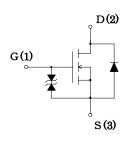
Features

- Low on-state resistance
- Built-in gate protection diode

Package

MT100 (TO3P)


Applications

- Electric power steering
- High current switching

Key Specifications

- $V(BR)DSS=60V (ID=100\mu A)$
- RDS(ON)=4.7m Ω Max. (VGS=10V,ID=42A)

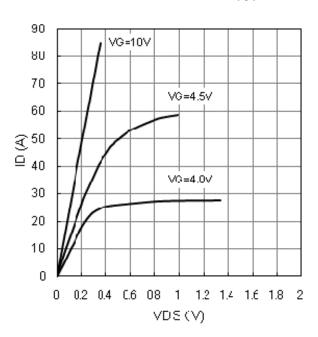
Internal Equivalent Circuit

Absolute maximum ratings

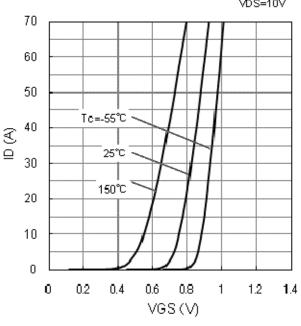
Characteristic	Symbol	Rating	Unit
Drain to Source Voltage	V_{DSS}	60	V
Gate to Source Voltage	$ m V_{GSS}$	±20	V
Continuous Drain Current	I_{D}	±85	A
Pulsed Drain Current	$I_{D(pulse)} {}^{st 1}$	± 280	A
Maximum Power Dissipation	P_{D}	150 (Tc=25°C)	W
Single Pulse Avalanche Energy	E _{AS} **2	280	mJ
Channel Temperature	Tch	-55~150	°C
Storage Temperature	Tstg	-55~150	°C

 $\%1 \text{ PW} \le 100 \,\mu \text{ sec. duty cycle} \le 1\%$

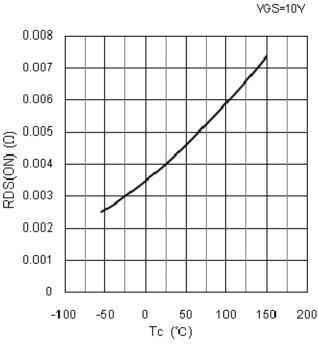
X2 VDD=20V, L=1mH, IL=20A, unclamped, See Fig.1

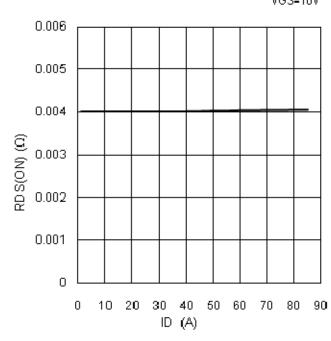

Electrical characteristics

 $(Ta=25^{\circ}C)$

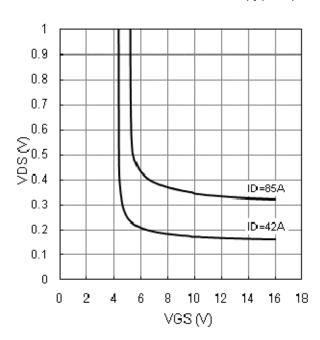

Characteristic	Symbol	Test Conditions	Limits			l lait
			MIN	TYP	MAX	Unit
Drain to Source breakdown Voltage	$V_{(BR)DSS}$	I _D =100μA,V _{GS} =0V	60			V
Gate to Source Leakage Current	I _{GSS}	V _{GS} =±20V			±10	μA
Drain to Source Leakage Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			100	μA
Gate Threshold Voltage	V_{TH}	V _{DS} =10V, I _D =1mA	2.0	2.5	3.0	V
Forward Transconductance	Re(yfs)	V _{DS} =10V, I _D =42A	30			S
Static Drain to Source On-Resistance	R _{DS(ON)}	I _D =42A, V _{GS} =10V		4.0	4.7	mΩ
Input Capacitance	Ciss	V _{DS} =10V V _{GS} =0V f=1MHz		11500		pF
Output Capacitance	Coss			1500		
Reverse Transfer Capacitance	Crss			1100		
Turn-On Delay Time	td(on)	I_D =42A, V_{DD} □16V - R_G =22 Ω , V_{GS} =10V See Fig.2		60		ns
Rise Time	tr			25		
Turn-Off Delay Time	td(off)			370		
Fall Time	tf			65		
Source-Drain Diode Forward Voltage	V_{SD}	I _{SD} =50A,V _{GS} =0V		0.87	1.5	V
Source-Drain Diode Reverse Recovery Time	trr	I _{SD} =50A di/dt=100A/us		70		ns

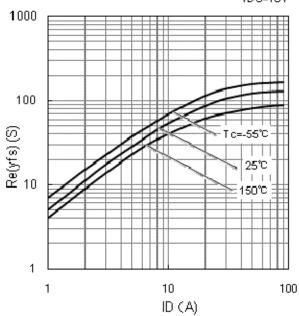
Characteristic Curves (Tc=25°C)


ID - VDS characteristics (typical)

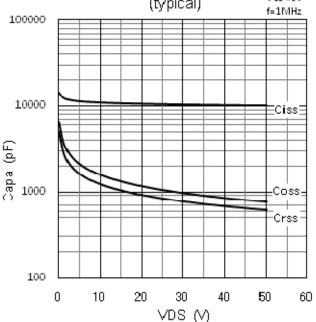

ID - VGS characteristics (typical) vbs=10

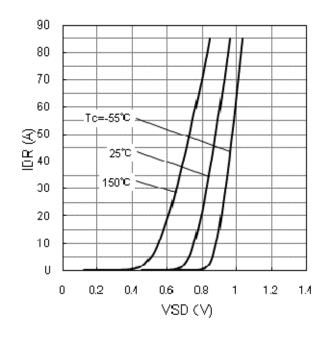
RDS(ON) - To characteristics (typical)

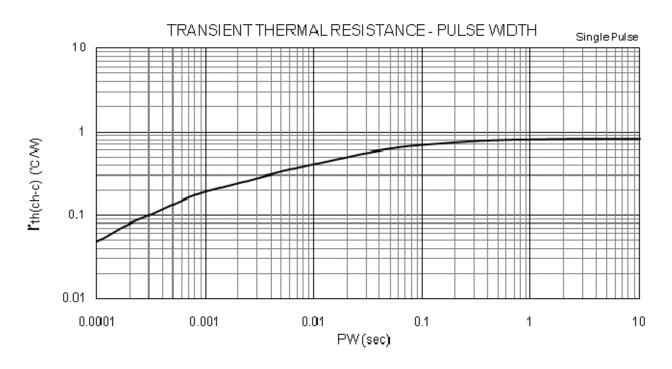

RDS(ON) - ID characteristics (typical)
VGS=10V

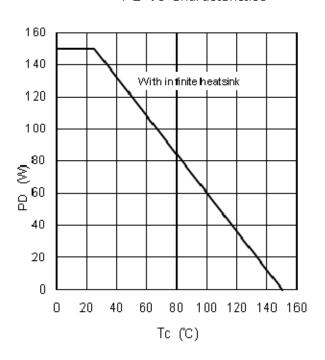

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Characteristic Curves (Tc=25°C)


VDS - VGS characteristics (typical)


Re(yfs) - ID characteristics (typical)
VDS=10V


Capacitance - VDS characteristics (typical) G=1MHz


IDR - VSD characteristics (typical)

Characteristic Curves (Tc=25°C)

PD-Tc characteristics

SAFE OPARATIN ARE

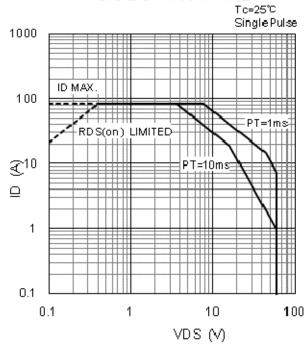


Fig.1 Unclamped Inductive Test Method

EAS=
$$\frac{1}{2} \cdot L \cdot ILP^2 \cdot \frac{V(BR)DSS}{V(BR)DSS - VDD}$$

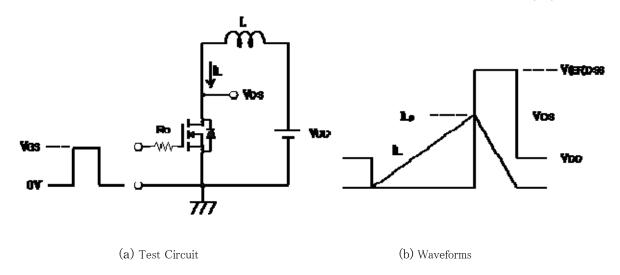
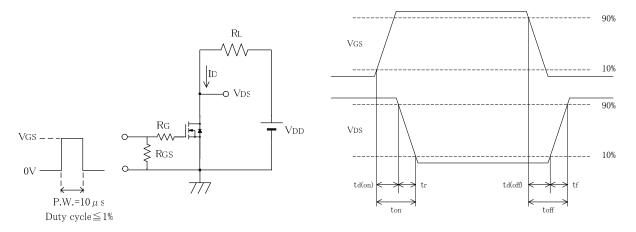
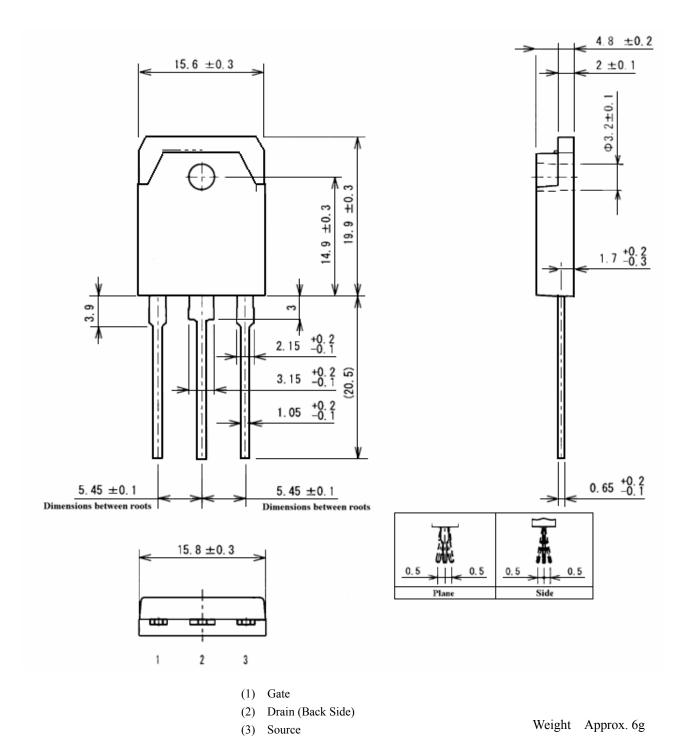



Fig.2 Switching Time Test Method



(a) Test Circuit

(b) Waveforms

Outline

MT100 (TO3P)

