Quad 2-Channel Multiplexer with 3-State Outputs The MC74VHC257 is an advanced high speed CMOS quad 2-channel multiplexer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. It consists of four 2-input digital multiplexers with common select (S) and enable (\overline{OE}) inputs. When (\overline{OE}) is held High, selection of data is inhibited and all the outputs go Low. The select decoding determines whether the A or B inputs get routed to the corresponding Y outputs. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems. - High Speed: $t_{PD} = 4.1 \text{ ns (Typ)}$ at $V_{CC} = 5.0 \text{ V}$ - Low Power Dissipation: $I_{CC} = 4.0 \mu A$ (Max) at $T_A = 25$ °C - High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% \ V_{CC}$ - Power Down Protection Provided on Inputs - Balanced Propagation Delays - Designed for 2.0 V to 5.5 V Operating Range - Low Noise: $V_{OLP} = 0.8 \text{ V (Max)}$ - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300 mA - ESD Performance: HBM > 2000 V; Machine Model > 200 V - Chip Complexity: FETs = 100; Equivalent Gates = 25 - These Devices are Pb-Free and are RoHS Compliant Figure 1. Pin Assignment ## ON Semiconductor™ http://onsemi.com #### MARKING DIAGRAMS = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or ■ = Pb-Free Package #### ORDERING INFORMATION | Device | Package | Shipping | |-----------------|----------|-----------------| | MC74VHC257DG | SO-16 | 48 Units/Rail | | MC74VHC257DR2G | SO-16 | 2500 Units/Reel | | MC74VHC257DTG | TSSOP-16 | 96 Units/Rail | | MC74VHC257DTR2G | TSSOP-16 | 2500 Units/Reel | Figure 2. Expanded Logic Diagram Figure 3. IEC Logic Symbol ### **FUNCTION TABLE** | Inp | Outputs | | | | |-----|---------|---------|--|--| | ŌĒ | S | Y0 - Y3 | | | | Н | Х | Z | | | | L | L | A0-A3 | | | | L | Н | B0-B3 | | | A0 - A3, B0 - B3 = the levels of the respective Data–Word Inputs. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND ≤ (V_{in} or V_{out}) ≤ V_{CC}. range GND \leq (V_{in} or V_{out}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. ### **MAXIMUM RATINGS** | Symbol | Pa | rameter | Value | Unit | |----------------------|---|--|------------------------------|------| | V _{CC} | Positive DC Supply Voltage | | -0.5 to +7.0 | V | | V _{IN} | Digital Input Voltage | | -0.5 to +7.0 | V | | V _{OUT} | DC Output Voltage | | -0.5 to V _{CC} +0.5 | V | | I _{IK} | Input Diode Current | | -20 | mA | | I _{OK} | Output Diode Current | | ± 20 | mA | | I _{OUT} | DC Output Current, per Pin | ± 25 | mA | | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | | ±75 | mA | | P_{D} | Power Dissipation in Still Air | SOIC Package
TSSOP | 200
180 | mW | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 1)
Machine Model (Note 2)
Charged Device Model (Note 3) | >2000
>200
>2000 | V | | I _{LATCHUP} | Latchup Performance | Above V _{CC} and Below GND at 125°C (Note 4) | ±300 | mA | | θ_{JA} | Thermal Resistance, Junction-to-Ambie | ent SOIC Package TSSOP | 143
164 | °C/W | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1 Tested to EIA/JESD22-A114-A - 2 Tested to EIA/JESD22-A115-A - 3 Tested to JESD22-C101-A - 4 Tested to EIA/JESD78 ### RECOMMENDED OPERATING CONDITIONS | Symbol | Characteristics | Min | Max | Unit | | |---------------------------------|--|--|-----------------|-----------|------| | V _{CC} | DC Supply Voltage | 2.0 | 5.5 | V | | | V _{IN} | DC Input Voltage | 0 | 5.5 | V | | | V _{OUT} | DC Output Voltage | 0 | V _{CC} | V | | | T _A | Operating Temperature Range, all Package Types | - 55 | 125 | °C | | | t _r , t _f | Input Rise or Fall Time | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$
$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0 | 100
20 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. # DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES | Junction
Temperature °C | Time, Hours | Time, Years | |----------------------------|-------------|-------------| | 80 | 1,032,200 | 117.8 | | 90 | 419,300 | 47.9 | | 100 | 178,700 | 20.4 | | 110 | 79,600 | 9.4 | | 120 | 37,000 | 4.2 | | 130 | 17,800 | 2.0 | | 140 | 8,900 | 1.0 | Figure 4. Failure Rate vs. Time Junction Temperature # **DC CHARACTERISTICS** (Voltages Referenced to GND) | | | | V _{CC} | ٦ | T _A = 25°(| C | $T_A \le$ | 85°C | -55°C ≤ T | _A ≤ 125°C | | |-----------------|--|--|-------------------|-------------------------|-----------------------|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level | | 2.0 | 1.5 | | | 1.5 | 1.5 | 1.5 | | V | | | Input Voltage | | 3.0 to
5.5 | V _{CCX}
0.7 | | | V _{CCX}
0.7 | V _{CCX}
0.7 | V _{CCX}
0.7 | | | | V_{IL} | Maximum Low-Level | | 2.0 | | | 0.5 | | 0.5 | | 0.5 | V | | | Input Voltage | | 3.0 to
5.5 | | | V _{CCX} 0.3 | | V _{CCX} 0.3 | | V _{CCX}
0.3 | | | V _{OH} | Maximum High-Level
Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -50 \mu\text{A}$ | 2.0
3.0
4.5 | 1.9
2.9
4.4 | 2.0
3.0
4.5 | | 1.9
2.9
4.4 | | 1.9
2.9
4.4 | | ٧ | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -4 \text{ mA}$
$I_{OH} = -8 \text{ mA}$ | 3.0
4.5 | 2.58
3.94 | | | 2.48
3.8 | | 2.34
3.66 | | | | V _{OL} | Maximum Low–Level
Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 50 \mu\text{A}$ | 2.0
3.0
4.5 | | 0.0
0.0
0.0 | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = 4 \text{ mA}$
$I_{OH} = 8 \text{ mA}$ | 3.0
4.5 | | | 0.36
0.36 | | 0.44
0.44 | | 0.52
0.52 | | | I _{IN} | Input Leakage Current | V _{IN} = 5.5 V or GND | 0 to
5.5 | | | ±0.1 | | ±1.0 | | ±1.0 | μΑ | | I _{OZ} | Maximum 3–State
Leakage Current | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{OUT} = V_{CC} \text{ or GND}$ | 5.5 | | | ±0.25 | | ±2.5 | | ±2.5 | μΑ | | I _{CC} | Maximum Quiescent
Supply Current
(per package) | $V_{IN} = V_{CC}$ or GND | 5.5 | | | 4.0 | | 40.0 | | 40.0 | μΑ | # AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$) | | | | | T _A = 25°C | | T _A = ≤ 85°C | | -55°C ≤ T | | | | |--|------------------------------|--|--------------------------------|-----------------------|------------|--------------------------------|------------|--------------|------------|--------------|------| | Symbol | Parameter | Test Condi | tions | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 5.8
8.3 | 9.3
12.8 | 1.0
1.0 | 11.0
14.5 | 1.0
1.0 | 11.0
14.5 | ns | | | A or B to Y | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 3.6
5.1 | 5.9
7.9 | 1.0
1.0 | 7.0
9.0 | 1.0
1.0 | 7.0
9.0 | | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 7.0
9.5 | 11.0
14.5 | 1.0
1.0 | 13.0
16.5 | 1.0
1.0 | 13.0
16.5 | ns | | | S to Y | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 4.0
5.5 | 6.8
8.8 | 1.0
1.0 | 8.0
10.0 | 1.0
1.0 | 8.0
10.0 | | | t _{PZL} ,
t _{PZH} | Maximum Output Enable Time | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_L = 1 \text{ k}\Omega$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 6.7
9.2 | 10.5
14.0 | 1.0
1.0 | 12.5
16.0 | 1.0
1.0 | 12.5
16.0 | ns | | | ŌE to Y | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $R_L = 1 \text{ k}\Omega$ | | | 3.6
5.1 | 6.8
8.8 | 1.0
1.0 | 8.0
10.0 | 1.0
1.0 | 8.0
10.0 | | | t _{PLZ} ,
t _{PHZ} | Maximum Output Disable Time | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_L = 1 \text{ k}\Omega$ | C _L = 50 pF | | 12.0 | 15.0 | 1.0 | 16.0 | 1.0 | 17.5 | ns | | | ŌE to Y | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ $R_L = 1 \text{ k}\Omega$ | C _L = 50 pF | | 5.7 | 13.0 | 1.0 | 14.0 | 1.0 | 15.0 | | | C _{IN} | Maximum Input
Capacitance | | | | 4 | 10 | | 10 | | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0V | | |--------|--|--|----| | C_PD | Power Dissipation Capacitance (Note 5) | 20 | pF | ^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. # **NOISE CHARACTERISTICS** (Input $t_f = t_f = 3.0 \text{ ns}, C_L = 50 \text{ pF}, V_{CC} = 5.0 \text{ V})$ | | | T _A = 25°C | | | |------------------|--|-----------------------|-------|------| | Symbol | Characteristic | Тур | Max | Unit | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | 0.3 | 0.8 | V | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | - 0.3 | - 0.8 | V | | V _{IHD} | Minimum High Level Dynamic Input Voltage | | 3.5 | V | | V _{ILD} | Maximum Low Level Dynamic Input Voltage | | 1.5 | V | ν_{CC} ΟE 50% GND ← t_{PZL} $t_{PLZ}-$ HIGH **IMPEDANCE** 50% V_{CC} $V_{OL} + 0.3V$ t_{PHZ}→ t_{PZH} V_{OH} - 0.3V 50% V_{CC} HIGH **IMPEDANCE** Figure 5. Switching Waveform Figure 6. Switching Waveform *Includes all probe and jig capacitance *Includes all probe and jig capacitance Figure 7. Test Circuit Figure 8. Test Circuit Figure 9. Input Equivalent Circuit # **MECHANICAL CASE OUTLINE** **DATE 29 DEC 2006** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - PHOI HUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | METERS | INC | HES | |-----|---------|--------|-------|-------| | DIM | MIN MAX | | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | C | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Ρ | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | | 2.
3. | COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE | 2.
3.
4.
5.
6.
7.
8.
9.
10. | CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE NO CONNECTION ANODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE | 2.
3.
4.
5.
6.
7.
8.
9.
10. | COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #2 COLLECTOR, #3 | STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | COLLECTOR, #1
COLLECTOR, #2
COLLECTOR, #3
COLLECTOR, #3
COLLECTOR, #4
COLLECTOR, #4
BASE, #4
EMITTER, #4
BASE, #3 | | | |--|---|--|---|--|---|---|---|--|---| | 14. | COLLECTOR | | NO CONNECTION | 14. | | 14. | | SOLDERING | FOOTPRINT | | 15. | EMITTER | | ANODE | 15. | | 15. | | 8) | (| | 16. | COLLECTOR | 16. | CATHODE | 16. | COLLECTOR, #4 | 16. | EMITTER, #1 | 6.4 | | | STYLE 5:
PIN 1.
2.
3.
4.
5.
6.
7.
8. | DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 | STYLE 6:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | CATHODE | STYLE 7:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | SOURCE N-CH COMMON DRAIN (OUTPU' GATE P-CH COMMON DRAIN (OUTPU' COMMON DRAIN (OUTPU' COMMON DRAIN (OUTPU' SOURCE P-CH SOURCE P-CH | T)
T)
T) | 1
0. | 6X 1 1 1 1 1 1 1 1 1 1 | 16 | | 10. | SOURCE, #4 | 10. | ANODE | 10. | COMMON DRAIN (OUTPUT | T) | | | | | 11. | GATE, #3 | 11. | | 11. | COMMON DRAIN (OUTPUT | | | | | | 12. | SOURCE, #3 | 12. | ANODE | 12. | COMMON DRAIN (OUTPUT | | | | 1.07 | | 13. | GATE, #2 | 13. | ANODE | 13. | GATE N-CH | | | | | | 14. | SOURCE, #2 | 14. | | 14. | COMMON DRAIN (OUTPUT | | | | ↓ PITCH | | 15. | GATE, #1 | 15. | ANODE | 15. | COMMON DRAIN (OUTPUT | T) | | | + | | 16. | SOURCE, #1 | 16. | ANODE | 16. | SOURCE N-CH | | | 8 | 9 + - + + + + + + + + + + + + + + + + + | | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED" | | |------------------|-------------|--|-------------| | DESCRIPTION: | SOIC-16 | | PAGE 1 OF 1 | ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 0.10 (0.004) D -T- SEATING PLANE TSSOP-16 CASE 948F-01 ISSUE B **DATE 19 OCT 2006** #### NOTES - JIES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD EL ROLL OF GATE BURDS SUAL NO. - MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. - DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INCHES | | |-----|----------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 BSC | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | Κ | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | Г | 6.40 BSC | | 0.252 BSC | | | М | 0 ° | 8° | 0 ° | 8 ° | ### **SOLDERING FOOTPRINT** G ### **GENERIC MARKING DIAGRAM*** 168888888 XXXX XXXX **ALYW** 188888888 XXXX = Specific Device Code Α = Assembly Location = Wafer Lot L Υ = Year W = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TSSOP-16 | | PAGE 1 OF 1 | | **DETAIL E** ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative