

T-75-45-05

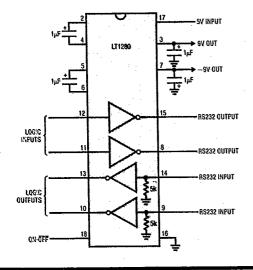
LT1280/LT1281

Advanced Low Power 5V RS232 Dual Driver/Receiver

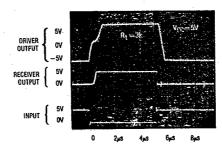
FEATURES

- 10mA Max Supply Current
- Absolutely No Latchup
- CMOS Comparable Low Power 35mW Typ
- Superior to CMOS
 - Improved Speed Operates Over 64K Baud
 - Improved Protection Outputs Can be Forced to ±30V Without Damage
 - Three-State Outputs are High Impedance When Off
 - Smaller Board Area Required
- 1μA Supply Current in Shutdown
- Available in SO Package
- Available With or Without Shutdown

APPLICATIONS


- **■** Portable Computers
- Battery Powered RS232 Systems
- Power Supply Generator
- Terminals
- Modems

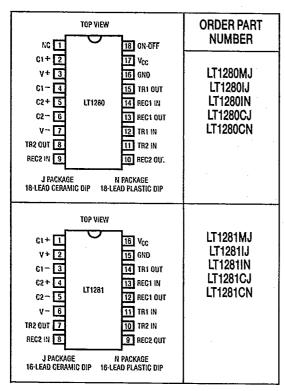
DESCRIPTION

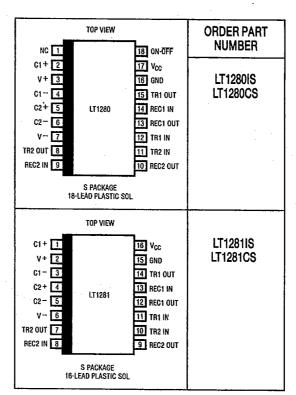

The LT1280 and LT1281 are the only dual RS232 driver/ receiver with charge pump to guarantee absolutely no latchup. Requiring only 1µF charge pump capacitors, these interface optimized devices provide a realistic balance between CMOS levels of power dissipation and real world requirements for ruggedness. Small capacitors reduce cost as well as board size. The driver outputs are fully protected against overload and can be shorted to ±30V. Unlike CMOS, the advanced architecture of the LT1280/LT1281 does not load the signal line when "shut down" or when power is off. Both the receiver and RS232 outputs are put into a high Impedance state. An advanced output stage allows driving higher capacitive loads at higher speeds with exceptional ruggedness against ESD.

For applications requiring up to 5 drivers and 5 receivers with charge pump in one package see the LT1130 Series data sheet. A version of the LT1280/81, the LT1180 and LT1181 is available for applications requiring small $(0.1\mu\text{F})$ capacitors. All of Linear Technology's RS232 IC's are available in standard surface mount packages.

TYPICAL APPLICATION

Output Waveforms


10


T-75-45-05

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 6V	Short Circuit Duration
V+13.2V	V+30 Seconds
V13.2V	V30 Seconds
Input Voltage	Driver OutputIndefinite
DriverV- to V+	Receiver Output
Receiver 30V to 30V	Operating Temperature Range
On-Off PinGND to 12V	LT1280M/LT1281M
Output Voltage	LT1280I/LT1281I 40°C to 85°C
Driver V- +30V to V+ -30V	LT1280C/LT1281C0°C to 70°C
Receiver 0.3V to V _{CC} + 0.3V	Lead Temperature (Soldering, 10 sec.)

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS (Note 1)

T-75-45-05

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Driver	· · · · · · · · · · · · · · · · · · ·					·. ··	
Output Voltage Swing	Load = 3k to GND Both Outputs.	Positive Negative		5.0 -5.0	7.3 6.5		V V
Logic Input Voltage Level	Input Low Level (V _{OUT} = H Input High Level (V _{OUT} = L		:	2.0	1.4 1.4	0.8	V
Logic Input Current	V _{IN} ≥2.0V V _{IN} ≤0.8V		:		5 5	20 20	μA μA
Output Short Circuit Current	Sourcing Current, V _{OUT} = 0 Sinking Current, V _{OUT} = 0			7 7	12 -12		mA mA
Output Leakage Current	SHUTDOWN (Note 2), V _{OU}	T = ± 30V (Note 4)	•		10	25	μА
Slew Rate	$R_L = 3k\Omega$, $C_L = 51pF$			4	15	30	V/μs
Receiver							
Input Voltage Thresholds	Input Low Threshold, LT1 LT1	280C/LT1281C 280I, M/LT1281I, M	:	0.8 0.2	1,3 1,3		V
	input High Threshold, LT LT	1280C/LT1281C 1280I, M/LT1281I, M	•		1.7 1,7	2.4 3.0	V
Hysteresis			•	0.1	0.4	1.0	V
Input Resistance				3	5	7	kΩ
Output Voltage	Output Low, I _{OUT} = - 1.6r Output High, I _{OUT} = 160 <i>µ</i> !	nA \(V _{CC} =5V)	:	3.5	0.2 4.8	0.4	V
Output Short Circuit Current	Sinking Current, V _{OUT} = V Sourcing Current, V _{OUT} =	cc OV		- 10 0.3	- 20 0.6		mA mA
Output Leakage Current	SHUTDOWN (Note 2), 0V	≤V _{OUT} ≤V _{CC}	•		1	10	μА
Supply Current	(Note 3)		•		7	10 14	mA mA
Supply Leakage Current (V _{CC})	SHUTDOWN (Note 2) (LT	1280 Only) (Note 4)	•	·	1	25	μΑ
On-Off Pin Current	0V ≤ V _{ON-OFF} ≤ 5V (LT1280	Only)	•	- 15		80	μА

The lacktriangled denotes specifications which apply over the operating temperature range (0°C \leq T_A \leq 70°C for commercial grade, -40°C \leq T_A \leq 85°C for industrial grade or -55°C \leq T_A \leq 125°C for military grade devices).

Note 1: These parameters apply for $V_{ON-\overline{OFF}} = 3V$, $V_{CC} = 5V$ and $C = 1.0 \mu F$ unless otherwise specified.

Note 2: $V_{ONOFF}=0.4V$ for $-55^{\circ}C \le T_A \le 100^{\circ}C$, and $V_{ONOFF}=0.2V$ for $100^{\circ}C \le T_A \le 125^{\circ}C$ (LT1280 only).

Note 3: Unless otherwise specified, V_{CC} = 5V, external loading of V $^+$ and V $^-$ equals zero and the driver outputs are low (inputs high).

Note 4: Leakage current at 125°C = 100µA max.

PIN FUNCTIONS (Pin numbers refer to LT1280)

V_{CC} (Pin 17): Input supply pin. Supply current drops to zero in the SHUTDOWN mode.

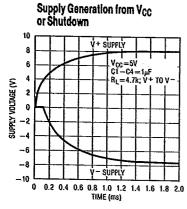
GND (Pin 16): Ground pin.

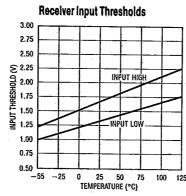
On-Off (Pin 18): Controls the operation mode of the LT1280 and is TTL/CMOS compatible. A logic low puts the device in the SHUTDOWN mode which reduces input supply current to zero and places both driver and receiver outputs in a high impedance state. A logic high fully enables the device.

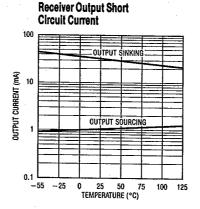
V+(Pin 3): Positive supply for RS232 drivers. V+ \approx 2Vcc-1.5V. Requires an external capacitor (\ge 0.1 μ F) for charge storage. Capacitor may be tied to ground or +5V input supply. With multiple transceivers, the V+ and V-pins may be paralleled into common capacitors.

V- (Pin 7): Negative supply for RS232 drivers, $V = -(2V_{CC} - 2.5V)$. Requires an external capacitor ($\ge 0.1 \mu F$) for charge storage. With multiple transceivers, the V+ and V - pins may be paralleled into common capacitors.

TR1 IN; TR2 IN (Pins 12, 11): RS232 driver input pins. Inputs are TTL/CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC} .

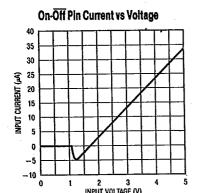

TR1 OUT; TR2 OUT (Pins 15, 8): Driver outputs with RS232 voltage levels. Outputs are in a high impedance state when in the SHUTDOWN mode or when power is off (Vcc=0V) to allow data line sharing. Outputs are fully short circuit protected from V $^ \pm$ 30V to V \pm - 30V with power on, off, or in the SHUTDOWN mode. Typical output breakdowns are greater than \pm 45V and higher applied voltages will not damage the device if moderately current limited. Shorting one output will affect output from the other.

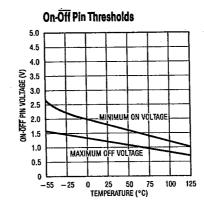

REC1 IN; REC2 IN (Pins 14, 9): Receiver inputs. Accepts RS232 voltage levels (\pm 30V) and has 0.4V of hysteresis to provide noise immunity. Input impedance is nominally 5k Ω .

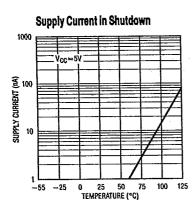

REC1 OUT; REC2 OUT (Pins 13, 10): Receiver outputs with TTL/CMOS voltage levels. Outputs are in a high impedance state when in the SHUTDOWN mode to allow data line sharing. Outputs are fully short circuit protected to ground or VCC with power on, off, or in the SHUTDOWN mode.

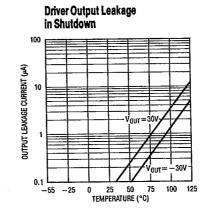
C1+; C1-; C2+; C2- (Pins 2, 4, 5, 6): Requires an external capacitor ($\geq 0.1 \mu F$) from C1+ to C1- and another from C2+ to C2-. Pin 2 can be used for connecting a second positive supply. When a separate positive supply is used, C1 can be deleted.

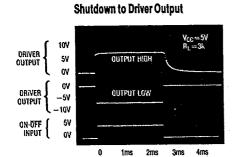
TYPICAL PERFORMANCE CHARACTERISTICS

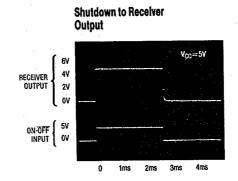




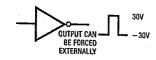

10-78


TYPICAL PERFORMANCE CHARACTERISTICS

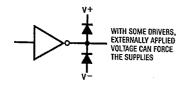

T-75-45-05



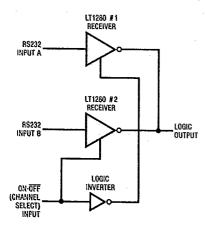
10

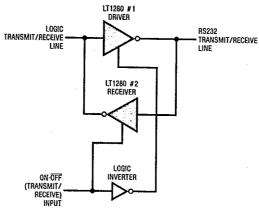

APPLICATION HINTS

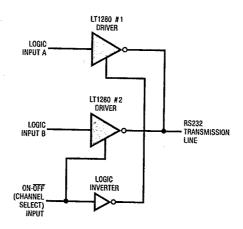
The driver output stage of the LT1280 offers significantly improved protection over older bipolar and CMOS designs. In addition to current limiting, the driver output can be externally forced to $\pm 30V$ with no damage or excessive current flow, and will not disrupt the supplies. Some drivers have diodes connected between the outputs and the supplies, so externally applied voltages can cause excessive supply voltage to develop.


Placing the LT1280 in the SHUTDOWN mode (Pin 18 low) puts both the driver and receiver outputs in a high impedance state. This allows data line sharing and transceiver applications.

The SHUTDOWN mode also drops input supply current (Vcc; Pin 17) to zero for power-conscious systems.

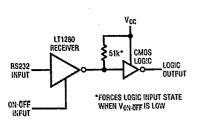

LT1280/LT1281 Driver

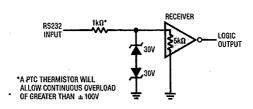

Older RS232 Drivers and CMOS Drivers

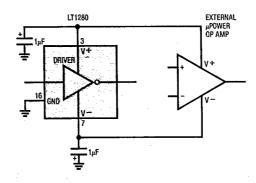

Sharing a Receiver Line

Transceiver

Sharing a Transmitter Line

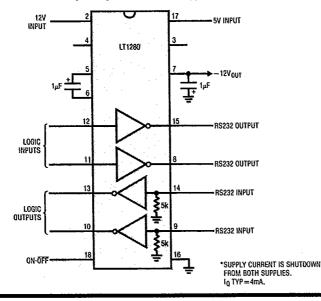



T-75-45-05

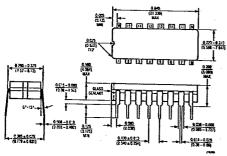

APPLICATION HINTS

When driving CMOS logic from a receiver that will be used in the SHUTDOWN mode and there is no other active receiver on the line, a 51k resistor can be placed from the logic input to V_{CC} to force a definite logic level when the receiver output is in a high impedance state.

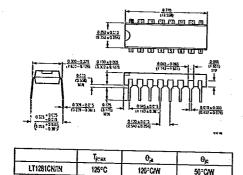
To protect against receiver input overloads in excess of ± 30 V, a voltage clamp can be placed on the data line and still maintain RS232 compatibility.

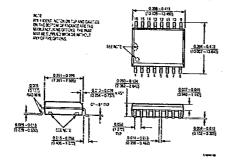


TYPICAL APPLICATION

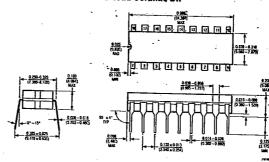

Operating with 12V and 5V Supplies*

10

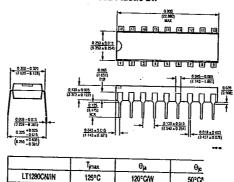

PACKAGE DESCRIPTION Dimensions in Inches (millimeters) unless otherwise noted.



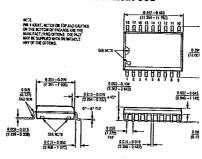
	T _{imax}	θја	θ_{ic}
LT1281MJ/JJ	150°C	100°C/W	40°C/W
LT1281CJ	150°C	100°C/W	40°C/W


N Package 16-Lead Plastic DIP

S Package 16-Lead Plastic SOL



J Package 18-Lead Ceramic DIP



	T _{jmax}	О ја	θ _{ic}
LT1280MJ/IJ	150°C	100°C/W	40°C/W
LT1280CJ	150°€	100°C/W	40°C/W

N Package 18-Lead Plastic DIP

S Package 18-Lead Plastic SOL

50°C/