

TPS62860, TPS62861 SLUSDU8D – SEPTEMBER 2019 – REVISED MAY 2022

1.75-V to 5.5-V Input, 0.6-/1-A Synchronous Step-Down Converter with I²C/VSEL Interface

1 Features

TEXAS

INSTRUMENTS

- 2.3-µA operating quiescent current
- Up to 4-MHz switching frequency
- 1% output voltage accuracy
- DVS output from 0.4 V to 1.9875 V (12.5-mV steps)
- I²C user interface to adjust
 - Output voltage presets
 - Ramp speed
- VSEL-pin to toggle V_{OUT} during operation
- Power good indication
- Supports <6-mm² solution size
- Supports <0.6-mm solution height
- Tiny 8-pin, 0.35-mm pitch WCSP package
- Optimized pinout to support 0201 components

2 Applications

- Wearable electronics
- Portable electronics
- Mobile phones
- Medical sensor patches and patient monitors

3 Description

TPS6286x The devices are high-frequency synchronous step-down converters with I2C- and VSEL-Interface. They provide an efficient, flexible, and high-power density point-of-load DC/DC solution. At medium to heavy loads, the converter operates in PWM mode and automatically enters Power Save Mode operation at light load to maintain high efficiency over the entire load current range. The device can also be forced in PWM mode operation for the smallest output voltage ripple. Together, with its DCS-control architecture, excellent load transient performance and tight output voltage accuracy are achieved. With the I²C interface and a dedicated VSEL pin, the output voltage is quickly adjusted to adapt the power consumption of the load to the everchanging performance needs of the application. The TPS6286x family is available with two VSEL pins and four factory preset voltages to allow usage without I²C interface.

Device Information

PART NUMBER	CURRENT	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
TPS628610	1 A	DSBGA (8)	0.7 × 1.4 × 0.4 mm
TPS628601	0.6 A	DSBGA (8)	0.7 × 1.4 × 0.4 mm
TPS628600	0.6 A	DSBGA (8)	0.7 × 1.4 × 0.4 mm
TPS628602	0.6 A	DSBGA (8)	0.7 × 1.4 × 0.4 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Efficiency Versus I_{OUT} at 1.1 V_{OUT}, 3.8 V_{IN}

Typical Application

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features1
2 Applications1
3 Description1
4 Revision History
5 Device Comparison Table
6 Pin Configuration and Functions
7 Specifications
7.1 Absolute Maximum Ratings4
7.2 ESD Ratings
7.3 Recommended Operating Conditions4
7.4 Thermal Information4
7.5 Electrical Characteristics5
7.6 I ² C Interface Timing Characteristics
7.7 Typical Characteristics8
8 Detailed Description
8.1 Overview
8.2 Functional Block Diagram9
8.3 Feature Description10

8.4 Programming	13
8.5 Register Map	
9 Application and Implementation	
9.1 Application Information	
9.2 Typical Application, TPS628610	. 19
10 Power Supply Recommendations	.27
11 Layout	.28
11.1 Layout Guidelines	28
11.2 Layout Example	28
12 Device and Documentation Support	.29
12.1 Device Support	29
12.2 Receiving Notification of Documentation Updates.	
12.3 Support Resources	. 29
12.4 Trademarks	.29
12.5 Electrostatic Discharge Caution	.29
12.6 Glossary	.29
13 Mechanical, Packaging, and Orderable	
Information	. 30

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (March 2022) to Revision D (May 2022)	
Corrected the internal fixed soft-start time test condition	5
Changes from Revision B (September 2020) to Revision C (March 2022)	Page

•	Added the TPS628602 to the data sheet1
---	--

5 Device Comparison Table

ORDERABLE PART NUMBER	OUTPUT CURRENT	DEFAULT V _O SETTING	f _{SW}	USER INTERFACE
TPS628600YCH	0.6 A	0.6 V, 1.1 V	1.5 MHz	EN, I2C, VSEL
TPS628601YCH	0.6 A	0.6 V, 0.7 V, 0.8 V, 1.0 V	1.5 MHz	2x VSEL, EN, PG
TPS628610YCH	1 A	0.6 V, 1.1 V	4 MHz	EN, I2C, VSEL
TPS628602YCH	0.6 A	1.05 V, 0.9 V, 0.875 V, 0.625 V	1.5 MHz	2x VSEL, EN, PG

6 Pin Configuration and Functions

Figure 6-1. 8-Pin DSBGA YCH Package (Top View)

Table 6-1. Pin Functions, TPS628610 and TPS628600

P	PIN	1/0	DESCRIPTION	
NAME	NO.		DESCRIPTION	
GND	D2	PWR	GND supply pin. Connect this pin close to the GND terminal of the input and output capacitor.	
VOS	D1	IN	Output voltage sense pin for the internal feedback divider network and regulation loop. This pin also discharges V_{OUT} by an internal MOSFET when the converter is disabled. Connect this pin directly to the output capacitor with a short trace.	
VIN	C2	PWR	V_{IN} power supply pin. Connect the input capacitor close to this pin for best noise and voltage spike suppression. A ceramic capacitor is required.	
SW	C1	PWR	he switch pin is connected to the internal MOSFET switches. Connect the inductor to this terminal.	
VSEL	B2	IN	Voltage Selection Pin. Can be toggled during operation. LOW = 0.6 V, HIGH = 1.1 V	
EN	B1	IN	A high level enables the devices and a low level turns the device off. The pin features an internal pulldown resistor, which is disabled once the device has started up.	
SDA	A2	IN	l ² C serial data pin. Do not leave floating.	
SCL	A1	IN	I ² C serial clock pin. Do not leave floating.	

Table 6-2. Pin Functions, TPS628601, TPS628602

PI	IN	I/O	DESCRIPTION	
NAME	NO.		DESCRIPTION	
GND	D2	PWR	GND supply pin. Connect this pin close to the GND terminal of the input and output capacitor.	
VOS	D1	IN	tput voltage sense pin for the internal feedback divider network and regulation loop. This pin also charges VOUT by an internal MOSFET when the converter is disabled. Connect this pin directly to output capacitor with a short trace.	
VIN	C2	PWR	/IN power supply pin. Connect the input capacitor close to this pin for best noise and voltage spike uppression. A ceramic capacitor is required.	
SW	C1	PWR	he switch pin is connected to the internal MOSFET switches. Connect the inductor to this terminal.	
PG	B2	OUT	pen-drain power-good output	
EN	B1	IN	A high level enables the devices and a low level turns the device off. The pin features an internal pulldown resistor, which is disabled once the device has started up.	
VSEL-1	A2	IN	Voltage Selection Pin. Can be toggled during operation.	
VSEL-2	A1	IN	Voltage Selection Pin. Can be toggled during operation.	

Copyright © 2022 Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
Pin voltage	VIN	-0.3	6	V
Pin voltage	SW, DC	-0.3	V _{IN} + 0.3 V	V
Pin voltage	SW, transient < 10 ns, while switching	-2.5	9	V
Pin voltage	EN, VSEL, SDA, SCL, PG	-0.3	6	V
Pin voltage	VOS	-0.3	5	V
TJ	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-55	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V
V _(ESD)		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating junction temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _{IN}	Input supply voltage range		1.75		5.5	V
V _{OUT}	Output voltage range		0.4		1.9875	V
	Pin voltage	SW	0		5.5	V
	Pin voltage	EN, SDA, SCL, VSEL, PG	0		5.5	V
I _{OUT}	Output current range	TPS628610, V _{IN} > 2.3 V			1	А
I _{OUT}	Output current range	TPS628610, V _{IN} ≤ 2.3 V			0.7	А
I _{OUT}	Output current range	TPS628601			0.6	А
I _{PG}	Power-good input current capability				1	mA
TJ	Operating junction temperature		-40		125	°C
C _{IN}	Effective input capacitance		2	4.7		μF
L	Effective inductance	TD0000010	0.33	0.47	0.82	μH
COUT	Effective output capacitance	TPS628610	2		26	μF
L	Effective inductance	TD0000004	0.7	1.0	1.2	μH
COUT	Effective output capacitance	TPS628601	3		26	μF

7.4 Thermal Information

	THERMAL METRIC	YCH (DSBGA)	UNIT	
		8 PINS	UNIT	
R _{θJA}	Junction-to-ambient thermal resistance	121.9	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	1.1	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	33.7	°C/W	
Ψ _{JT}	Junction-to-top characterization parameter	0.7	°C/W	
Ψ _{JB}	Junction-to-board characterization parameter	33.5	°C/W	

7.5 Electrical Characteristics

 $T_J = -40^{\circ}C$ to +125°C, $V_{IN} = 3.6$ V. Typical values are at $T_J = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY						
I _{Q(VIN)}	VIN quiescent current	EN = VIN, I_{OUT} = 0 µA, V_{OUT} = 1.2 V device not switching, T_J = -40°C to +85°C		2.3	4	μA
		EN = VIN, I_{OUT} = 0 µA, V_{OUT} = 1.2 V, device switching		2.5		μA
I _{SD(VIN)}	VIN shutdown supply current	EN = GND, shutdown current into VIN VSEL, MODE = GND, $T_J = -40^{\circ}C$ to +85°C		120	250	nA
UVLO						
V _{UVLO(R)}	VIN UVLO rising threshold	V _{IN} rising		1.65	1.75	V
V _{UVLO(F)}	VIN UVLO falling threshold	V _{IN} falling		1.56	1.7	V
V _{UVLO(H)}	VIN UVLO hysteresis			100		mV
LOGIC PINS	L					
VIH	High-level input voltage threshold		0.8			V
VIL	Low-level input voltage threshold				0.4	V
I _{LKG}	Input leakage current into SDA, SCL, VSEL	Pin connected to VIN, -40°C to 85°C		10	25	nA
	EN internal pulldown resistance	EN pin to GND		0.5		MΩ
I _{LKG}	Input leakage into EN	Pin connected to VIN, –40°C to 85°C		10	25	nA
VOUT VOLTAGE	E	1				
V _{OUT}	Output voltage accuracy	PWM mode, no load, $T_J = 25^{\circ}C$ to $85^{\circ}C$	-1%		+1%	
V _{OUT}	Output voltage accuracy	PWM mode, no load, $T_1 = -40^{\circ}$ C to 125°C	-2%		+1.7%	
I _{VOS(LKG)}	VOS input leakage current	EN = VIN, V _{OUT} = 1.2 V (internal 12-MΩ resistor divider), T _J = -40°C to +85°C		100	400	nA
SWITCHING FR						
f _{SW(FCCM)}	Switching frequency, TPS62861x	V _{IN} = 3.6 V, V _{OUT} = 1.2 V, PWM operation		4		MHz
f _{SW(FCCM)}	Switching frequency, TPS62860x	$V_{IN} = 3.6 \text{ V}, V_{OUT} = 1.2 \text{ V}, PWM operation$		1.5		MHz
START-UP						
	Internal fixed soft-start time	from V _{OUT} = 0 V to 95% of VOUT nominal		0.125	0.2	ms
	EN HIGH to start of switching delay			500	1000	μs
POWER STAGE						
R _{DSON(HS)}	High-side MOSFET on-resistance	I _{OUT} = 500 mA		120	170	mΩ
R _{DSON(LS)}	Low-side MOSFET on-resistance	I _{OUT} = 500 mA		80	115	mΩ
. ,						
I _{HS(OC)}	High-side peak current limit	TPS628610	1.3	1.45	1.55	A
ILS(OC)	Low-side valley current limit	TPS628610	1.0	1.35	1.45	A
ILS(OC)	High-side peak current limit	TPS628601	0.95	1.1	1.40	A
ILS(OC)	Low-side valley current limit	TPS628601	0.85	1.0	1.1	A
	Low-side negative current limit	Sinking current limit on LS FET	0.00	1.0	1.1	A
POWER GOOD						
V _{PGTH}	Power-good threshold	PGOOD low, VOS falling		93%		
	Power-good threshold	PGOOD high, VOS raining PGOOD high, VOS rising		95%		
		PG rising edge		16		
tpg:dly	Power-good deglitch delay				100	μs
I _{PG;LKG}	Input leakage current into the PG pin	$V_{PG} = 5.0 V$		10	100	nA
	PG pin output low-level voltage	I _{PG} = 1 mA			400	mV
OUTPUT DISCH	Output discharge resistor on the VOS pin	EN = GND, IVOS = -10 mA into the VOS pin, T _J = -40° C to $+85^{\circ}$ C		7	11	Ω
THERMAL SHU	TDOWN	,			I	
T _{J(SD)}	Thermal shutdown threshold ⁽¹⁾	Temperature rising, PWM mode		160		°C

T_J = -40°C to +125°C, V_{IN} = 3.6 V. Typical values are at T_J = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{J(HYS)} Thermal shutdown hysteresis ⁽¹⁾				20		°C

(1) Specified by design. Not production tested.

7.6 I²C Interface Timing Characteristics

	PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	TYP MAX	UNIT
		Standard mode		100	kHz
f _{SCL}	SCL clock frequency	Fast mode		400	kHz
		Fast mode plus		1	MHz
		Standard mode	4.7		μs
t _{BUF}	Bus free time between a STOP and START condition	Fast mode	1.3		μs
		Fast mode plus	0.5		μs
		Standard mode	4		μs
t _{HD} , t _{STA}	Hold time (repeated) START condition	Fast mode	600		ns
		Fast mode plus	260		ns
		Standard mode	4.7		μs
LOW	LOW period of the SCL clock	Fast mode	1.3		μs
		Fast mode plus	0.5		μs
		Standard mode	4		μs
нідн	HIGH period of the SCL clock	Fast mode	600		ns
		Fast mode plus	260		ns
		Standard mode	4.7		μs
t _{SU} , t _{STA}	Setup time for a repeated START condition	Fast mode	600		ns
		Fast mode plus	260		ns
		Standard mode	250		ns
t _{SU} , t _{DAT}	Data setup time	Fast mode	100		ns
		Fast mode plus	50		ns
		Standard mode	0	3.45	μs
t _{HD} , t _{DAT}	Data hold time	Fast mode	0	0.9	μs
		Fast mode plus	0		μs
		Standard mode		1000	ns
t _{RCL}	Rise time of SCL signal	Fast mode	20+0.1C B	300	ns
		Fast mode plus		120	ns
	Rise time of SCL signal after a	Standard mode	20+0.1C B	1000	ns
RCL1	repeated START condition and after an acknowledge BIT	Fast mode	20+0.1C B	300	ns
		Fast mode plus		120	ns
t _{FCL}		Standard mode	20+0.1C B	300	ns
	Fall time of SCL signal	Fast mode		300	ns
		Fast mode plus		120	ns
		Standard mode		1000	ns
t _{RDA}	Rise time of SDA signal	Fast mode	20+0.1C B	300	ns
		Fast mode plus		120	ns

	PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
		Standard mode			300	ns
t _{FDA}	Fall time of SDA signal	Fast mode	20+0.1C B		300	ns
		Fast mode plus			120	ns
		Standard mode	4			μs
t _{SU} , t _{STO}	Setup time of STOP condition	Fast mode	600			ns
		Fast mode plus	260			ns
		Standard mode			400	pF
СВ	Capacitive load for SDA and SCL	Fast mode			400	pF
		Fast mode plus			550	pF

(1) All values referred to $V_{IL}\,MAX$ and $V_{IH}\,MIN$ levels in the *Electrical Characteristics* table.

7.7 Typical Characteristics

8 Detailed Description

8.1 Overview

The TPS6286x is a high-frequency synchronous step-down converter with ultra-low quiescent current consumption and flexible output voltage by I²C or VSEL interface. Using TI's DCS-Control[™] topology, the device extends the high efficiency operation area down to microamperes of load current during Power Save Mode Operation. TI's DCS-Control (Direct Control with Seamless Transition into Power Save Mode) is an advanced regulation topology, which combines the advantages of hysteretic and voltage mode control. Characteristics of DCS-Control are excellent AC load regulation and transient response, low output ripple voltage, and a seamless transition between PFM and PWM mode operation. DCS-Control includes an AC loop which senses the output voltage (VOS pin) and directly feeds the information to a fast comparator stage. This comparator sets the switching frequency, which is constant for steady state operating conditions, and provides immediate response to dynamic load changes. To achieve accurate DC load regulation, a voltage feedback loop is used. The internally compensated regulation network achieves fast and stable operation with small external components and low ESR capacitors.

8.2 Functional Block Diagram

Figure 8-1. Functional Block Diagram

8.3 Feature Description

8.3.1 Power Save Mode

As the load current decreases, the device enters Power Save Mode (PSM) operation. PSM occurs when the inductor current becomes discontinuous, which is when it reaches 0 A during a switching cycle. In Power Save Mode, the output voltage rises slightly above the nominal output voltage. This effect is minimized by increasing the output capacitor or inductor value.

8.3.2 Forced PWM Operation

Through I²C, set the device in forced PWM (FPWM) mode by the CONTROL register. The device switches continuously, even with a light load. This reduces the output voltage ripple and allows simple filtering of the switching frequency for noise-sensitive applications. Efficiency at light load is lower in FPWM mode.

8.3.3 Smart Enable and Shutdown (EN)

An internal 500-k Ω resistor pulls the EN pin to GND and avoids the pin to be floating. This prevents an uncontrolled start-up of the device in case the EN pin cannot be driven to low level safely. With EN low, the device is in shutdown mode. The device is turned on with EN set to a high level. The pulldown control circuit disconnects the pulldown resistor on the EN pin once the internal control logic and the reference have been powered up. With EN set to a low level, the device enters shutdown mode and the pulldown resistor is activated again.

8.3.4 Soft Start

Once the device has been enabled with EN high, it initializes and powers up its internal circuits. This occurs during the regulator start-up delay time, t_{Delay} . Once t_{Delay} expires, the internal soft-start circuitry ramps up the output voltage within the soft-start time, t_{Ramp} . See Figure 8-2.

Figure 8-2. Start-up Sequence

8.3.5 Output Voltage Selection (VSEL) for TPS62860x

The optional VSEL Interface allows setting the output voltage by a 2-pin HIGH/LOW setting. Using and applying a digital pattern to the "VSEL-1" and "VSEL-2" pins sets the output voltage according to Table 8-1.

VSEL-2	VSEL-1	TPS628601	TPS628602	OPERATION MODE			
0	0	0.6 V 1.05 V		PFM Mode			
0	1	0.7 V	0.9 V	PFM Mode			
1	0	0.8 V	0.875 V	PFM Mode			
1	1	1.0 V	0.625 V	PFM Mode			

Table 8-1. Target Output Voltage Setting by VSEL Interface

8.3.6 Output Voltage Selection (VSEL and I²C) for TPS628610

The TPS628610 has two options to select the output voltage.

It can be changed by the VSEL pin. Putting this pin "HIGH" selects the output voltage according to V_{OUT} register 2. Putting this pin "LOW" selects the voltage according to V_{OUT} Register 1. The pin can be toggled during operation.

It can also be selected by the value in the V_{OUT} register that is chosen by VSEL at the moment. The voltage changes right after the I²C command is received.

8.3.7 Forced PWM Mode During Output Voltage Change

In normal operation, the device does not force PWM operation during VOUT change after VSEL toggle or I²C command. For ramping down, this mode provides the remaining energy, stored in the output capacitor to the load of the DC/DC and save battery charge. See Figure 9-14.

Through I^2C , the device can be set to forced PWM (FPWM) switching during output voltage change. This allows a controlled ramp of V_{OUT} up and especially down, regardless of the load condition. See Figure 9-15.

This feature follows the internal I^2C ramp and is only recommended for the setting 1 mV/µs and 0.1 mV/µs. During the faster slopes (10 mV/µs and 5 mV/µs), the mode is likely to be left before the voltage reached the new target value.

8.3.8 Undervoltage Lockout (UVLO)

To avoid misoperation of the device at low input voltages, an undervoltage lockout (UVLO) comparator monitors the supply voltage. The UVLO comparator shuts down the device at an input voltage of 1.7 V (max) with falling VIN. The device starts at an input voltage of 1.8 V (max) rising VIN. Once the device re-enters operation out of an undervoltage lockout condition, it behaves like being enabled.

8.3.9 Power Good (PG)

The TPS6286x has a built-in Power-Good (PG) feature to indicate whether the output voltage has reached its target and the device is ready. The PG signal can be used for start-up sequencing of multiple rails or to indicate any overload behavior on the output. The PG pin is an open-drain output that requires a pullup resistor to any voltage up to the recommended input voltage level. PG is low when the device is turned off due to EN or thermal shutdown. VIN must remain present for the PG pin to stay LOW. When applying VIN the first time, PG stays HIGH until the first enabling of the device.

If the power-good output is not used, it is recommended to tie to GND or leave open.

	LOG	IC SIGNALS			
Vı	EN-PIN	THERMAL SHUTDOWN	v _o	DVS TRANSITION ACTIVE	PG STATUS
			NO V _O on target	NO	High Impedance
	HIGH	NO		YES	LOW
V _I > UVLO		night		V _O < target	x
		YES	x	x	LOW
	LOW x		x	x	LOW
V _I < UVLO	x	x	x	x	Undefined

 Table 8-2. Power Good Indicator Functional Table

The PG indicator triggers immediately (after internal comparator delay) when Vo crosses the lower V_{PGTH} to indicate that the voltage has left the target setting. It features a delay after crossing the upper V_{PGTH} when going high to make sure Vo has reached the target again. Figure 8-3 sketches the behavior.

Figure 8-3. Power Good Transient and De-glitch Behavior

The PG Indicator is by default pulled low during DVS transition of the output voltage without any blanking or delay time. Figure 8-3 shows an example of this behavior. After V_o has reached the new target, the PG is again active as shown in Figure 8-3.

8.3.10 Switch Current Limit / Short Circuit Protection

The TPS6286x integrates a current limit on the high-side and low-side MOSFETs to protect the device against overload or short circuit conditions. The current in the switches is monitored cycle by cycle. If the high-side MOSFET current limit, ILIMF, trips, the high-side MOSFET is turned off and the low-side MOSFET is turned on to ramp down the inductor current. Once the inductor current through the low-side switch decreases below the low-side MOSFET current limit, ILIMF, the low-side MOSFET is turned off and the high-side MOSFET current limit, ILIMF, the low-side MOSFET is turned off and the high-side MOSFET turns on again.

8.3.11 Thermal Shutdown

The junction temperature (T_J) of the device is monitored by an internal temperature sensor. If T_J exceeds the thermal shutdown temperature TSD of 160°C (typ), the device enters thermal shutdown. Both the high-side and low-side power FETs are turned off. When T_J decreases below the hysteresis amount of typically 20°C, the converter resumes operation, beginning with a soft start to the originally set VOUT. The thermal shutdown is not active in Power Save Mode.

8.3.12 Output Voltage Discharge

The purpose of the output discharge function is to ensure a defined down-ramp of the output voltage when the device is disabled and to keep the output voltage close to 0 V. The output discharge feature is only active once the device has been enabled at least once since the supply voltage was applied. The output discharge function is not active if the device is disabled and the supply voltage is applied the first time. The internal discharge resistor is connected to the VOS pin. The discharge function is enabled as soon as the device is disabled. The minimum supply voltage required to keep the discharge function active is $V_I > V_{TH UVLO-}$.

8.4 Programming

8.4.1 Serial Interface Description

I2C[™] is a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors (see I²C-Bus Specification, Version .6, 2014). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is *idle*, both SDA and SCL lines are pulled high. All the I²C-compatible devices connect to the I²C bus through open-drain I/O pins, SDA and SCL. A *master* device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A *slave* device receives, transmits data, or both on the bus under control of the master device.

The device works as a *slave* and supports the following data transfer *modes*, as defined in the l²C-Bus Specification: standard mode (100 kbps), fast mode (400 kbps), and fast mode plus (1 Mbps). The interface adds flexibility to the power supply solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. Register contents remain intact as long as the input voltage remains above 1.8 V.

The data transfer protocol for standard and fast modes is exactly the same, therefore, they are referred to as F/S-mode in this document. The protocol for high-speed mode is different and must not be used.

It is recommended that the I^2C master initiates a STOP condition on the I^2C bus after the initial power up of SDA and SCL pullup voltages to ensure reset of the I^2C engine.

8.4.2 Standard- and Fast-Mode Protocol

The master initiates data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in Figure 8-4. All I²C-compatible devices recognize a start condition.

Figure 8-4. START and STOP Conditions

The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 8-5). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see Figure 8-6) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

Figure 8-5. Bit Transfer on the Serial Interface

The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. An

acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary.

To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see Figure 8-4). This releases the bus and stops the communication link with the addressed slave. All I²C-compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address.

Attempting to read data from register addresses not listed in this section will result in 00h being read out.

Figure 8-7. Bus Protocol

8.4.3 I²C Update Sequence

The requires the following:

- A start condition
- A valid I²C address
- · A register address byte
- A data byte for a single update

After the receipt of each byte, the device acknowledges by pulling the SDA line low during the high period of a single clock pulse. A valid I²C address selects the device. The device performs an update on the falling edge of the acknowledge signal that follows the LSB byte.

Figure 8-8. "Write" Data Transfer Format in Standard-, Fast, and Fast-Plus Modes

1	↓ 7 →	1	1	▲ 8 →	1	1	↓ 7 →	1	1	 ← 8 →	1	1
S	Slave Address	R/W	А	Register Address	А	Sr	Slave Address	R/W	А	Data	Ā	Р
	From Mast		e	Ā S Sr	= Not ac = START = REPE	conditio	DA low) e (SDA high) n ART condition	 "1" Read				

Figure 8-9. "Read" Data Transfer Format in Standard-, Fast, and Fast-Plus Modes

8.4.4 I²C Register Reset

The I²C registers can be reset by the following:

- Pull the input voltage below 1.8 V (typ).
- A high to low transition on EN. The previous value of the "Enable Output Discharge" bit is latched until the next EN rising edge or pulling the input voltage below 1.0 V (typ).
- Set the Reset bit in the CONTROL register. When Reset is set to 1, all registers are reset to the default values and a new start-up begins immediately. After t_{Delay}, the l²C registers can be programmed again.

8.5 Register Map

REGISTER ADDRESS (HEX)	REGISTER NAME	FACTORY DEFAULT (HEX)	DESCRIPTION	
0x01	V _{OUT} Register 1	0x10	Sets the target output voltage	
0x02	V _{OUT} Register 2	0x38	Sets the target output voltage	
0x03	CONTROL Register		Sets miscellaneous configuration bits	
0x05	STATUS Register	0x00	Returns status flags, cleared on read-out	

Table 8-3. Register Map

8.5.1 Slave Address Byte

7	6	5	4	3	2	1	0
1	0	0	0	0	0	0	R/W

The slave address byte is the first byte received following the START condition from the master device. The 7-bit slave address is 0x40 and internally set.

8.5.2 Register Address Byte

7	6	5	4	3	2	1	0
0	0	0	0	0	D2	D1	D0

Following the successful acknowledgment of the slave address, the bus master sends a byte to the device, which contains the address of the register to be accessed.

8.5.3 V_{OUT} Register 1

REGISTER ADDRES	SS 0X01 READ/WRITE		
BIT	FIELD	VALUE (HEX)	OUTPUT VOLTAGE (TYP)Section 8.5.3
6:0	VO1_SET	0x00	0.400 V
		0x01	0.4125 V
		0x10	0.600 V (default value)
		0x7E	1.975 V
		0x7F	1.9875 V

8.5.4 V_{OUT} Register 2

Table 8-5	V _{OUT}	Register 2	2 Description
-----------	------------------	-------------------	---------------

REGISTER ADDR	REGISTER ADDRESS 0X02 READ/WRITE						
BIT	FIELD	VALUE (HEX)	OUTPUT VOLTAGE (TYP)Section 8.5.4				
7	Operation Mode	0x00	0 - Keep PFM/PWM selection as in CONTROL-Register 1 - sets the device in PWM operation for this Voltage selection				
6:0	6:0 VO2_SET	0x00	0.400 V				
		0x01	0.4125 V				
		0x38	1.10 V (default value)				
		0x7E	1.975 V				
		0x7F	1.9875 V				

8.5.5 CONTROL Register

Table 8-6. CONTROL Register Description

REGISTE	REGISTER ADDRESS 0X03 READ/WRITE						
BIT	FIELD	TYPE	DEFAULT	DESCRIPTION			
7	Reset	W	0	1 - Reset all registers to default. This bit triggers a shutdown followed by a re-reading of the internal OTP settings and a new soft start.			
6	Enable FPWM Mode during Output Voltage Change	R/W	1	0 - Keep the current mode status during output voltage change.1 - Force the device in FPWM during output voltage change.			
5	Software Enable Device	R/W	1	 0 - Disable the device. All registers values are still kept. 1 - Re-enable the device with a new start-up without the t_{Delay} period. 			
4	Enable FPWM Mode	R/W	0	0 - Set the device in power save mode at light loads.1 - Set the device in forced PWM mode at light loads.			
3	Enable Output Discharge	R/W	1	0 - Disable output discharge. 1 - Enable output discharge. This setting is used for the next disable cycle (Software or Hardware).			
2	Reserved						
0:1	Voltage Ramp Speed	R/W	11	00 - 10mV/µs 01 - 5 mV/µs 10 - 1 mV/µs 11 - 0.1 mV/µs			

8.5.6 STATUS Register

Table 8-7. STATUS Register Description

REGISTER	REGISTER ADDRESS 0X05 READ ONLY ⁽¹⁾							
BIT	FIELD	TYPE	DEFAULT	DESCRIPTION				
7:5	Reserved							
4	Thermal Shutdown Tripped	R	0	 Thermal Shutdown has tripped since the last reading. No Thermal Shutdown event occurred during the last reading. 				
3	Reserved							
2	Power Bad	R	0	1: Output voltage is or was below 0.95xVO 0: No Power Bad event occurred since last reading				

Table 8-7. STATUS Register Description (continued)

REGISTER ADDRESS 0X05 READ ONLY ⁽¹⁾							
BIT	FIELD	TYPE	DEFAULT	DESCRIPTION			
1:0	Reserved						

(1) All bit values are latched until the device is reset, or the STATUS register is read. Then, the STATUS register is reset to its default values.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The following section discusses the design of the external components to complete the power supply design for several input and output voltage options by using typical applications as a reference.

9.2 Typical Application, TPS628610

Figure 9-1. TPS628610, Typical Application

9.2.1 Design Requirements

Table 9-1 shows the list of components for the application circuit and the characteristic application curves.

REFERENCE	DESCRIPTION	VALUE	SIZE [L x W X T]	MANUFACTURER ⁽¹⁾
TPS628610	Step down converter, 1 A		1.4 mm x 0.70 mm x 0.4 mm max.	Texas Instruments
C _{IN}	Ceramic capacitor, GRM155R60J475ME47D	4.7 µF	0402 (1 mm x 0.5 mm x 0.6 mm max.)	Murata
C _{OUT}	Ceramic capacitor, GRM155R60J106ME15D	10 µF	0402 (1 mm x 0.5 mm x 0.65 mm max.)	Murata
L	Inductor DFE18SANR47MG0L	0.47 µH	0603 (1.6 mm x 0.8 mm x 1.0 mm max.)	Murata

Table 9-1. Components for Application Characteristic Curves

(1) See Third-party Products Disclaimer.

9.2.2 Detailed Design Procedure

9.2.2.1 Inductor Selection

The inductor value affects the peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage ripple, and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The inductor ripple current (ΔI_L) decreases with higher inductance and increases with higher V_{IN} or V_{OUT} and can be estimated according to Equation 1.

Equation 2 calculates the maximum inductor current under static load conditions. The saturation current of the inductor must be rated higher than the maximum inductor current, as calculated with Equation 2. This is recommended because during a heavy load transient the inductor current rises above the calculated value. A more conservative way is to select the inductor saturation current according to the high side MOSFET switch current limit, I_{LIMF}.

$$\Delta I_{L} = Vout \times \frac{1 - \frac{Vout}{Vin}}{L \times f}$$
(1)

$$I_{Lmax} = I_{outmax} + \frac{\Delta I_{L}}{2}$$
(2)

where

- f = Switching frequency
- L = Inductor value
- ΔI_L= Peak-to-peak inductor ripple current
- I_{Lmax} = Maximum inductor current

Table 9-2 shows a list of possible inductors.

Table 9-2. List of Possible Inductors

INDUCTANCE [µH]	INDUCTOR SERIES	SIZE IMPERIAL (METRIC)	DIMENSIONS L x W X T	SUPPLIER ⁽¹⁾
0.47	DFE18SAN_G0	0603 (1608)	1.6mm x 0.8mm x 1.0mm max	Murata
0.47	HTEB16080F	0603 (1608)	1.6mm x 0.8mm x 0.6mm max.	Cyntec
0.47	HTET1005FE	0402 (1005)	1.0mm x 0.5mm x 0.65mm max.	Cyntec
0.47	TFM160808ALC	0603 (1608)	1.6mm x 0.8mm x 0.8mm max.	TDK

(1) See Third-party Products Disclaimer

9.2.2.2 Output Capacitor Selection

The DCS-Control[™] scheme of the TPS6286x allows the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires either an X7R or X5R dielectric. At light load currents, the converter operates in Power Save Mode and the output voltage ripple is dependent on the output capacitor value. A larger output capacitors can be used reducing the output voltage ripple.

The inductor and output capacitor together provide a low-pass filter. To simplify this process, Table 9-3 outlines possible inductor and capacitor value combinations.

Table 9-5. Recommended LC Output Filter Combinations						
DEVICE	NOMINAL INDUCTOR VALUE	NOMINAL OUTPUT CAPACITOR VALUE [µF]				
DEVICE	[µH]	4.7 μF	10 µF	2 x 10 µF	22 µF	
TPS628610	0.47 ⁽¹⁾	\checkmark	√(3)	\checkmark	\checkmark	
TPS62860x	1.0 ⁽²⁾		√(3)			

Table 9-3. Recommended LC Output Filter Combinations

 An effective inductance range of 0.33 μH to 0.82 μH is recommended. An effective capacitance range of 2 μF to 26 μF is recommended.

(2) An effective inductance range of 0.7 µH to 1.2 µH is recommended. An effective capacitance range of 3 µF to 26 µF is recommended.

(3) Typical application configuration. Other check marks indicate alternative filter combinations.

9.2.2.3 Input Capacitor Selection

Because the buck converter has a pulsating input current, a low ESR ceramic input capacitor is required for best input voltage filtering to minimize input voltage spikes. For most applications, a 4.7- μ F input capacitor is sufficient. When operating from a high impedance source, like a coin cell, a larger input buffer capacitor $\geq 10 \ \mu$ F is recommended to avoid voltage drops during start-up and load transients. The input capacitor can be increased without any limit for better input voltage filtering. The leakage current of the input capacitor adds to the overall current consumption.

Table 9-4 shows a selection of input and output capacitors.

CAPACITANCE [µF]	CAPACITOR PART NUMBER	SIZE IMPERIAL (METRIC)	DIMENSIONS L x W X T	SUPPLIER ⁽¹⁾
4.7	GRM155R60J475ME47D	0402 (1005)	1.0mm x 0.5mm x 0.6mm max.	Murata
4.7	GRM035R60J475ME15	0201 (0603)	0.6mm x 0.3mm x 0.55mm max	Murata
10	GRM155R60J106ME15D	0402 (1005)	1.0mm x 0.5mm x 0.65mm max.	Murata

(1) See Third-party Products Disclaimer

9.2.3 Application Curves

V_{IN} = 3.8 V, V_{OUT} = 1.1 V, TA = 25°C, BOM = Table 9-1, unless otherwise noted

SLUSDU8D - SEPTEMBER 2019 - REVISED MAY 2022

23

TPS62860, TPS62861 SLUSDU8D – SEPTEMBER 2019 – REVISED MAY 2022

9.2.4 Typical Application, TPS628600, TPS62860x

Figure 9-16. TPS628600, Typical Application

Figure 9-17. TPS62860x, Typical Application

9.2.4.1 Design Requirements

Table 9-5 shows the list of components for the application circuit and the characteristic application curves.

REFERENCE	DESCRIPTION	VALUE	SIZE [L x W X T]	MANUFACTURER ⁽¹⁾		
TPS628610	Step down converter, 1 A		1.4 mm x 0.70 mm x 0.4 mm max.	Texas Instruments		
C _{IN}	Ceramic capacitor, GRM155R60J475ME47D	4.7 µF	0402 (1 mm x 0.5 mm x 0.6 mm max.)	Murata		
C _{OUT}	Ceramic capacitor, GRM155R60J106ME15D	10 µF	0402 (1 mm x 0.5 mm x 0.65 mm max.)	Murata		
L	Inductor DFE201610E	1 µH	0805 (2.0 mm x 1.6 mm x 1.0 mm max.)	Murata		

9.2.4.2 Detailed Design Procedure

See Section 9.2.2.

9.2.4.3 Application Curves

10 Power Supply Recommendations

The power supply must provide a current rating according to the supply voltage, output voltage, and output current of the TPS6286x.

11 Layout

11.1 Layout Guidelines

The pinout of TPS6286x has been optimized to enable a single top layer PCB routing of the IC and its critical passive components such as CIN, COUT, and L. Furthermore, this pin out allows you to connect tiny components such as 0201 (0603) size capacitors and 0402 (1005) size inductor. A solution size smaller than 5 mm² can be achieved with a fixed output voltage.

- As for all switching power supplies, the layout is an important step in the design. Care must be taken in board layout to get the specified performance.
- It is critical to provide a low inductance, low impedance ground path. Therefore, use wide and short traces for the main current paths.
- The input capacitor must be placed as close as possible to the VIN and GND pins of the IC. This is the most critical component placement.
- The VOS line is a sensitive, high impedance line and must be connected to the output capacitor and routed away from noisy components and traces (for example, SW line) or other noise sources.

11.2 Layout Example

Figure 11-1. PCB Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

DCS-Control[™] and TI E2E[™] are trademarks of Texas Instruments. I2C[™] is a trademark of NXP Semiconductors.

All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

YCH0008

PACKAGE OUTLINE

DSBGA - 0.4 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.

YCH0008

EXAMPLE BOARD LAYOUT

DSBGA - 0.4 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).

EXAMPLE STENCIL DESIGN

YCH0008

DSBGA - 0.4 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
TPS628600YCHR	ACTIVE	DSBGA	YCH	8	12000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 125	S	Samples
TPS628601YCHR	ACTIVE	DSBGA	YCH	8	12000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 125	Т	Samples
TPS628610YCHR	ACTIVE	DSBGA	YCH	8	12000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 125	U	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

Texas

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS628600YCHR	DSBGA	YCH	8	12000	180.0	8.4	0.8	1.5	0.47	2.0	8.0	Q1
TPS628601YCHR	DSBGA	YCH	8	12000	180.0	8.4	0.8	1.5	0.47	2.0	8.0	Q1
TPS628610YCHR	DSBGA	YCH	8	12000	180.0	8.4	0.8	1.5	0.47	2.0	8.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

9-May-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS628600YCHR	DSBGA	YCH	8	12000	182.0	182.0	20.0
TPS628601YCHR	DSBGA	YCH	8	12000	182.0	182.0	20.0
TPS628610YCHR	DSBGA	YCH	8	12000	182.0	182.0	20.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated