STF25N60M2-EP

N-channel 600 V, 0.175 Ω typ., 18 A MDmesh™ M2 EP Power MOSFET in a TO-220FP package

Datasheet - production data

life.augmented

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	ID
STF25N60M2-EP	650 V	0.188 Ω	18 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- Very low turn-off switching losses
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- Tailored for Very High Frequency Converters (f > 150 kHz)

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 EP enhanced performance technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance, optimized switching characteristics with very low turn-off switching losses, rendering it suitable for the most demanding very high frequency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STF25N60M2-EP	25N60M2EP	TO-220FP	Tube

DocID027251 Rev 2

This is information on a product in full production.

Contents

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	9
4	Packag	e mechanical data	10
	4.1	TO-220FP package information	11
5	Revisio	on history	13

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
ID	Drain current (continuous) at $T_C = 25 \text{ °C}$	18 ⁽¹⁾	А
ID	Drain current (continuous) at T _C = 100 °C	11.3 ⁽¹⁾	А
I _{DM} ⁽²⁾	Drain current (pulsed)	72 ⁽¹⁾	А
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	30	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, $T_C = 25$ °C)	2500	V
T _{stg}	Storage temperature	55 to 150	°C
Tj	Max. operating junction temperature	- 55 to 150	C

Notes:

 $\ensuremath{^{(1)}}\xspace$ Limited by maximum junction temperature.

 $^{\rm (2)} {\rm Pulse}$ width limited by safe operating area.

⁽³⁾ $I_{SD} \le 18$ A, di/dt ≤ 400 A/µs; V_{DS peak} < V_{(BR)DSS}, V_{DD} = 400 V.

 $^{(4)}V_{DS} \le 480 \text{ V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	4.2	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	3.5	А
E _{AS}	Single pulse avalanche energy (starting T_j = 25 °C, I_D = $I_{AR};$ V_{DD} = 50 V)	200	mJ

 $T_C = 25$ °C unless otherwise specified

Table 5: On/off states							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
$V_{(BR)DSS}$	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	600			V	
	Zoro goto voltago Droin	$V_{GS} = 0 \text{ V}, \text{ V}_{DS} = 600 \text{ V}$			1	μA	
I _{DSS} Zero gate voltag current	Zero gate voltage Drain current	$V_{GS} = 0 V, V_{DS} = 600 V,$ $T_{C} = 125 \text{ °C}$			100	μA	
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±10	μA	
V _{GS(th)}	Gate threshold voltage	$V_{DS}=V_{GS},\ I_{D}=250\ \mu A$	2	3	4	V	
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 9 \text{ A}$		0.175	0.188	Ω	

Table 6: Dynamic						
Symbol	SymbolParameterTest conditionsMin.Typ.Max.					Unit
C _{iss}	Input capacitance		-	1090	-	pF
C _{oss}	Output capacitance	V_{DS} = 100 V, f = 1 MHz,	-	56	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	1.6	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 480 V, V_{GS} = 0 V	-	255	-	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	7	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 18 A,	-	29	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see <i>Figure 16:</i>	-	6	-	nC
Q_gd	Gate-drain charge	"Gate charge test circuit")	-	12	-	nC

Notes:

 $^{(1)}C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching Energy

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _(off)	Turn-off energy (from 90% V _{GS} to 0% I _D)		-	7	-	μJ
			-	8	-	μJ

	Table 8: Switching times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 9 \text{ A}$	-	15	-	ns	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 15: "Switching - times test circuit for	-	10	•	ns	
$t_{d(off)}$	Turn-off-delay time		-	61	•	ns	
t _f	Fall time	resistive load" and Figure 20: "Switching time waveform")	-	16	-	ns	

Table 9: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		18	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		72	А
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = 18 A$	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 18 A,	-	360		ns
Qrr	Reverse recovery charge	di/dt = 100 A/µs, V _{DD} = 100 V (see <i>Figure</i>	-	5		μC
I _{RRM}	Reverse recovery current	17: " Test circuit for inductive load switching and diode recovery times")	-	28		A
t _{rr}	Reverse recovery time	I _{SD} = 18 A,	-	445		ns
Qrr	Reverse recovery charge	di/dt = 100 A/µs, V _{DD} = 100 V, T _i = 150 °C	-	6.5		μC
I _{RRM}	Reverse recovery current	(see Figure 17: " Test circuit for inductive load switching and diode recovery times")	-	29		A

Notes:

 $\ensuremath{^{(1)}}\xspace\mathsf{Pulse}$ width is limited by safe operating area

 $^{(2)}$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle 1.5%

2.2

57

STF25N60M2-EP

57

3 Test circuits

DocID027251 Rev 2

9/14

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

57

4.1 TO-220FP package information

Package mechanical data

STF25N60M2-EP

Table 10: TO-220FP mechanical data					
Dim.		mm			
Din.	Min.	Тур.	Max.		
A	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
E	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
02-Dec-2014	1	First release.
12-Jan-2015	2	Updated product status from "preliminary data" to "production data".
14-Jan-2015	3	Corrected product status information on cover page.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

