strip.show() , isn’t absolutely necessary, it’s just there to be

thorough. That function pushes data out to the pixels…since no colors have been set

yet, this initializes all the DotStars to an initial “off” state in case some were left lit by

a prior program.

To set the color of an individual DotStar LED, use the setPixelColor() function,

which can work a couple of different ways. Easiest usually involves passing a pixel

number and red, green and blue color values:

strip.setPixelColor(index, red, green, blue);

index is the pixel number, starting at 0 (first pixel), then 1 (second pixel), up to the

number of pixels in the strip minus one. Pixel indices outside this range will simply be

ignored.

red , green , blue specify the color, each in a range from 0 (off) to 255 (maximum

brightness).

For example, here’s how we’d set the first pixel (index 0) to an orangey color (100%

red, 50% green, 0% blue):

strip.setPixelColor(0, 255, 127, 0);

An alternate syntax takes just two arguments, a pixel index (same as before) and a

single color value as a “packed” 24-bit integer (often in hexadecimal notation…

something advanced programers may be more comfortable working in):

strip.setPixelColor(index, color);

You can “pack” separate red, green and blue values into a single 32-bit type for later

use:

©Adafruit Industries Page 27 of 45

uint32_t magenta = strip.Color(255, 0, 255);

Then later you can just pass “magenta” as an argument to setPixelColor() rather

than the separate red, green and blue numbers every time.

setPixelColor() does not have an immediate effect on the LEDs. To “push” the

color data to the strip, call show() :

strip.show();

This updates the whole strip at once, and despite the extra step is actually a good

thing. If every call to setPixelColor() had an immediate effect, animation would

appear jumpy rather than buttery smooth.

Multiple pixels can be set to the same color using the fill() function, which accepts one

to three arguments. Typically it’s called like this:

strip.fill(color, first, count);

“color” is a packed 32-bit RGB (or RGBW) color value, as might be returned by

strip.Color(). There is no option here for separate red, green and blue, so call the

Color() function to pack these into one value.

“first” is the index of the first pixel to fill, where 0 is the first pixel in the strip, and

strip.numPixels() - 1 is the last. Must be a positive value or 0.

“count” is the number of pixels to fill. Must be a positive value.

If called without a count argument (only color and first), this will from first to the end of

the strip.

If called without first or count arguments (only color), the full strip will be set to the

requested color.

If called with no arguments, the strip will be filled with black or “off,” but there’s also a

different syntax which might be easier to read:

strip.clear();

You can query the color of a previously-set pixel using getPixelColor() :

©Adafruit Industries Page 28 of 45

uint32_t color = strip.getPixelColor(11);

This returns a 32-bit merged color value (only the least 24 bits are used).

The number of pixels in a previously-declared strip can be queried using numPixels(

) :

uint16_t n = strip.numPixels();

The overall brightness of all the LEDs can be adjusted using setBrightness() . This

takes a single argument, a number in the range 0 (off) to 255 (max brightness). For

example, to set a strip to 1/4 brightness:

strip.setBrightness(64);

Just like setPixel() , this does not have an immediate effect.You need to follow this

with a call to show() .

HSV (Hue-Saturation-Value) Colors…

The DotStar library has some support for colors in the “HSV” (hue-saturation-value)

color space. This is a different way of specifying colors than the usual RGB (red-

green-blue). Some folks find it easier or more “natural” to think about…or quite often

it’s just easier for certain color effects (the popular rainbow cycle and such).

©Adafruit Industries Page 29 of 45

In the DotStar library, hue is expressed as

a 16-bit number. Starting from 0 for red,

this increments first toward yellow (around

65536/6, or 10922 give or take a bit), and

on through green, cyan (at the halfway

point of 32768), blue, magenta and back

to red. In your own code, you can allow

any hue-related variables to overflow or

underflow and they’ll “wrap around” and

do the correct and expected thing, it’s

really nice.

Saturation determines the intensity or

purity of the color…this is an 8-bit number

ranging from 0 (no saturation, just

grayscale) to 255 (maximum saturation,

pure hue). In the middle, you’ll start to get

sort of pastel tones.

Value determines the brightness of a

color…it’s also an 8-bit number ranging

from 0 (black, regardless of hue or

saturation) to 255 (maximum brightness).

setPixelColor() and fill() both still want RGB values though, so we convert to these

from HSV by using the ColorHSV() function:

uint32_t rgbcolor = strip.ColorHSV(hue, saturation, value);

If you just want a “pure color” (fully saturated and full brightness), the latter two

arguments can be left off:

uint32_t rgbcolor = strip.ColorHSV(hue);

In either case, the resulting RGB value can then be passed to a pixel-setting function,

e.g.:

strip.fill(rgbcolor);

There is no corresponding function to go the other way, from RGB to HSV. This is on

purpose and by design, because conversion in that direction is often ambiguous —

©Adafruit Industries Page 30 of 45

https://learn.adafruit.com//assets/74099
https://learn.adafruit.com//assets/74099

there may be multiple valid possibilities for a given input. If you look at some of the

example sketches you’ll see they keep track of their own hues…they don’t assign

colors to pixels and then try to read them back out again.

…and Gamma Correction

Something you might observe when working with more nuanced color changes is that

things may appear overly bright or washed-out. It’s generally not a problem with

simple primary and secondary colors, but becomes more an issue with blends,

transitions, and the sorts of pastel colors you might get from the ColorHSV() function.

Numerically the color values are correct, but perceptually our eyes make something

different of it, as explained in this guide ().

The gamma32() function takes a packed RGB value (as you might get out of Color() or

ColorHSV()) and filters the result to look more perceptually correct.

uint32_t rgbcolor = strip.gamma32(strip.ColorHSV(hue, sat, val));

You might notice in some sketches that we never use ColorHSV() without passing the

result through gamma32() before setting a pixel’s color. It’s that desirable.

However, the gamma32 operation is not built in to ColorHSV() — it must be called as a

separate operation — for a few reasons, including that advanced programmers might

want to provide a more specific color-correction function of their own design

(gamma32() is a “one size fits most” approximation) or may need to keep around the

original “numerically but not perceptually correct” numbers.

There is no corresponding reverse operation. When you set a pixel to a color filtered

through gamma32(), reading back the pixel value yields that filtered color, not the

original RGB value. It’s precisely because of this sort of decimation that advanced

DotStar programs often treat the pixel buffer as a write-only resource…they generate

each full frame of animation based on their own program state, not as a series of

read-modify-write operations.

Help!

©Adafruit Industries Page 31 of 45

https://learn.adafruit.com/led-tricks-gamma-correction

I’m calling setPixel() but nothing’s happening!

There are two main culprits for this:

forgetting to call strip.begin() in setup() .

forgetting to call strip.show() after setting pixel colors.

Another (less common) possibility is running out of RAM — see the last section

below. If the program sort of works but has unpredictable results, consider that.

Can I have multiple DotStar objects on different pins?

Certainly! Each requires its own declaration with a unique name:

Adafruit_DotStar strip_a(16, 3, 4);

Adafruit_DotStar strip_b(16, 5, 6);

The above declares two distinct DotStar objects, one with data and clock on pins 3

and 4, the other on pins 5 and 5. Each contains 16 pixels and is using the default color

order.

Can I connect multiple DotStar strips to the same Arduino

pins?

In many cases, yes. All the strips will then show exactly the same thing. This only

works up to a point though…four strips wired to the same two pins is a good and

reliable number. More than that starts to get “iffy.”

I’m getting the wrong colors. Red and blue are swapped!

Different versions of DotStar LEDs expect to receive color data in a different order…

and occasionally it may change if it improves production efficiency or yield.

The last argument to the Adafruit_DotStar() constructor lets you try different

color orders. Default if unspecified is DOTSTAR_BRG .

We don’t change this in each release of the library because it’s just an endless

game of Whack-a-Mole…it’s only a matter of time before the manufacturers use a

different order again. Find what works with the hardware you have.

1.

2.

©Adafruit Industries Page 32 of 45

Most NeoPixel Code Adapts Easily to

DotStars

Nearly any NeoPixel code should compile and run with DotStars, just changing the

library #include and the strip declaration…the remaining functions are roughly the

same. There may be a few exceptions, but this is usually esoteric code that’s doing

NeoPixel-specific hardware trickery.

Pixels Gobble RAM

Each DotStar requires about 3 bytes of RAM. This doesn’t sound like very much, but

when you start using dozens or even hundreds of pixels, and consider that the

mainstream Arduino Uno only has 2 kilobytes of RAM (often much less after other

libraries stake their claim), this can be a real problem!

For using really large numbers of LEDs, you might need to step up to a more potent

board like the Arduino Mega or one of our M0- or M4-equipped Metro Express or

Feather boards. But if you’re close and need just a little extra space, you can

sometimes tweak your code to be more RAM-efficient. This tutorial has some pointers

on memory usage. ()

DotStarMatrix Library

The Adafruit_DotStarMatrix library builds upon Adafruit_DotStar to create two-

dimensional graphic displays using DotStar LEDs. You can then easily draw shapes,

text and animation without having to calculate every X/Y pixel position. Small DotStar

matrices are available in the shop. Larger displays can be formed using sections of

DotStar strip, as shown above.

©Adafruit Industries Page 33 of 45

http://learn.adafruit.com/memories-of-an-arduino
http://learn.adafruit.com/memories-of-an-arduino

In addition to the Adafruit_DotStar library (which was already downloaded and

installed in a prior step), DotStarMatrix requires two additional libraries:

Adafruit_DotStarMatrix ()

Adafruit_GFX ()

If you’ve previously used any Adafruit LCD or OLED displays, you might already have

the latter library installed.

Installation for both is similar to Adafruit_DotStar before: using the Arduino Library

Manager (in recent versions of the Arduino IDE) is recommended. Otherwise, if you

manually download: unzip, make sure the folder name matches the .cpp and .h files

within, then move to your Arduino libraries folder and restart the IDE.

Arduino sketches need to include all three headers just to use this library:

#include <Adafruit_GFX.h>

#include <Adafruit_DotStarMatrix.h>

#include <Adafruit_DotStar.h>

If using an older (pre-1.8.10) version of the Arduino IDE, you’ll also need to locate and

install Adafruit_BusIO (). No need to #include a header for this one.

Layouts

Adafruit_DotStarMatrix uses exactly the same coordinate system, color functions and

graphics commands as the Adafruit_GFX library. If you’re new to the latter, a separate

tutorial explains its use (). There are also example sketches included with the

Adafruit_DotStarMatrix library.

We’ll just focus on the constructor here — how to declare a two-dimensional display

made from DotStars. Powering the beast is another matter, covered on a prior page.

The library handles both single matrices — all DotStars in a single uniform grid — and

tiled matrices — multiple grids combined into a larger display:

1.

2.

©Adafruit Industries Page 34 of 45

https://github.com/adafruit/Adafruit_DotStarMatrix/archive/master.zip
https://github.com/adafruit/Adafruit-GFX-Library/archive/master.zip
https://github.com/adafruit/Adafruit_BusIO/archive/master.zip
http://learn.adafruit.com/adafruit-gfx-graphics-library/overview
http://learn.adafruit.com/adafruit-gfx-graphics-library/overview

Let’s begin with the declaration for a single matrix, because it’s simpler to explain.

We’ll be demonstrating the Adafruit DotStar FeatherWing () in this case — a 12x6

matrix of tiny DotStars. When looking at this FeatherWing with the text in a readable

orientation, the first pixel, #0, is at the bottom left. Each successive pixel is right one

position — pixel 1 is directly to the right of pixel 0, and so forth. At the end of each

row, the next pixel is at the left side of the next row up. This isn’t something we

decide in code…it’s how the DotStars are hard-wired in the circuit board comprising

the FeatherWing.

We refer to this layout as row major and progressive. Row major means the pixels are

arranged in horizontal lines (the opposite, in vertical lines, is column major). Progressi

ve means each row proceeds in the same direction. Some matrices will reverse

direction on each row, as it can be easier to wire that way. We call that a zigzag

layout.

However…for this example, we want to use the FeatherWing in the “tall” direction, so

the Feather board is standing up on the desk with the USB cable at the top. When we

turn the board this way, the matrix layout changes…

©Adafruit Industries Page 35 of 45

https://www.adafruit.com/product/3449
https://www.adafruit.com/product/3449

Now the first pixel is at the top left. Pixels increment top-to-bottom — it’s now column

major. The order of the columns is still progressive though.

We declare the matrix thusly:

©Adafruit Industries Page 36 of 45

Adafruit_DotStarMatrix matrix = Adafruit_DotStarMatrix(

 6, 12, // Width, height

 11, 13, // Data pin, clock pin

 DS_MATRIX_TOP + DS_MATRIX_LEFT +

 DS_MATRIX_COLUMNS + DS_MATRIX_PROGRESSIVE,

 DOTSTAR_BGR);

The first two arguments — 6 and 12 — are the width and height of the matrix, in pixels.

The next two arguments — 11 and 13 — are the pin numbers to which the DotStars are

connected (data and clock, respectively). On the FeatherWing this is hard-wired to

digital pins 11 and 13, but on some Feather boards these physical pins have different

numeric assignments, and standalone (non-FeatherWing) matrices are free to use

other pins. See the dotstar_wing.ino example for pin assignments on other boards.

The next argument is the interesting one. This indicates where the first pixel in the

matrix is positioned and the arrangement of rows or columns. The first pixel must be

at one of the four corners; which corner is indicated by adding either DS_MATRIX_TO

P or DS_MATRIX_BOTTOM to either DS_MATRIX_LEFT or DS_MATRIX_RIGHT. The

row/column arrangement is indicated by further adding either DS_MATRIX_COLUMNS

or DS_MATRIX_ROWS to either DS_MATRIX_PROGRESSIVE or DS_MATRIX_ZIGZAG.

These values are all added to form a single value as in the above code.

DS_MATRIX_TOP + DS_MATRIX_LEFT +

DS_MATRIX_COLUMNS + DS_MATRIX_PROGRESSIVE

The last argument is exactly the same as with the DotStar library, indicating the type

of LED pixels being used. In some cases you can simply leave this argument off.

The point of this setup is that the rest of the sketch never needs to think about the

layout of the matrix. Coordinate (0,0) for drawing graphics will always be at the top-

left for you, regardless of the actual position of the first DotStar.

Why not just use the rotation feature in Adafruit_GFX?

Adafruit_GFX only handles rotation. Though it would work with our example above,

it doesn’t cover every permutation of rotation and mirroring that may occur with

certain matrix layouts, not to mention the zig-zag capability, or this next bit…

Tiled Matrices

A tiled matrix is comprised of multiple smaller DotStar matrices. This is sometimes

easier for assembly or for distributing power. All of the sub-matrices need to be the sa

©Adafruit Industries Page 37 of 45

me size, and must be ordered in a predictable manner. The Adafruit_DotStarMatri

x() constructor then receives some additional arguments:

Adafruit_DotStarMatrix matrix = Adafruit_DotStarMatrix(

 matrixWidth, matrixHeight, tilesX, tilesY,

 dataPin, clockPin, matrixType, ledType);

The first two arguments are the width and height, in pixels, of each tiled sub-matrix, n

ot the entire display.

The next two arguments are the number of tiles, in the horizontal and vertical

direction. The dimensions of the overall display then will always be a multiple of the

sub-matrix dimensions.

The fifth and sixth arguments are the data and clock pin numbers, same as before and

as with the DotStar library. The last argument also follows prior behaviors, and in

many cases can be left off.

The second-to-last argument though…this gets complicated…

With a single matrix, there was a starting corner, a major axis (rows or columns) and a

line sequence (progressive or zigzag). This is now doubled — similar information is

needed both for the pixel order within the individual tiles, and the overall

arrangement of tiles in the display. As before, we add up a list of symbols to produce

a single argument describing the display format.

The DS_MATRIX_* symbols work the same as in the prior single-matrix case, and now

refer to the individual sub-matrices within the overall display. All tiles must follow the

same format. An additional set of symbols work similarly to then describe the tile

order.

The first tile must be located at one of the four corners. Add either DS_TILE_TOP or D

S_TILE_BOTTOM and DS_TILE_LEFT or DS_TILE_RIGHT to indicate the position of

the first tile. This is independent of the position of the first pixel within the tiles; they

can be different corners.

Tiles can be arranged in horizontal rows or vertical columns. Again this is

independent of the pixel order within the tiles. Add either DS_TILE_ROWS or DS_TILE

_COLUMNS.

Finally, rows or columns of tiles may be arranged in progressive or zigzag order; that

is, every row or column proceeds in the same order, or alternating rows/columns

©Adafruit Industries Page 38 of 45

switch direction. Add either DS_TILE_PROGRESSIVE or DS_TILE_ZIGZAG to indicate

the order. BUT…if DS_TILE_ZIGZAG order is selected, alternate lines of tiles must be

rotated 180 degrees. This is intentional and by design; it keeps the tile-to-tile wiring

more consistent and simple. This rotation is not required for DS_TILE_PROGRESSIVE.

Tiles don’t need to be square! The above is just one possible layout. The display

shown at the top of this page is three 10x8 tiles assembled from DotStar strip.

Once the matrix is defined, the remainder of the project is similar to Adafruit_DotStar.

Remember to use matrix.begin() in the setup() function and matrix.show()

to update the display after drawing. The setBrightness() function is also available.

The library includes a couple of example sketches for reference.

Other Layouts

For any other cases that are not uniformly tiled, you can provide your own function to

remap X/Y coordinates to DotStar strip indices. This function should accept two

unsigned 16-bit arguments (pixel X, Y coordinates) and return an unsigned 16-bit value

(corresponding strip index). The simplest row-major progressive function might

resemble this:

uint16_t myRemapFn(uint16_t x, uint16_t y) {

 return WIDTH * y + x;

}

That’s a crude example. Yours might be designed for pixels arranged in a spiral (easy

wiring), or a Hilbert curve.

The function is then enabled using setRemapFunction():

matrix.setRemapFunction(myRemapFn);

©Adafruit Industries Page 39 of 45

RAM Again

On a per-pixel basis, Adafruit_DotStarMatrix is no more memory-hungry than

Adafruit_DotStar, requiring 3 bytes of RAM per pixel. But the number of pixels in a

two-dimensional display takes off exponentially…a 16x16 display requires four times

the memory of an 8x8 display, or about 768 bytes of RAM (nearly half the available

space on an Arduino Uno). It can be anywhere from tricky to impossible to combine

large displays with memory-hungry libraries such as SD or ffft. Fortunately 32-bit

boards (e.g. Metro Express) are fairly mainstream now.

Gamma Correction

Because the Adafruit_GFX library was originally designed for LCDs (having limited

color fidelity), it handles colors as 16-bit values (rather than the full 24 bits that

DotStars are capable of). This is not the big loss it might seem. A quirk of human

vision makes bright colors less discernible than dim ones. The Adafruit_DotStarMatrix

library uses gamma correction to select brightness levels that are visually (though not

numerically) equidistant. There are 32 levels for red and blue, 64 levels for green.

The Color() function performs the necessary conversion; you don’t need to do any

math. It accepts 8-bit red, green and blue values, and returns a gamma-corrected 16-

bit color that can then be passed to other drawing functions.

Python & CircuitPython

It's easy to use DotStar LEDs with Python or CircuitPython and the Adafruit

CircuitPython DotStar () module. This module allows you to easily write Python code

that controls your LEDs.

You can use these LEDs with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

First wire up some DotStars to your board exactly as shown on the previous pages.

When using this library, you pass in the pin names you choose when you create the

object. If the LEDs are on hardware SPI pins, they will create a SPI device. If they're

©Adafruit Industries Page 40 of 45

https://github.com/adafruit/Adafruit_CircuitPython_DotStar
https://github.com/adafruit/Adafruit_CircuitPython_DotStar
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

not on a hardware SPI pin combination, they will be bit banged. Wiring up to a

hardware SPI pin combination means they'll respond screaming fast! However, it also

means you can't share SPI with anything else. So if you have the need for another SPI

device, you can bit bang but the LEDs will respond more slowly.

Here's an example of wiring a Feather M0 to a DotStar strip to hardware SPI pins:

Board USB to LED 5V

Board GND to LED GND

Board MO to LED DI

Board SCK to LED CI

Here is an example of wiring a Feather M0 to a DotStar strip to bit banged pins:

Board USB to LED 5V

Board GND to LED GND

Board D5 to LED DI

Board D6 to LED CI

Do not use the USB pin on your microcontroller for powering more than a few

LEDs! For more than that, you'll want to use an external power source. For more

information, check out the Power and Connections page of this guide: https://

learn.adafruit.com/adafruit-dotstar-leds/power-and-connections

©Adafruit Industries Page 41 of 45

https://learn.adafruit.com/adafruit-dotstar-leds/power-and-connections
https://learn.adafruit.com/adafruit-dotstar-leds/power-and-connections
https://learn.adafruit.com//assets/63372
https://learn.adafruit.com//assets/63372
https://learn.adafruit.com//assets/63373
https://learn.adafruit.com//assets/63373

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired with hardware SPI (faster than bit-bang but you must

use a hardware SPI interface and you cannot share the SPI device since there's no

chip select)

Pi 5V to LED 5V

Pi GND to LED GND

Pi MOSI to LED DI

Pi SCLK to LED CI

Here's the Raspberry PI wired up with bit-bang SPI (you can use any two digital pins,

but its not as fast as hardware SPI)

Pi 5V to LED 5V

Pi GND to LED GND

Pi GPIO5 to LED DI

Pi GPIO6 to LED CI

CircuitPython Installation of DotStar Library

You'll need to install the Adafruit CircuitPython DotStar () library on your CircuitPython

board.

©Adafruit Industries Page 42 of 45

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/63404
https://learn.adafruit.com//assets/63404
https://learn.adafruit.com//assets/63406
https://learn.adafruit.com//assets/63406
https://github.com/adafruit/Adafruit_CircuitPython_DotStar

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually

install the necessary libraries from the bundle:

adafruit_dotstar.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_dotstar.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Python Installation of DotStar Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require verifying you are running Python 3. Since

each platform is a little different, and Linux changes often, please visit the

CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-dotstar

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the this library with DotStar LEDs, we'll use the board's

Python REPL.

•

•

•

©Adafruit Industries Page 43 of 45

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If you're using a SPI connection run the following code to import the necessary

modules and initialize SPI with a strip of 30 DotStars:

import board

import adafruit_dotstar as dotstar

dots = dotstar.DotStar(board.SCK, board.MOSI, 30, brightness=0.2)

Or if you're using bit banged pins, run the following code:

import board

import adafruit_dotstar as dotstar

dots = dotstar.DotStar(board.D6, board.D5, 30, brightness=0.2)

Now you're ready to light up your DotStar LEDs using the following properties:

brightness - The overall brightness of the LED

fill - Color all pixels a given color.

show - Update the LED colors if auto_write is set to False .

For example, to light up the first DotStar red:

dots[0] = (255, 0, 0)

To light up all the DotStars green:

dots.fill((0, 255, 0))

•

•

•

©Adafruit Industries Page 44 of 45

That's all there is to getting started with CircuitPython and DotStar LEDs!

Below is an example that turns all 30 LEDs random colors. To use, download the file,

rename it to code.py and copy it to your board!

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import time

import random

import board

import adafruit_dotstar as dotstar

On-board DotStar for boards including Gemma, Trinket, and ItsyBitsy

dots = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, brightness=0.2)

Using a DotStar Digital LED Strip with 30 LEDs connected to hardware SPI

dots = dotstar.DotStar(board.SCK, board.MOSI, 30, brightness=0.2)

Using a DotStar Digital LED Strip with 30 LEDs connected to digital pins

dots = dotstar.DotStar(board.D6, board.D5, 30, brightness=0.2)

HELPERS

a random color 0 -> 192

def random_color():

 return random.randrange(0, 7) * 32

MAIN LOOP

n_dots = len(dots)

while True:

 # Fill each dot with a random color

 for dot in range(n_dots):

 dots[dot] = (random_color(), random_color(), random_color())

 time.sleep(0.25)

Python Docs

Python Docs ()

©Adafruit Industries Page 45 of 45

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/

	Adafruit DotStar LEDs
	Table of Contents
	Overview
	Form Factors
	DotStar Strips
	DotStar Matrices
	Individual DotStars
	Power and Connections
	Software
	Arduino Library Installation
	Arduino Library Use
	DotStarMatrix Library
	Python & CircuitPython
	Python Docs

	Overview
	DotStars vs NeoPixels
	DotStars
	NeoPixels

	Form Factors
	DotStar Strips
	RGB DotStar Strips
	White DotStar Strips
	Finer Details About Flexible DotStar Strips
	Rigid Ultra High Density DotStar LED PCB Bar
	DotStar Matrices
	Flexible DotStar Matrices
	Rigid DotStar Matrices
	Finer Details About DotStar Matrices
	Individual DotStars
	SMT DotStars
	Datasheets
	Power and Connections
	Powering DotStar LEDs
	Connecting DotStar LEDs
	Software
	Arduino Library Installation
	Install Adafruit_DotStar via Library Manager
	Manually Install Adafruit_DotStar Library
	A Simple Code Example: strandtest
	Help!
	Nothing happens!
	Something happens but the LEDs are blinking in a weird way!

	Arduino Library Use
	HSV (Hue-Saturation-Value) Colors…
	…and Gamma Correction
	Help!
	I’m calling setPixel() but nothing’s happening!
	Can I have multiple DotStar objects on different pins?
	Can I connect multiple DotStar strips to the same Arduino pins?
	I’m getting the wrong colors. Red and blue are swapped!

	Most NeoPixel Code Adapts Easily to DotStars
	Pixels Gobble RAM
	DotStarMatrix Library
	Layouts
	Why not just use the rotation feature in Adafruit_GFX?

	Tiled Matrices
	Other Layouts
	RAM Again
	Gamma Correction
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of DotStar Library
	Python Installation of DotStar Library
	CircuitPython & Python Usage
	Full Example Code
	Python Docs

