Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS Integrated Circuit

RENESAS

μ**PD78F8056**, **78F8057**, **78F8058**

16-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD78F8056, 78F8057, 78F8058 products are a 16-bit single-chip microcontroller of the 78K0R series. This microcontroller features 2.4 GHz RF transceiver function and many peripherals.

1. FEATURES

- 78K0R 16-bit CPU core
- 2.4 GHz RF transceiver included
- Flash Memory and RAM size

Item	Flash Memory	RAM
Product Number		
μ PD78F8056 ^{Note 1}	64 K bytes	8 K bytes ^{Note 2}
μ PD78F8057 ^{Note 1}	96 K bytes	8 K bytes ^{Note 2}
μ PD78F8058 ^{Note 1}	128 K bytes	8 K bytes ^{Note 2}

Notes 1. under development

2. This is 7 KB when the self-programming function is used.

Minimum instruction cycle

 0.05μ s (f_{MX} = 20 MHz operation) 61 μ s (f_{SUB} = 32.768 KHz operation)

Clock

- HIGH SPEED CLOCK
- High-speed internal oscillator
- 1 MHz (Typ.), 8 MHz (Typ.), 20 MHz (Typ.)
- Ceramic/Crystal Oscillator/External CLK 2 MHz to 20 MHz ($V_{DD} = 2.7$ V to 3.6 V) 2 MHz to 5 MHz ($V_{DD} = 1.8$ V to 3.6 V)
- LOW SPEED CLOCK
- Low-speed internal oscillator for WDT Clock speed : 30 KHz (Typ.)
- SUBSYSTEM CLOCK
- Crystal oscillator 32.768 KHz (TYP.): VDD = 1.8 V to 3.6 V

Function

- 2.4 GHz RF transceiver
- IEEE802.15.4-2006 specification compatible (Modulation: O-QPSK, Spectrum: DSSS Transmission speed:250 kbps)
- Self-programming
- On-Chip debugging
- Power-On-Clear (POC) circuit
- Low-Voltage Detector (LVI) circuit
- Multiplier(16 bits x 16 bits)
- Divider (32 bits ÷ 32 bits)
- BCD correction

DMA 2 channel
Timer

- 16bit Timer: 12 channels
- (Unit 0: 8 channels, Unit1: 4 channels)
- Watchdog Timer: 1 channel
- Real Time Counter: 1 channel
- Serial Interface
 - CSI: 1 channel (dedicated to RF transceiver communication at internal connection)
 - CSI / UART: / Simplified I²C: 1channel
 - UART (Tx Only) : 1 channel
 - UART (LIN supported) : 1 channel
- I/O PORT
- CMOS I/O : 12Note
- CMOS Input : 4^{Note}
- CMOS Output : 1^{Note}
- N-ch Open Drain I/O : 1^{Note}

Operation Voltage

1.8 V to 3.6 V

Operating ambient temperature

 $TA = -40 \text{ to } +85^{\circ}C$

Package

56-pin QFN (8 x 8) (0.5 mm pitch)

Note Include External Connection on the PCB by users between MCU and RF transceiver.

This information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production. Not all products and/ or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

2. OUTLINE OF FUNCTIONS

Item		μ PD78F8056 ^{Note 1}	μ PD78F8057 ^{Note 1}	μ PD78F8058 ^{Note 1}			
Internal Flash Memory		64 KB	96 KB	128 KB			
memory	RAM	8 KB	8 KB	8 KB			
Cuatam	Ceramic/Crystal/External	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)					
System clock		2 to 20 MHz (/ _{DD} = 2.7 to 3.6 V), 2 to 5MHz (V	√ _{DD} = 1.8 to 3.6 V)			
	Internal oscillator	1 MHz	(TYP.) or 8 MHz (TYP.) or 20 M	IHz (TYP.)			
Subsystem			XT1 (crystal) oscillation				
•	n frequency)	32	.768 KHz (TYP.): V _{DD} = 1.8 V to	9 5.5 V			
Low Speed (For WDT)	d internal oscillator		Clock speed : 30 KHz (TYP.)			
Minimum ir	nstruction cycle	0.05 μ s (Hig	h-speed system clock: f _{MX} = 20	MHz operation)			
	-	61 μ s (Su	ubsystem clock: fsue = 32.768 K	Hz operation)			
	Total		18 ^{Note 2}				
	CMOS I/O		12 ^{Note 2}				
I/O	CMOS Input		4 ^{Note 2}				
	CMOS Output		1 Note 2				
	N-ch Open Drain I/O		1 ^{Note 2}				
Interrupt	External	4 channels (INTP0, INTP4 ^{Note 2} , INTP5, INTP10)					
	Internal	27 channels					
		- 16 Bit Timer : 12 channels (Unit0: 8 channels, Unit1: 4 channels)					
Timer		- Watch Dog Timer : 1 channel					
		- Real Time Counter: 1 channel					
	Timer outputs	2 (PWM outputs: timer array unit 0: 2 ^{Note 3} , timer array unit 1: 0)					
	RTC Output	1 (512 Hz, 16.384 KHz, or 32.768 KHz (subsystem clock: fsue = 32.768 KHz))					
			o RF transceiver communicatio	n at internal connection)			
Serial Inter	rface	- CSI/UART/Simplified I ² C: 1					
		- UART (Tx Only) : 1 channel - UART (LIN supported) : 1 channel					
2.4 GHz RI	F transceiver Function	IEEE802.15.4-2006 specification compatible (Modulation: O-QPSK Spectrum: DSSS Transmission speed:250 kbps)					
Multiplier /	Divider	 - 16 bits x 16 bits = 32 bits (multiplication) - 32 bits÷32 bits = 32 bits (division) 					
DMA contr	oller	2 channels					
Power-on	clear circuit	- Power-on-reset: 1.61±0.09 V					
Power-on-clear circuit		- Power-down-reset: 1.59±0.09 V					
Low-voltag	je detector	1.91 V to 3.45 V (11 steps)					
On-chip de	bug Function	provided					
Power sup	ply voltage	V _{DD} = 1.8 to 3.6 V					
Operation	temperature	Ta = −40 to +85°C					
Package		56-pin QFN (8 x 8) (0.5 mm pitch)					

Notes 1. Under development

 $\mbox{2. Include External Connection externally on the PCB by users between MCU and RF transceiver. } \label{eq:constraint}$

Refer to 6. CONNECTION BETWEEN MCU AND RF TRANSCEIVER.

3. The number of PWM outputs varies, depending on the setting.

3. PIN CONFIGURATION (TOP VIEW)

• 56-pin plastic QFN (8 x 8) Note

Note Under development

- Cautions 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F: target).
 - 2. Connect the LOOP_C pin to GND_GR via a capacitor (39 pF: target).
 - 3. Connect ICO-IC2 pins to Vss via a resistor.
 - 4. Leave open IC3-IC6 pins.

4. PIN IDENTIFICATION

EXCLK	: External Clock Input (Main System Clock)	RTCCL	: Real-time Counter Clock (32 KHz Original Oscillation) Output
EXLVI	: External Potential Input for Low-voltage Detector	RTCDIV	: Real-time Counter Clock (32 KHz Divided Frequency) Output
FLMD0	: Flash Programming Mode	RXD1,RxD3	: Receive Data
INTP0,INT4,INTP5	: External Interrupt Input	SCK10	: Serial Clock Input/Output
INT10		SCL10	: Serial Clock Input/Output
P02-P04	: Port 0	SDA10	: Serial Data Input/Output
P13-P16	: Port 1	SI10,	: Serial Data Input
P31	: Port 3	SO10,	: Serial Data Output
P40,P41	: Port 4	TI01, TI03	: Timer Input
P76	: Port 7	TO01, TO03	: Timer Output
P120-P124	: Port 12	TOOL0	: Data Input/Output for Tool
P130	: Port 13	TOOL1	: Clock Output for Tool
P144	: Port 14	TxD1-TxD3	: Transmit Data
CLK_OUT	: Clock Output	VDD	: Power Supply
INT_RF	: Interrupt from RF	VSS	: Ground
WAKE_RF	: Wakeup for RF	X1, X2	: Crystal Oscillator (Main System
GPIO0,GPIO1	: Port for RF		Clock)
<u>GPIO2,GPI</u> O3		XT1, XT2	: Crystal Oscillator (Subsystem
RESET_RF	: Reset for RF		Clock)
LOOP_C	: Loop Capacitor for RF	VDD_RF1	: Power Supply for RF
RF_P	: RF Output(+)	VDD_RF2	
RF_N	: RF Output(-)	VDD_GR	: Power Supply for RF Guard Ring
XTAL_N,XTAL_P	: Crystal Oscillator(RF Clock)	VDD_3V	: Power Supply for RF Regulator
IC0-IC6	: Internal Circuit	VDD_D	: Power Supply for RF Digital
GND1	: Package exposed die pad	VDD_BG	: Power Supply for RF Band Gap
REGC	: Regulator Capacitance	VDD_A	: Power Supply for RF Analog
RESET	: Reset	VDD_PLL	: Power Supply for RF PLL
		VDD_CP	: Power Supply for RF Charge pomp
		VDD_VCO	: Power Supply for RF VCO
		GND_GR	: Ground for RF Guard Ring
		GND_D	: Ground for RF digital
		GND_PLL	: Ground for RF PLL
		VDD_2V2	: DC/DC Output

5. BLOCK DIAGRAM

6. CONNECTION BETWEEN MCU AND RF TRANSCEIVER

(1) Internal Connection

Name		Function(RF transceiver)	Direction	
RF transceiver	MCU			
SCLK_RF	P10/SCK00	Clock signal of SPI interface	MCU→ RF transceiver	
SO_RF	P11/SI00	Output signal of SPI interface	RF transceiver→ MCU	
SI_RF	P12/SO00	Input signal of SPI Interface	MCU→ RF transceiver	
SEN_RF	P17	Enable signal of SPI interface High level: disable Low level: enable	MCU→ RF transceiver	
GPIO2	P15/RTCDIV/ RTCCL	Case of using P15/RTCDIV/ RTCCL, set input mode to GPIO2. Case of using GPIO2, set input mode to P15/RTCDIV/RTCCL.	_	
GPIO3	P16/TI01/ TO01/INTP5	Case of using P16/TI01/TO01/INTP5, set input mode to GPIO3. Case of using GPIO3, set input mode to P16/TI01/TO01/INTP5.	_	

(2) Connection externally on the PCB by users

Nam	е	Function(RF transceiver)	Direction
RF transceiver	MCU		
RESET_RF	P130	RESET input signal for transceiver High level: disable Low level: enable	MCU→ RF transceiver
WAKE_RF	P144	Wakeup request signal for transceiver The active level can be specified by software setting at RF transceiver.	MCU→ RF transceiver
INT_RF	P31/TI03/ TO03/INTP4	Interrupt output signal The active level can be specified by software setting at RF transceiver.	RF transceiver→ MCU
CLK_OUT	P122/X2/ EXCLK	Clock out at 32/16/8/4/2/1 MHz. Use system clock MCU. XTAL_P and XTAL_N of RF transceiver is main clock at 32 MHz.	RF transceiver→ MCU

Note These are mandatory connection for recommendation library of our company. The RESET_RF connect to V_{DD} via a resistor of about 10 K ohm.

7. PORT

(1) Port functions

Function Name	I/O	Function	After Reset	Alternate Function
P02	I/O	Port 0.	Input port	SO10/TxD1
P03		3-bit I/O port		SI10/RxD1/SDA10
P04		Output of P02 to P04 can be set to N-ch open-drain output (Vpp tolerance).		SCK10/SCL10
		Input/output can be specified in 1-bit units.		
		Use of an on-chip pull-up resistor can be specified by a software		
_		setting.		
P13	I/O	Port 1. 4-bit I/O port.	Input port	TxD3
P14	-	Input/output can be specified in 1-bit units.		RxD3
P15		Use of an on-chip pull-up resistor can be specified by a software		RTCDIV/RTCCL/
		setting.		GPIO2
P16				TI01/TO01/INTP5/
				GPIO3
P31	I/O	Port 3.	Input port	TI03/TO03/INTP4
		1-bit I/O port.		
		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software		
		setting.		
P40 ^{Note}	I/O	Port 4.	Input port	TOOL0
P41		2-bit I/O port.		TOOL1
		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software		
		setting.		
P76	I/O	Port 7.	Input port	INTP10
		1-bit I/O port.		
		Input/output can be specified in 1-bit units.		
		Use of an on-chip pull-up resistor can be specified by a software		
D.(00		setting.		
P120	I/O	Port 12. 1-bit I/O port and 4-bit input port.	Input port	INTP0/EXLVI
P121	Input	For only P120, use of an on-chip pull-up resistor can be specified		X1
P122		by a software setting.		X2/EXCLK
P123	-			XT1
P124				XT2
P130	Output	Port 13.	Output port	-
	1/0	1-bit output port.	In a start of the	T. D0
P144	I/O	Port 14. 1-bit I/O port.	Input port	TxD2
		Output of P144 can be set to the N-ch open-drain output (VDD		
		tolerance).		
		Input/output can be specified in 1-bit units.Use of an on-chip		
GPIO0	I/O	pull-up resistor can be specified by a software setting. 1-bit I/O port of RF transceiver control.	Input port	
	1/0	1-bit I/O port of RF transceiver control.		_
GPIO1		1-bit I/O port of RF transceiver control.	Input port	
GPIO2	I/O		Input port	P15/RTCDIV/
		1-bit I/O port of RF transceiver control.		RTCCL
GPIO3	I/O		Input port	P16/TI01/TO01/
				INTP5

Note If on-chip debugging is enabled by using an option byte, be sure to pull up the P40/TOOL0 pin externally

Function Name	I/O	Function	After Reset	Alternate Function
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
INTP0	Input	External interrupt request input for which the valid edge (rising Input por		P120/EXLVI
INTP4		edge, falling edge, or both rising and falling edges) can be specified		P31/TI03/TO03
INTP5		specified		P16/TI01/TO01/
INTP10				GPIO3
REGC	-	Connecting regulator output (2.4 V) stabilization capacitance for internal operation. Connect to VSS via a capacitor (0.47 to 1 μ F: target).	_	-
RTCDIV	Output	Real-time counter clock (32 KHz divided frequency) output	Input port	P15/RTCCL/ GPIO2
RTCCL	Output	Real-time counter clock (32 KHz original oscillation) output	Input port	P15/RTCDIV/ GPIO2
RESET	Input	System reset input	-	_
RxD1	Input	Serial data input to UART1	Input port	P03/SI10/SDA10
RxD3	Input	Serial data input to UART3	Input port	P14
SCK10	I/O	Clock input/output for CSI10.	Input port	P04/SCL10
SCL10	I/O	Clock input/output for simplified I ² C	Input port	P04/SCK10
SDA10	I/O	Serial data I/O for simplified I ² C	Input port	P03/SI10/RxD1
SI10	Input	Serial data input to CSI10.	Input port	P03/RxD1/SDA10
SO10	Output	Serial data output from CSI10.	Input port	P02/TxD1
TI01	Input	External count clock input to 16-bit timer 01	Input port	P16/TO01/INTP5/ GPIO3
TI03	_	External count clock input to 16-bit timer 03		P31/TO03/INTP4
TO01	Output	16-bit timer 01 output	Input port	P16/TI01/INTP5/ GPIO3
ТО03		16-bit timer 03 output		P31/TI03/INTP4
TxD1	Output	Serial data output from UART1	Input port	P02/SO10
TxD2	1	Serial data output from UART2		P144
TxD3		Serial data output from UART3	-	P13
X1	_	Resonator connection for main system clock	Input port	P121
X2	_	1	Input port	P122/EXCLK
EXCLK	Input	External clock input for main system clock	Input port	P122/X2
XT1	-	Resonator connection for subsystem clock	Input port	P123
XT2	-		Input port	P124
Vdd	_	Positive power supply for MCU		-
Vdd_3V		Positive power supply for regulator and ports of RF transceiver.	_	
Vss	-	Ground potential	_	-
FLMD0		Flash memory programming mode setting		_
TOOL0	I/O	Data I/O for flash memory programmer/debugger	Input port	P40
TOOL1	Output	Clock output for debugger	Input port	P41

(2) Non-port functions (1/2)

Function Name	I/O	Function	After Reset	Alternate Function
VDD_RF1	_	RF power supply. Bypass with a capacitor as close to the pin as possible.	-	_
VDD_RF2	_	RF power supply. Bypass with a capacitor as close to the pin as possible.	-	_
Vdd_GR	_	Guard ring power supply. Bypass with a capacitor as close to the pin as possible.	-	_
Vdd_D	-	Digital circuit power supply.	-	-
Vdd_BG	_	Power supply for band gap reference circuit. Bypass with capacitor as close to the pin as possible.	-	_
Vdd_A	_	Power supply for an analog circuit. Bypass with a capacitor as close to the pin as possible.	-	_
Vdd_PLL	_	PLL power supply. Bypass with a capacitor as close to the pin as possible.	-	_
VDD_CP	_	Charge pump power supply. Bypass with a capacitor as close to the pin as possible.	-	_
VDD_VCO	_	VCO supply. Bypass with a capacitor as close to the pin as possible.	-	_
GND_GR	-	Guard ring ground	-	_
GND_D	-	Ground for digital circuit	-	_
GND_PLL	-	Ground for a PLL	-	_
VDD_2V2	-	DC-DC output voltage	-	_
XTAL_N	-	32 MHz Crystal input (-)	-	-
XTAL_P	-	32 MHz Crystal input (+)	-	_
RF_P	Output	Differential RF input/output (+)	Output	_
RF_N	Output	Differential RF input/output (-)	Output	_
CLK_OUT	Output	32/16/8/4/2/1 MHz Clock output	Input	_
INT_RF	Output	Interrupt pin of RF transceiver to the MCU.	Output	_
WAKE_RF	Input	External wake up trigger to RF transceiver.	Input	_
RESET_RF	Input	Global hardware reset pin, active low.	Input	_
LOOP_C	_	PLL loop filter external capacitor. Connected to the external (39 pF: target) capacitor.	-	-
IC0-2	Input	Internal connection.	Input	-
IC3-6	-	Internal connection.	-	_
GND1	-	exposed die pad Make these pins the same potential as Vss.	_	-

(2) Non-port functions (2/2)

(3) Connection of Unused Pins

Pin Name	I/O Circuit Type	Recommended Connection of Unused Pins
P02/SO10/TxD1	I/O	Input: Independently connect to VDD or VSS via a resistor.
P03/SI10/RxD1/SDA10		Output: Leave open.
P04/SCK10/SCL10		
P13/TxD3		Input: Independently connect to V _{DD} or V _{SS} via a resistor.
P14/RxD3		Output: Leave open.
P15/RTCDIV/RTCCL/		
GPIO2		
P16/TI01/TO01/INTP5/		
GPIO3		
P31/TI03/TO03/INTP4		Input:Independently connect to VDD or VSS via a resistor.Output:Leave open.Refer to 6. CONNECTION BETWEEN MCU AND RF RANSCEIVER.
P40/TOOL0		<when debugging="" enabled="" is="" on-chip=""> Pull this pin up (pulling it down is prohibited). <when debugging="" disabled="" is="" on-chip=""> Input: Independently connect to VDD or VSS via a resistor. Output: Leave open.</when></when>
P41/TOOL1		Input: Independently connect to V _{DD} or V _{SS} via a resistor. Output: Leave open.
P76/KR6/INTP10	I/O	Input: Independently connect to V _{DD} or V _{SS} via a resistor.
P120/INTP0/EXLVI		Output: Leave open.
P121/X1	Input	Independently connect to VDD or Vss via a resistor.
P122/X2/EXCLK		
P123/XT1		Refer to 6. CONNECTION BETWEEN MCU AND RF RANSCEIVER at P122.
P124/XT2		1 122.
P130	Output	Leave Open Refer to 6. CONNECTION BETWEEN MCU AND RF RANSCEIVER.
P144/TxD2	I/O	Independently connect to V _{DD} or V _{SS} via a resistor. Output: Leave open.
		Refer to 6. CONNECTION BETWEEN MCU AND RF RANSCEIVER.
FLMD0	-	Leave open or connect to V_{SS} via a resistor of 100 k Ω or more.
RESET	Input	Connect directly or via a resistor to VDD.
REGC	-	Connect to Vss via capacitor (0.47 to 1 μ F: target).
LOOP_C	-	Connect to GND_GR via capacitor (39 pF: target).
ICO	Input	Connect to Vss via a resistor.
IC1	Input	Connect to Vss via a resistor.
IC2	Input	Connect to Vss via a resistor.
IC3	-	Leave Open
IC4	-	Leave Open
IC5	-	Leave Open
IC6	-	Leave Open
GND1	-	Make this pin the same potential as Vss.

8. CAUTIONS WHILE DEVELOPING PROGRAM

A reference flow chart of the program with RF transceiver

While developing user program, please be sure to set the following setting as initial setting after reset.

Internal Port Name of MCU	Recommended setting
P05, P06, P30,	
P42 to P44, P46, P47,	
P50, P51, P53 to P55,	set this port to output mode after reset
P60, P61, P64 to P67,	
P70 to P75, P77,	
P110, P140	

9. CLOCK GENERATOR

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following three kinds of system clocks are selectable.

<1> X1 oscillator

This circuit oscillates a clock of fx = 2 to 20 MHz by connecting a resonator to X1 and X2.

<2> Internal high-speed oscillator

This circuit oscillates clocks of $f_{H} = 1$, 8 MHz (TYP.). After a reset release, the CPU always starts operating with this internal high-speed oscillation clock.

<3> 20 MHz internal high-speed oscillator

This circuit oscillates clocks of fiH20 = 20 MHz (TYP.).

<4> Supply from the EXCLK pin

An external main system clock (fex = 2 to 20 MHz) can also be supplied from the EXCLK pin.

Select <4> Supply from the EXCLK pin case of connects as 6. CONNECTION BETWEEN MCU AND RF RANSCEIVER.

The clock generator is basically the same as the one in 78K0R/KF3-L. Please refer to user manual of 78K0R/KF3-L (U19459E) for the details.

10. PERIPHERALS

NFC

The following peripherals are the same as the ones in 78K0R/KF3-L. Please refer to user manual of 78K0R/KF3-L (U19459E) for the details.

- WATCHDOG TIMER
- MULTIPLIER/DIVIDER
- RESET FUNCTION
- STANDBY FUNCTION
- POWER-ON-CLEAR CIRCUIT
- REGULATOR
- OPTION BTYE
- FLASH MEMORY
- ON-CHIP DEBUG FUNCTION
- BCD CORRECTION CIRCUIT

The following peripherals don't exist from the ones in 78K0R/KF3-L.

- CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER
- A/D CONVERTER
- SERIAL INTERFACE IICA
- KEY INTERRUPT FUNCTION

The following peripherals are little different from the ones in 78K0R/KF3-L.

- TIMER ARRAY UNIT
- SERIAL ARRAY UNIT
- DMA CONTROLLER
- INTERRUPT FUNCTIONS
- LOW-VOLTAGE DETECTOR

The difference of each peripheral will be described from next page.

(1) TIMER ARRAY UNIT

The timer array unit has two units. The timer array unit 0 has eight 16-bit timers and the timer array unit 1 has four 16-bit timers. Each 16-bit timer is called a channel and can be used as an independent timer. In addition, two or more "channels" can be used to create a high-accuracy timer.

Single-operation Function	Combination-operation Function
 Interval timer Square wave output External event counter Input pulse interval measurement Measurement of high-/low-level width of input signal 	 PWM output One-shot pulse output Multiple PWM output

The timer array unit is basically the same as the one in 78K0R/KF3-L. But the pin of timer input and output is only the channel 1 and 3 of unit 0.

Please refer to user manual of 78K0R/KF3-L (U19459E) for the details.

NEC

(2) SERIAL ARRAY UNIT

The serial array unit has four serial channels per unit and can use two or more of various serial interfaces (3-wire serial (CSI), UART, and simplified I²C) in combination.

The serial channel is basically the same as the one in 78K0R/KF3-L. Please refer to user manual of 78K0R/KF3-L (U19459E) for the detail explanation of 3-wire serial (CSI) and UART interface.

The following interfaces are supported.

Unit	Channel	Used as CSI	Used as UART	Used as Simplified I ² C
0	0	CSI00		-
		(dedicated to RF transceiver	-	
		communication)		
	1	—		-
	2	CSI10	UART1	IIC10
	3	—		-
1	0	-	UART2(Tx Only)	-
	1	—	-	-
	2	_	UART3	_
	3	_	(supporting LIN-bus)	_

Channels 2 and 3 of unit 1 are dedicated to UART3 (supporting LIN-bus).

(3) DMA CONTROLLER

NEC

Data can be automatically transferred between SFRs of the peripheral hardware supporting DMA and internal RAM without via CPU by DMA triggers.

DMA triggers are selected by setting IFCn3 to IFCn0, bit 3 to 0 of DMA mode control register (DMCn). The following DMA triggers are selectable.

IFCn3	IFCn2	IFCn1	IFCn0	Selection of DMA start source		
				Trigger signal	Trigger contents	
0	0	0	0	-	Disable DMA transfer by interrupt.	
					(Only software trigger is enabled.)	
0	0	1	0	INTTM00	End of timer array unit 0 channel 0 count or	
					capture	
0	0	1	1	INTTM01	End of timer array unit 0 channel 1 count or	
					capture	
0	1	0	0	INTTM04 End of timer array unit 0 channel 4		
				capture		
0	1	0	1	INTTM05 End of timer array unit 0 channel 5 cour		
					capture	
0	1	1	0	INTCSI00	00 CSI00 transmission transfer end	
1	0	0	0	INTST1/INTCSI10/INTIIC10 UART1 transmission transfer end or		
				CSI10 transmission transfer end or IIC		
				transmission transfer end		
1	0	0	1	INTSR1	UART1 reception end interrupt	
1	0	1	0	INTST3	UART3 transmission transfer end interrupt	
1	0	1	1	INTSR3 UART3 reception end interrupt		
Other than above		Setting prohibited				

Remark n: DMA channel number (n=0, 1)

Please refer to user manual of 78K0R/KF3-L (U19459E) for the details.

(4) INTERRUPT FUNCTIONS

The following two types of interrupt functions are used.

- <1> Maskable interrupts
 - These interrupts undergo mask control.

<2> Software interrupt

This is a vectored interrupt generated by executing the BRK instruction.

The following maskable interrupts are available.

Default		Interrupt Source	Internal/	Vector Table Address
Priority ^{Note 1}	Name	Trigger	External	
0	INTWDTI	Watchdog timer interval ^{Note 2}	Internal	0004H
		(75% of overflow time)		
1	INTLVI	Low-voltage detection Note 3		0006H
2	INTP0	Pin input edge detection	External	0008H
3	INTP4			0010H
4	INTP5			0012H
5	INTST3	UART3 transmission transfer end or buffer empty interrupt	Internal	0014H
6	INTSR3	UART3 reception transfer end		0016H
7	INTSRE3	UART3 reception communication error occurrence		0018H
8	INTDMA0	End of DMA0 transfer		001AH
9	INTDMA1	End of DMA1 transfer		001CH
10	INTCSI00	CSI00 transfer end or buffer empty interrupt		001EH
11	INTST1/ INTCSI10/ INTIIC10	UART1 transmission transfer end or buffer empty interrupt/ CSI10 transfer end or buffer empty interrupt/ IIC10 transfer end		0024H
12	INTSR1	UART1 reception transfer end		0026H
13	INTSRE1	UART1 reception communication error occurrence		0028H
14	INTTM00	End of timer array unit 0 channel 0 count		002CH
15	INTTM01	End of timer array unit 0 channel 1 count or capture		002EH

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority.

- 2. When bit 7 (WDTINT) of the option byte (00C0H) is set to 1.
- 3. When bit 1 (LVIMD) of the low-voltage detection register (LVIM) is cleared to 0.

Default		Interrupt Source	Internal/	Vector
Priority ^{Note}	Name	ame Trigger		Table Address
16	INTTM02	End of timer array unit 0 channel 2 count	Internal	0030H
17	INTTM03	End of timer array unit 0 channel 3 count or capture		0032H
18	INTRTC	Fixed-cycle signal of real-time counter/alarm match detection		0036H
19	INTRTCI	Interval signal detection of real-time counter		0038H
20	INTST2	UART2 transmission transfer end or buffer empty interrupt		003CH
21	INTTM13	End of timer array unit 1 channel 3 count		0040H
22	INTTM04	End of timer array unit 0 channel 4 count		0042H
23	INTTM05	End of timer array unit 0 channel 5 count		0044H
24	INTTM06	End of timer array unit 0 channel 6 count		0046H
25	INTTM07	End of timer array unit 0 channel 7 count or capture		0048H
26	INTP10 Pin input edge detection		External	0052H
27	INTTM10	End of timer array unit 1 channel 0 count	Internal	0056H
38	INTTM11	End of timer array unit 1 channel 1 count		0058H
29	INTTM12	End of timer array unit 1 channel 2 count		005AH
30 INTMD		End of division operation		005EH

Note. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority.

Please refer to user manual of 78K0R/KF3-L (U19459E) for the details.

(5) LOW-VOLTAGE DECTECTOR

The low-voltage detector (LVI) is basically the same as the one in 78K0R/KF3-L. But the low-voltage detection levels are different.

The low-voltage detection levels are set by LVIS3 to LVIS0, bit 3 to 0 of low-voltage detection level select register (LVIS). The low-voltage detection levels are as below.

LVIS3	LVIS2	LVIS1	LVIS0	Detection level
0	1	0	1	$V_{LV15} (3.45 \pm 0.1 V)^{Note}$
0	1	1	0	$V_{LVI6} (3.30 \pm 0.1 V)^{Note}$
0	1	1	1	$V_{LV17} (3.15 \pm 0.1V)^{Note}$
1	0	0	0	$V_{LVI8} (2.99 \pm 0.1 V)^{Note}$
1	0	0	1	$V_{LVI9} (2.84 \pm 0.1V)^{Note}$
1	0	1	0	$V_{LVI10} (2.68 \pm 0.1 V)^{Note}$
1	0	1	1	$V_{LVI11} (2.53 \pm 0.1 V)^{Note}$
1	1	0	0	$V_{LVI12} (2.38 \pm 0.1 V)^{Note}$
1	1	0	1	$V_{LVI13} (2.22 \pm 0.1 V)^{Note}$
1	1	1	0	$V_{LVI14} (2.07 \pm 0.1 V)^{Note}$
1	1	1	1	$V_{LVI15} (1.91 \pm 0.1V)^{Note}$
	Other th	Setting prohibited		

Note These are preliminary values and subject to change.

Please refer to user manual of 78K0R/KF3-L (U19459E) for the details.

11. RF transceiver FUNCTION

The RF transceiver function is implemented by 2.4GHz RF transceiver inside.

It integrates a wireless RF transceiver operating at 2.4 GHz with an IEEE802.15.4-2006 compliant baseband and MAC layer function blocks.

The RF block of the RF transceiver integrates a receiver, a transmitter, a voltage-controlled oscillator (VCO), and a phase-locked loop (PLL). It uses advanced radio architecture to minimize the external component count and the power consumption.

The MAC/Baseband provides the hardware architecture for both an 802.15.4 MAC and PHY layers. It mainly consists of TX/RX FIFOs, a CSMA-CA controller, a 'Superframe' constructor, a receiving frame filter, a security engine, and a digital signal processing module.

NOTE FOR USING RF TRANSCEIVER

International regulations and national laws regulate the use of radio receivers and transmitters.

Please note the compliance with regulation for using country.

The following most important regulations for the 2.4 GHz Japan : ARIB STD-T66 USA : FCC CFR47 part15.247 and part15.249 Europe : EN300 440 and EN 300 328

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

NFC

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

- The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
- Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC Electronics products are not taken measures to prevent radioactive rays in the product design. When customers use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in order to avoid risks of the damages to property (including public or social property) or injury (including death) to persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M5D0904E

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana Via Fabio Filzi, 25/A

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/