

Preliminary

AK8998/W/D

The AK8998 is a pressure sensor interface IC that features compensation for temperature drift and sensor variation. It is designed to excite and interface to a bridge sensor. Variations in the sensor can be corrected via compensation values stored in integrated non-volatile memory (EEPROM). Compensation values are obtained from measurement results for a set of offset voltages and temperature drift, along with a set of bridge voltages and temperature drift, including characteristics of the AK8998. The AK8998 is available in a 16-pin QFN package, in wafer form and in a tray.

Features

- Pressure sensor compensation and excitation IC (Analog output)
- Supply voltage current: 7.1mA max @10kHz sampling
- Supply voltage: 3.0V±5%, 3.3V±5%, 5.0V±5%
- Operating temperature range: -20 to 85°C
- Integrated sensor output compensation (AK8998 Input conversion)
 - Offset voltage adjustment
 - Adjustment range: Rough ±13 to ±373mV / Fine ±1 to ±34mV @5.0V
 - Adjustment step: Rough 2 to 53mV /step / Fine 0.01 to 0.27mV /step @5.0V
 - Offset voltage temperature drift adjustment (1st order coefficient)
 - Adjustment range: ±0.04 to ±1.23mV/°C @5.0V
 - Adjustment step: 0.2 to 4.8µV/°C @5.0V
 - Output span voltage adjustment (G1, G2, G3)
 - Total adjustment range: 5.7 to 261.6mV @5.0V
 - G1 adjustment step: 0.95 to 74.7mV /step @5.0V
 - G2 adjustment step: 5.7 to 130.8mV /step @5.0V
 - G3 adjustment step: 0.01 to 0.40mV /step @5.0V
 - Sensitivity temperature drift adjustment (1st order coefficient)
 - Adjustment range: -4000ppm/°C to +2500ppm/°C or -2500ppm/°C to +1000ppm/°C
 - Adjustment step: 18ppm/°C step
- Integrated output reference voltage adjustment function
 - Adjustment range: 0.02*VDD to 0.98*VDD
 - Adjustment step: 10mV /step @5.0V
- Integrated sampling frequency switching function: 1kHz, 10kHz
- Integrated analog circuit reference voltage stabilizer
- (Add an external capacitor to AGND pin as needed)
- SCF and SMF included for band limitation: fc:1.0kHz, 500Hz, 250Hz
- 2 wire serial interface (CSCLK, VOUT)
- Ratiometric voltage output

• Integrated constant voltage source for pressure sensor: 2.2V @ 3.0, 3.3V±5%

4.0V or 2.2V @ 5.0V±5%

- Integrated pressure detectors (x2)
 - Detection threshold adjustment control
 - Adjustment range: 0.125*VDD to 0.9*VDD
 - Adjustment step: 0.025*VDD /step
 - Detection threshold external setting function (DET2 / PTH pin use)
 - hysteresis voltage adjustment control
 - Adjustment range: 0.03*VDD to 0.06*VDD
 - Adjustment step: 0.01*VDD /step
- Integrated reference voltage & reference current generator
 - VREF voltage adjustment control
 - Resolution: 3bits
 - Adjustment step: 1% /step

- IREF current adjustment control
 - Resolution: 4bits
 - Adjustment step: 2.8% /step typ.
- Temperature sensor (internal or external)
 - Temperature range: -20 to 85 °C
 - Internal temperature sensor output voltage adjustment control
 - Resolution: 6 bits
 - Adjustment step: 0.2% /step
 - External temperature sensor output voltage adjustment control
 - Resolution: 9 bits (Rough/ Fine=3/6bits)
 - Adjustment step: Rough 10% /step / Fine 0.2% /step
 - Integrated external temperature sensor constant current circuit: 50µA typ.
- Integrated oscillator for intermittent operation (1000kHz typ.)
 - Oscillating frequency adjustment control
 - Resolution: 4 bits
 - Adjustment step: 5% /step typ.
- Integrated EEPROM for compensation values and control data storage
 - Size: 131 bits
 - Endurance: 1,000 times or more
 - Retention time: 10 years or more @Ta: 85°C
- Supply Type: Tray (Die), Wafer, PKG (UQFN16)

Product name	Supply Type	Comments
AK8998	PKG (UQFN16)	
AK8998W	Wafer	
AK8998D	Tray (Die)	

Overview

The AK8998 is a pressure sensor interface IC that features compensation for temperature drift and sensor variation.

It is designed to excite and interface to a bridge sensor. Variations in the sensor can be corrected via compensation values stored in integrated non-volatile memory (EEPROM). Compensation values are obtained from measurement results for a set of offset voltages and temperature drift, along with a set of bridge voltages and temperature drift, including characteristics of the AK8998.

The internal compensation circuit is accomplished through a 12-bit resolution DAC (Rough: 4bits, Fine: 8bits) to adjust offset voltage, and the primary characteristics compensator for the associated temperature drift, coupled with 13-bit resolution (G1&G2 Gain adjustment: 5bits, G3 Gain adjustment: 8bits) to adjust the span voltage and another primary characteristics compensator for its associated temperature drift.

The output stage, with an internal resistor of $146k\Omega$, is band-limited with a combination of external capacitors, providing a low impedance output. And the EEPROM data, if used, enables the internal SCF and SMF. In this case, the band limitation is performed by the internal LPF (fc: 1kHz, 500Hz, 250Hz), eliminating the need for the external capacitors.

EEPROM data can be preconfigured to enable a setup of output reference voltage, designation of the external temperature sensor (when a pressure sensor and AK8998 are separated), selection of a sampling frequency (1kHz or 10kHz), the input polarity, and AGND pin validation.

Two sets of the pressure detectors are provided. When the pressure exceeding the detection threshold stored in the EEPROM is applied, the DET 1 and/or DET2/PTH pins go high (the polarity change is possible by EEPROM). And the detection threshold can be specified externally by EEPROM. In that case, the Pressure Detectors 2 is disabled, and the detection threshold for the Pressure Detectors 1 can be defined by DET2/PTH pin.

It can access to the EEPROM and control register (volatile memory) by a two-wire serial interface of CSCLK and VOUT (at the time of SDI/O mode) pin.

Pin Configuration

1. Wafer Configuration

1) Die size	2.082mm x 1.662mm
2) Die thickness	280µm
3) PAD size	80µm x 80µm
4) PAD pitch	150µm<
5) Scribe size	80µm
6) Wafer size	6 inch

Pin numbers and Pad position

No.	Pin Name	X Location (µm)	Y Location (µm)	No.	Pin Name	X Location (µm)	Y Location (µm)
1	VSS	-894.8	687.2	9	CSCLK	894.8	-544.7
2	VO	-894.8	337.8	10	DET1	894.8	-242.5
3	VOUT	-894.8	-344.7	11	DET2/PTH	894.8	-57.9
4	VDD	-894.8	-687.1	12	N.C.		
5	AGND	-521.7	-684.8	13	VN	749.3	684.8
6	N.C.			14	VS	363.4	684.8
7	N.C.			15	VP	-236.7	684.8
8	N.C.			16	EXTMP	-716.4	684.8

Pad locations (Top view)

2. Package Outline (UQFN16)

MSxxxx-E-00

Adjustment Characteristics

1) Sensor Characteristics

VDD: 5V

ltem	Symbol	Min.	Тур.	Max.	units	Comments
Drive voltage	Svs1		2.2		V	EVD[1:0]=1h
_	Svs2		4.0		V	EVD[1:0]=0h
Temperature range	Sta	-20		85	°C	
Sensor resistance	Sres1	0.82	4.00	6.50	kΩ	EVD[1:0]=1h
	Sres2	1.00	4.00	6.50	kΩ	EVD[1:0]=0h
Voltage input span	Sspnin1	12.00	44.00	76.00	mV	Sensor1
range	Sspnin2	17.00	70.00	125.00	mV	Sensor2
Offset voltage	Soff1	-15.00	0.00	15.00	mV	Sensor1
adjustment range	Soff2	-35.00	0.00	35.00	mV	Sensor2
Sensitivity temp. drift	Sst1	-4000		2500	ppm/°C	ESTC[0]=1h
coefficient	Sst2	-2500		1000	ppm/°C	ESTC[0]=0h
Offset temp. drift	Sot1	-0.040	0.00	0.040	mV/°C	Sensor1
coefficient	Sot2	-0.080	0.00	0.080	mV/°C	Sensor2

■VDD:3, 3.3V

ltem	Symbol	Min.	Тур.	Max.	units	Comments
Drive voltage	Svs		2.2		V	
Temperature range	Sta	-20		85	°C	
Sensor resistance	Sres	0.82	4.00	6.50	kΩ	
Voltage input span	Sspnin1	6.60	24.20	41.80	mV	Sensor1
range	Sspnin2	9.00	40.00	70.00	mV	Sensor2
Offset voltage	Soff1	-8.25	0.00	8.25	mV	Sensor1
adjustment range	Soff2	-19.25	0.00	19.25	mV	Sensor2
Sensitivity temp. drift	Sst1	-4000		2500	ppm/°C	ESTC[0]=1h
coefficient	Sst2	-2500		1000	ppm/°C	ESTC[0]=0h
Offset temp. drift	Sot1	-0.022	0.00	0.022	mV/°C	Sensor1
coefficient	Sot2	-0.044	0.00	0.044	mV/°C	Sensor2

Note) The usage combines characteristics of senser 1/2 is not allowed. Such a case as Span voltage is said as the sensor 1 and except is said as the sensor 2).

2) Adjustment Accuracy

Item	Symbol	Min.	Typ. Note4)	Max. Note5)	units	Comments
Offset adjustment accuracy	Cof		0.083		%FS	
Offset temp. drift adjustment accuracy	Coft		0.090		%FS	
Output span adjustment accuracy	Csn		0.125		%FS	
Sensitivity temp. adjustment accuracy	Csnt		0.054		%FS	
Sensitivity supply voltage and	Cstv		0.316		%FS	ESTC[0]=1h
temp. variation step	CSIV		0.158		%FS	ESTC[0]=0h
Sample and hold circuit output error	Cshe		0.0		%FS	
Offset adjustment accuracy Note1)	Cofall		0.122	1.0	%FS	
Span adjustment accuracy Note2)	Csnall		0.344	1.0	%FS	ESTC[0]=1h
	CSIIdii		0.209	1.0	%FS	ESTC[0]=0h
Offset adjustment accuracy Note3)	Call		0.344	1.0	%FS	ESTC[0]=1h
	Call		0.209	1.0	%FS	ESTC[0]=0h

Note1) Cofall=(Cof²+Coft²)^(1/2)

Note2) Csnall=(Csn^2+Csnt^2+Cstv^2+Cshe^2)^(1/2)

Note3) Call=max(Cofall,Csnall)

Note4) Temp.=85°C, VDD=4.75V, G1=10x, G2=1.5x(1.176x), G3=1.8x(2.3x), Offset temp. drift 1st order coefficient=Min./Max., Sensitivity temp. drift 1st order coefficient=Min.*1/2, VOUT output band-limited (≤500Hz @Fs=10kHz, ≤50Hz@Fs=1kHz) effective

Note5) Temp.=-20 to 85°C, VDD=5V±5%, 3.3V±5%, 3.0V±5%, G1/G2/G3 =Min. to Max., Each temperature coefficient=Min. to Max., VOUT output band-limited (≤500Hz @Fs=10kHz, ≤50Hz@Fs=1kHz) effective

* The adjustment accuracy is based on our definition as a reference. Please be aware the accuracy of product depends on the sensor characteristics and adjustment method.

3) External Temperature Sensor Characteristics

ltem	Symbol	Min.	Тур.	Max.	units	Comments
Sensor drive current	Tsdi		50		μA	
Sensor temp. variation	Tss	-2.4	-2.2	-2.0	mV/°C	50µA current drive
Sensor voltage @25°C	Tsv25	550	600	650	mV	50µA current drive

4) Connection of Pressure Sensor and External Temperature Sensor

Description of Blocks

[Gain Amplifier Block, LPF, S/H&SCF& Level shifter, Buffer&SMF]

The set of these blocks amplifies, compensates and outputs the pressure sensor level This set of blocks intermittently amplifies, compensates, samples and holds the pressure sensor output. The output stage, with an internal resistor of $146k\Omega$, is band-limited with a combination of external capacitors, providing a low impedance output. SCF and SMF are available for output, eliminating the need for the external capacitors. A percentage designator is used, benchmarked with 4800mVdc output at 100%, reflecting the 60x increase in differential input from 80mVdc.

Block	Functions						
	Gain Amp.1 is a low-noise high-gain amplifier at the front end. The differential						
	signal is amplified by a factor of 10x typ. (5x to 70x).						
	Gain Amp.2 converts the G1 differential output to single-ended with reference to						
Gain Amp.	AGND and amplifies by a factor of 1.5x typ. (1.5x or 3.0x) or 1.176x typ. (1.176x or						
1/2/3	2.352x).						
Gain	Gain Amp.3 amplifies by a factor of 1.8x typ. (1.1x to 1.8x) or 2.3x typ. (1.4x to						
(G1/2/3)	2.3x). G2 gain and G3 gain are changed automatically by sensitivity temperature drift						
	adjustment range change setup (ESTC [0]).						
	Span voltage is adjusted with G1/2/3 Gain (G1/2: rough adjustment, G3: fine						
	adjustment).						
	The preloaded compensation data in the EEPROM enables the pressure sensor						
Offset_Temp.	offset voltage and offset temperature drift to be compensated. The following						
Offset	adjustment value is AK8998 input conversion @5.0V.						
Offset Temp.	Offset adj.Adj. range Rough ±13 to ±373mV / Fine ±1 to ±34mV						
track	Adj. step Rough 2 to 53mV /step / Fine 0.01 to 0.27mV /step						
(G2)	Offset temp. drift. adj. Adj. range ±0.04 to ±1.23mV/°C						
	Adj. step 0.2 to 4.8µV/°C step Supply voltage and sensitivity temperature variation compensation circuit.						
	Monitors the AGND voltage to calculate the magnitude of supply voltage variation;						
071	the pressure sensor sensitivity temperature drift is calculated for entry into G3						
STV	using the temperature sensor output voltage and preloaded compensation data						
VDD track	(EEPROM data). The sensitivity temperature drift adjustment range can be						
Gain_Temp. (STV)	changed by EEPROM data (ESTC[0]).						
(017)	Sensitivity temp. drift. adj. Adj. range -4000ppm/ °C to +2500ppm/ °C						
	or -2500ppm/°C to +1000ppm/°C						
	Adj. step 18ppm/°C step						
LPF	Anti-aliasing filter to eliminate the fold-back noise generated in the sample-and-hold circuit (S/H) in the later stage. The cutoff frequency is fc=60kHz.						
	S/H doubles the LPF output and samples and holds it. The output reference voltage can be changed.						
S/H &	Output reference voltage adj. Adj. range 0.02*VDD to 0.98*VD						
Level Shift	Adj. step 0.002*VDD /step						
& SCF	SCF is a low-pass filter used for internal band limiting without using the external						
	capacitors. The cutoff frequency (fc: 1kHz /500Hz /250Hz) of the filter can be set by						
	EEPROM.						
	Buffer to produce a band-limited output with low impedance. Provides 1.111x						
	output. 146k Ω internal resistance and an external capacitor (C) make the LPF						
Buffer	characteristics. Change the external capacitance value according to the desired						
& SMF	signal band for detection using the following equation: fc=1/(2*π* 146kΩ*C) (Hz)						
	SMF is a low-pass filter (fc=10kHz) used for eliminating the clock noise produced						
	by the SCF in the previous stage. SMF is switched on or off in combination with the						
	previous-stage SCF using the EEPROM data.						

Block	Functions						
Timing	Generates timing sync signals for internal operation and sampling frequencies for						
Logic	sensor output signals. Sampling frequency (fs): 10kHz or 1kHz						
Regulator	Constant voltage generator circuit to drive the sensor. The drive voltage can be selected from the EEPROM depending on the supply voltage being used. Drive voltage: 2.2V @VDD:3, 3.3V±5%, 4.0/2.2V @VDD:5V±5%						
	Two sets of pressure detection circuits.						
	The pressure range can be individually selected depending on the EEPROM data for the pressure detector.						
	Pressure above a certain value is detected						
	 Pressure below a certain value is detected 						
	The DET1 and DET2/PTH pins go high when the detected pressure exceeds the						
Pressure	threshold (the polarity change by EEPROM is possible). The detection threshold can be						
Detector1, 2	set by the input of DET2/PTH pin (when only pressure detector 1 is used) or using the						
	EEPROM data in the AK8998. The hysteresis voltage can be adjusted at 2 bits (4 steps						
	and it varies ratiometrically with respect to the supply voltage as well as the detection						
	threshold.						
	Note that the exact pressure determination cannot be achieved until the VOUT pin output						
	is stabilized at the time of power up or due to the above setup and buffer circuit feedback						
	resistor and external capacitor values.						

Reference Section & Others

Block	Functions
V_Bandgap (VBG) V_Reference (VREF) I_Reference (IREF)	Generates the reference voltage or bias current required for each circuit. Adjust the VREF voltage so that it is equivalent to 1.0V. VREF voltage adj. Resolution Adj. step 1% / step IREF current should be adjusted to 1.0V voltage across 1MΩ external resistor tied to VOUT pin. IREF current adj. Resolution 4bits Adj. step 2.8% / step
Oscillator (OSC)	Oscillator to generate timing sync signals for internal operation and sampling frequencies for sensor output signals. Oscillation frequency is adjusted as the counter result reaches the expected value, the internal counter counts for the period of CSCLK is high (2msec typ.). For the detail, refer to the Functional Description 1) Adjustment Procedure Description (Example). OSC adj. Resolution 4bits Adj. step 5% / step
V_temp. (VTMP)	Temperature sensor for converting the ambient temperature to voltage. Adjust the temperature sensor output voltage (VTMP voltage) so that it is equivalent to VREF voltage at 25°C. And it is also possible to select the external temperature sensor by EEPROM in consideration of the case where a pressure sensor and the AK8998 are separated physically. When the external temperature sensor is chosen, the constant current of 50µA is sinked from the EXTMP pin to VSS. VTMP voltage adj.(internal) Resolution 6bits Adj. step 0.2% / step VTMP voltage adj.(external) Adj. step Rough 10% /step / Fine 0.2% /step
V_Common (VCOM)	Generates analog circuit reference voltage 1/2VDD. The internal power-up circuit causes it to start up within the settling time for stable analog operation (Start Up valid time). AGND pin can be validated by EEPROM (EAGND[0]=1h). It is effective to improve the noise characteristic (See recommended connection examples for components). In the case of EAGND[0]=0h, the AGND pin is Hi-Z.
Power ON Reset(POR)	Power Up circuit is for stable analog operation upon power-up. In order to make the power-on reset effective, be sure to power up the supply voltage from below 0.1*VDD.
Serial I/F	Serial interface for accessing EEPROM and control register (volatile memory). It accesses using the CSCLK pin and the VOUT pin.
EEPROM & Control Register	EEPROM and control register (volatile memory). Used to store compensation values and measurement modes and to set up the measurement modes for adjustment.

Pin Assignments and Functions

PAD	Name	I/O	C load max.	R load min.	Туре	Comments
1	VSS				GND	
2	VO	I			Analog	Resistive load connection prohibited ESCF[1:0]: Open when 1,2,3h
		0	50pF	9.5kΩ	Analog	Resistance load is connectable with VDD or VSS
3	VOUT	I/O	100pF		CMOS	Pull-down resistor (100k Ω) included when SDI/O mode
		0	300pF		Analog	Adjustment mode
4	VDD				Power	
5	AGND	0			Analog	EAGND[0]: Resistive load connection prohibited when 1h EAGND[0]: Open when 0h
6,7,8	N.C.					Do not connect
9	CSCLK	I			CMOS	Pull-down resistor (100kΩ) included
10	DET1	0			CMOS	
11	DET2	0			CMOS	
	/PTH				Analog	EPTH1[0]=1h
12	N.C.					Do not connect
13	VN				Analog	
14	VS	0	30pF	1kΩ	Analog	EVD[1:0]=0h
14	vo	0	30pF	0.82kΩ	Analog	EVD[1:0]=1, 2, 3h
15	VP	I			Analog	
16	EXTMP				Analog	Do not connect when not in use

Pin Descriptions

				Pin co	nditions	
PAD	Name	Functions	Start up Note)		EINV1/2[0] : "H" / "L"	EINE1/2[0] :"H"
1	VSS	Negative voltage supply pin	-	-	-	-
2	VO	Capacitance connection pin for sensor signal band-limiting	Hi-Z	-	Normal operation	-
3	VOUT	Sensor signal / Data I/O / Calibration interface pin	Hi-Z	-	Normal operation	-
4	VDD	Positive supply voltage pin	-	-	-	-
5	AGND	Analog ground with external capacitance for stabilization	0.5*VDD /Hi-z	0.5*VDD /Hi-z	Normal operation	-
6,7,8	N.C.	·	-	-	-	-
9	CSCLK	Chip select / Serial clock pin	-	-	-	-
10	DET1	Output pin for pressure detection 1	VDD/VSS	-	VSS/VDD	VSS
11	DET2 /PTH	Output pin for pressure detection 2 / Pressure detection circuit 1 threshold external input	VDD/VSS	-	VSS/VDD	VSS
12	N.C.		-	-	-	-
13	VN	Sensor differential signal input pin (-)	-	-	-	-
14	VS	Constant voltage supply pin for sensor drive	Hi-z	-	Normal operation	-
15	VP	Sensor differential signal input pin (+)	-	_	-	-
16	EXTMP	External temperature sensor voltage input pin	HI-Z	-	-	-

Note) In the case of EAGND[0]="H"/"L" and EINV1/2[0]="H"/"L"

Level Diagram

VDD: 5V (ESTC[0]=1h)

Electrical Characteristics

1) Absolute Maximum Ratings

	<u> </u>				
ltem	Symbol	Min.	Max.	units	Comments
Supply voltage	VDD	-0.3	6.5	V	
Input voltage	VDIN	VSS-0.3	VDD+0.3	V	
Input current	IIN	-10	10	mA	
Output current	IOUT	-10	10	mA	
Storage temp.	TST	-55	125	°C	EEPROM retention characteristics ≤85°C

Note) Operation at or beyond these limits may result in permanent damage to the device.

2) Recommended Operating Conditions

ltem	Symbol	Min.	Тур.	Max.	units	Comments
Operating temp.	Та	-20		85	°C	
	VDD1	2.85	3.0	3.15	V	EVD[1:0]=3h
Supply voltage	VDD2	3.135	3.3	3.465	V	EVD[1:0]=2h
	VDD3	4.75	5.0	5.25	V	EVD[1:0]=0h, 1h

3) Supply Voltage Current (See Functional Description)

VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted

ltem	Symbol	Min.	Тур.	Max.	units	Comments
Supply voltage current 1	IDD1		6000	7100	μA	VDD=5V,VS=4V,Fs=10kHz Note1)
Supply voltage current 2	IDD2		4000	5000	μA	VDD=3V,VS=2.2V,Fs=10kHz Note1)
Supply voltage current 3	IDD3		1300	2000	μA	VDD=5V,VS=4V,Fs=1kHz Note1)
Supply voltage current 4	IDD4		1100	1700	μA	VDD=3V,VS=2.2V,Fs=1kHz Note1)
Supply voltage current 5 (SCF & SMF circuit)	IDD5		100	150	μA	VDD=5V
Supply voltage current 6 (Pressure detection circuit 1/2)	IDD6		150	250	μA	VDD=5V
Supply voltage current 7 (External temperature sensor drive circuit)	IDD7		130	200	μA	VDD=5V

Note) At the time of measurement, the VS pin connects $1k\Omega$ load, the VOUT pin is connects no load, and the VP and VN pins supply 0.5*VS.

VREF and VTMP voltage, IREF current and OSC frequency are complete with adjustment. Note1) SCF&SMFcircuit:Off, External temperature sensor drive circuit:Off

4) **EEPROM** Characteristics

VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted

Item	Symbol	Min.	Тур.	Max.	units
EEPROM endurance	Etime	1000			times
EEPROM data retention time	Ehold	10			years

5) Digital DC Characteristics

VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted								
Item	Symbol	Pin	Conditions	Min.	Тур.	Max.	units	
High level input voltage	VIH	1		0.7*VDD	-	-	V	
Low level input voltage	VIL	1		-	-	0.3*VDD	V	
High level input current	IIH	1		+10	-	+200	μA	
Low level input current 1	IIL1	2		-10	-	+10	μA	
Low level input current 2	IIL2	3		-50	-	+50	μA	
High level output voltage	VOH	4	IOH=-200µA	0.9*VDD	-	-	V	
Low level output voltage	VOL	4	IOL=+200µA	-	-	0.1*VDD	V	

1 CSCLK(integrated 100kΩ pull-down resistor),

VOUT(integrated 100k Ω pull-down resistor when SDI/O mode)

- 2 CSCLK(integrated $100k\Omega$ pull-down resistor),
- 3 VOUT(integrated $100k\Omega$ pull-down resistor when SDI/O mode)
- 4 VOUT(when SDI/O mode), DET1, DET2/PTH

6) Power On/Off time and Analog circuit settling time for stable operation ^{Note)}

Item	Symbol	Min.	Тур.	Max.	units	Comments
Power On/Off time	Tidle	10			msec	VDD pin voltage <0.1*VDD
Settling time for stable analog operation	Tenable			700	µsec	
AGND output rise time	Tvgnd			330	µsec	EAGND[0]=1h, AGND pin external capacitance: 10nF

Note) Design reference value; no production test performed.

7) Digital AC Characteristics

VDD=3, 3.3, 5V±	VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted										
Item	Symbol	Min.	Тур.	Max.	units						
Write time (EEPROM address write)	Twr_EEP1	5		100	msec						
Write time (EEPROM batch write)	Twr_EEP1	10		100	msec						
Write time (Register)	Twr_REG	10			µsec						
Digital Mode Transition time	Tinit	1.0			msec						
Analog Mode Transition time	Tdigout	0.5			msec						
Data setup time	Ts	100			nsec						
Data hold time	Th	100			nsec						
CSCLK high time	Twh	0.5		100	µsec						
CSCLK low time	Twl	0.5		100	µsec						
CSCLK→DO delay time Note1)	Td			200	nsec						
CSCLK rising time Note 2)	Tr			10	nsec						
CSCLK falling time Note 2)	Tf			10	nsec						

Note1) SDO load capacitance=100pF

Note2) Design reference value; no production test performed.

[Serial I/F timing (Write)]

[CSCLK Raising/Falling timing]

8) Pressure Detector 1 & 2

-,	\	/DD=3, 3.3, 5V±5%, Ta=-20		register de			
Item	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Pressure detection threshold External input range	Vdete	EINE1[0]=0h EINE2[0]=1h EPTH1[0]=1h	0.1*VDD		0.9*VDD	V	
Pressure detection threshold Internal set value	Vdet	EPT1, 2[4:0]=00h	0.500 *VDD -0.05	0.500 *VDD	0.500 *VDD +0.05	V	
Pressure detection	Vdet+	Max: EPT1, 2[4:0]=10h		0.900 *VDD		V	
threshold Internal set value Adjust. width	Vdet-	Min: EPT1, 2[4:0]=0Fh		0.125 *VDD		V	
Adjust. step	Vdstp			0.025 *VDD		V	
Hysteresis voltage Adjust. width	Vhys5+	Max: VDD=5V±5% EHYS1, 2[1:0]=01h	0.060 *VDD -0.055	0.060 *VDD	0.060 *VDD +0.055	V	
	Vhys5-	Min: VDD=5V±5% EHYS1, 2[1:0]=10h	0.030 *VDD -0.03	0.030 *VDD	0.030 *VDD +0.03	V	
	Vhys3+	Max: VDD=3, 3.3V±5% EHYS1, 2[1:0]=01h	0.060 *VDD -0.035	0.060 *VDD	0.060 *VDD +0.035	V	
	Vhys3-	Min: VDD=3, 3.3V±5% EHYS1, 2[1:0]=10h	0.030 *VDD -0.02	0.030 *VDD	0.030 *VDD +0.02	V	
Adjust. step	Vhysst			0.010 *VDD		V	
Pressure detection time	Tdetr	ESCF[1:0]=0h			150	µsec	Note)
Pressure non-detection time	Tdetf	ESCF[1:0]=0h			150	µsec	Note)

Note) Design reference value; no production test performed.

9) Analog Characteristics

9-1) Reference Section

9-1-1) Reference Section Characteristics

9-1-1) Refere		tion Characteristics		un ninte u c	الملاحين الحابين		- mulie e ve ete el
14		VDD=3, 3.3, 5V±5%, Ta=-20					
Item	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
VREF voltage	Vr0	Unadjusted	0.97	1.0	1.04	V	@25 °C
		AM[3:0]=1h VOUT out					
	Vr+	With respect to Vr0		+30		mV	
VREF adj. width	Vr-	Max EVR[2:0]=3h		40			
width	VI-	With respect to Vr0 Min EVR[2:0]=4h		-40		mV	
VREF adj. step	Vrstp			10		mV	
VS voltage	VS4	After VREF adj.	3.88	4.00	4.12	V	
vo voltage	V 04	VS pin out	5.00	4.00	4.12	v	
		Load resistance 1kΩ					
	VS2	After VREF adj.	2.134	2.20	2.266	V	
		VS pin out		2.20	2.200		
		Load resistance 0.82kΩ					
IREF current	lr0	Unadjusted	0.8	1.00	1.2	μA	@25 °C
	-	AM[3:0]=2h VOUT out				L. L.	0
	lr+	With respect to Ir0		0.24		μA	
IREF adj. width		Max EIR[3:0]=7h				-	
INEF auj. Wiuth	lr-	With respect to Ir0		-0.17		μA	
		Min EIR[3:0]=8h					
IREF adj. step	Irstp			0.028		μA	
OSC freq.	Fr0	Unadjusted	0.750	1.000	1.250	MHz	@25 °C
		AM[3:0]=3h VOUT out					
OSC adj. width	Fr+	With respect to Fr0		384		kHz	
		Max EFR[3:0]=7h					
	Fr-	With respect to Fr0		-251		kHz	
		Min EFR[3:0]=Bh					
OSC adj. step	Frstp			50		kHz	
VTMP voltage	Vt0	Unadjusted	0.938	1.0	1.064	V	@25 °C
		ETMP[0]=1h					
		AM[3:0]=4h VOUT out					
	Vtr+	With respect to Vt0		+170		mV	
		ETMP[0]=0h					
VTMP adj.		Max ETM[8:6]=6h		470			
width (Rough)	Vtr-	With respect to Vt0		-170		mV	
		ETMP[0]=0h Min ETM[8:6]=2h					
Rough adj. step	Vtrstp	ETMP[0]=0h		85		mV	
Rough auj. step	Vtistp Vtf+	With respect to Vt0		+64		mV	
	VUT	ETMP[0]=1h		104			
VTMP adj.		Max ETM[5:0]=20h					
width (fine)	Vtf-	With respect to Vt0		-62		mV	1
(ETMP[0]=1h		52			
		Min ETM[5:0]=1Fh					
Fine adj. step	Vtfstp	ETMP[0]=1h	İ	2.0		mV	
VTMP temp	Vt	ETMP[0]=1h	İ	4.6		mV/°C	Note)
variation	_			-			, í

Note) Design reference value; no production test performed.

			VDD=5	V±5%, Ta	= 25⁰C, ur	nless oth	erwise noted
ltem	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
VREF voltage	Vr0P		0.99	1.0	1.01	V	After adj.
VS voltage	VS4P	Load resistance $1k\Omega$	3.88	4.00	4.12	V	After adj.
vo voltage	VS2P	Load resistance $0.82k\Omega$	2.134	2.20	2.266	V	After adj.
IREF current	Ir0P		0.9	1.0	1.1	μA	After adj.
OSC freq.	Fr0P		0.9	1.0	1.1	MHz	After adj.
VTMP voltage	Vt0P	ETMP[0]=1h	0.988	1.0	1.012	V	After adj.

9-1-2) Reference Section (packaged version only) Characteristics

Note) AK8998 is shipped with adjustment at VDD=5V&VS=4V (EVD[1:0]=0h) and internal temperature sensor use (ETMP[0]=1h). If VDD=5V&VS=2.2V (EVD[1:0]=1h), VDD=3.3V&VS=2.2V(EVD[1:0]=2h), VDD=3V&VS=2.2V(EVD[1:0]=3h) and external temperature sensor use (ETMP[0]=0h) are the actual operating condition, readjustment is required. Even if VDD=5V&VS=4V (EVD[1:0]=0h) and internal temperature sensor use (ETMP[0]=1h) are the operating condition, readjustment is recommended.

9-2) Gain Amplifier etc.

Unless otherwise specified, the following requirements apply.

- Reference Section is complete with adjustment.
- For supply voltage of 5V (3V), sensor drive voltage of 4V (2.2V), the level diagram includes G1 gain of 10x, G2 gain of 1.5x, G3 gain of 1.8x, Total gain of 60x, Level shift 0.02*VDD and the output voltage 4800mV (2400mV) is set as 100% based on a differential input of 80mV (40mV).

9-2-1) Overall Characteristics

VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted

ltem	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Std. gain	Gtyp	VP/VN→VOUT		60		times	
Input common voltage	Vicom		0.45VS	0.5*VS	0.55VS	V	
Output common voltage	Vcom0	VP/VN→VOUT VP=VN=0.5*VS		0.5*VDD		V	
Max. output	Vmax+	VP/VN→VOUT VP-VN=VSS or VDD	0.98 *VDD			V	
range	Vmax-				0.02 *VDD	V	
Noise	Nout1	VP/VN→VOUT VP=VN=Open External feedback capacitance 2.2nF			260	µVrms	@1Hz - 100kHz Note)
	Nout2	VP/VN→VOUT VP=VN=Open ESCF[1:0]=1h			300	µVrms	@1Hz - 100kHz Note)

Note) Value for total gain of 180x (G1 gain: 30x, G2 gain: 1.5x, G3 gain: 1.8x, S/H gain: 2x, Buffer gain: 1.111x). Design reference value; no production test performed.

	VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted								
Item	Symbo	ol Conditions	Min.	Тур.	Max.	units	Comments		
Measurement	in test mo	de							
Unadjusted G1/2 output	Vg1	VP-VN=80mV VDD=5V±5%	1150	1200	1250	mV			
voltage	Vg2	VP-VN=40mV VDD=3, 3.3±5%	550	600	650	mV			
G1	G1sc+	EIG[3:0]=Ch		5		times			
adjustment range	G1sc-	EIG[3:0]=0h		70		times			
Adj. Step	G1stp			2,3,5,10		times			
G2 adj.	G2sc1+	EIG[4]=0h,ESTC[0]=1h		3		times			
	G2sc1-	EIG[4]=1h,ESTC[0]=1h		1.5		times			
	G2sc2+	EIG[4]=0h,ESTC[0]=0h		2.352		times			
	G2sc2-	EIG[4]=1h,ESTC[0]=0h		1.176		times			

9-2-2) G1/2 Gain Adjustment Circuit

9-2-3) Offset Voltage Adjustment Circuit

VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted

Item	Symbol	Conditions	Min.	Тур.	Max.	units Comm	
Measurement in t		1	1	7 1 ²			
Unadjusted	Vo01	VDD=3, 3.3, 5V±5%	0.5*VDD	0.5*VDD	0.5*VDD	V	
output voltage		, ,	-0.10		+0.10		
Offset rough adj.	Ocr5+	EOCR[3]=0h		+11200		mV	
DAC adj. range		EOCR[2:0]=7h					
		VDD=5V±5%					
	Ocr5-	EOCR[3]=1h		-11200		mV	
		EOCR[2:0]=7h					
		VDD=5V±5%					
	Ocr3+	EOCR[3]=0h		+5600		mV	
		EOCR[2:0]=7h					
	0.0	VDD=3, 3.3±5%		5000			
	Ocr3-	EOCR[3]=1h		-5600		mV	
		EOCR[2:0]=7h VDD=3, 3.3±5%					
Adj. step	Ocr5stn	VDD=5, 3:3±3 %		1600		mV	
Auj. step		VDD=3, 3.3±5%		800		mV	
Offset fine adj.	Ocf5+	EOCF[7]=0h		+1016		mV	
DAC adj. range	0010	EOCF[6:0]=3Fh		. 1010		iii v	
Dire daj. range		VDD=5V±5%					
	Ocf5-	EOCF[7]=1h		-1016		mV	
		EOCF[6:0]=3Fh					
		VDD=5V±5%					
	Ocf3+	EOCF[7]=0h		+508		mV	
		EOCF[6:0]=3Fh					
		VDD=3, 3.3±5%					
	Ocf3-	EOCF[7]=1h		-508		mV	
		EOCF[6:0]=3Fh					
		VDD=3, 3.3±5%					
Adj. step		VDD=5V±5%		8		mV	
	Ocf3stp	VDD=3, 3.3±5%		4		mV	

	j	VDD=3, 3.3, 5V±5%, Ta=	=-20 to	85°C, register defa	ult, unl	ess oth	erwise noted		
ltem	Symbol	Conditions	Min.	Тур.	Max.	units	Comments		
Measurement in	Measurement in test mode after offset voltage adjustment								
Unadjusted	Vs01	VP-VN=80mV	2010	2160	2310	mV			
Span voltage		VDD=5V±5%							
	Vs02	VP-VN=40mV	1005	1080	1155	mV			
		VDD=3, 3.3±5%							
Span adj. range	Sc+	ESC[7:0]=00h		100/100		times			
	Sc-	ESC[7:0]=FFh		100/163.75		times			
Adj. Step	Sc stp	N= 0 - +255		100/(100+0.25*N)		times			

9-2-4) Span Voltage Adjustment Circuit

9-2-5) Offset Temperature Drift & Sensitivity Temperature Drift Adjustment Circuit

Offset Temperature Drift Adjustment Circuit Note) 9-2-5-1)

VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted

ltem	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Measurement	in test mode	after offset voltage and	l span v	/oltage a	djustm	ent	
1 st order coeff. Adj. range	DO5+	EOT[8]=0h EOT[7:0]=FFh VDD=5V±5%		+36.8		mV/°C	
	DO5-	EOT[8]=1h EOT [7:0]=FFh VDD=5V±5%		-36.8		mV/°C	
	DO3+	EOT[8]=0h EOT[7:0]=FFh VDD=3, 3.3±5%		+22.08		mV/°C	
	DO3-	EOT[8]=1h EOT[7:0]=FFh VDD=3, 3.3±5%		-22.08		mV/°C	
Adj. step	DO5 stp	VDD=5V±5%		0.144		mV/°C	
	DO3 stp	VDD=3, 3.3±5%		0.087		mV/°C	

Note) Design reference value; no production test performed.

Sensitivity Temperature Drift Adjustment Circuit Note) 9-2-5-2)

		VDD=3, 3.3, 5V±5%, Ta=-20	0 to 85º	°C, registe	er defau	<u>lt, unless (</u>	otherwise noted
Item	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Measurement in test mode after offset voltage and span voltage adjustment							
1 st order coeff.	DS1+	ESTC[0]=1h,EST[8]=0h EST[7:0]=8Bh		+2500		ppm/°C	
Adj. range	DS1-	ESTC[0]=1h,EST[8]=1h EST[7:0]=DEh		-4000		ppm/°C	
	DS2+	ESTC[0]=0h,EST[8]=0h EST[7:0]=38h		+1000		ppm/°C	
	DS2-	ESTC[0]=0h,EST[8]=1h EST[7:0]=8Bh		-2500		ppm/°C	
Adj. step	DS stp			18		ppm/°C	

Note) Design reference value; no production test performed.

VDD=3, 3.3, 5V±5%, 1a=-20 to 85°C, register default, unless otherwise noted							
	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Measurement in t	est mode	after offset voltage and	span vo	ltage adjι	ustment		
Sensitivity variation characteristics 1		SV circuit initial operation, ESTC[0]=1h			5.0	%	
to supply voltage	SV2	SV circuit 2 nd operation, ESTC[0]=1h		±0.4		%	Based on SV1
Sensitivity variation characteristics 1		ST circuit initial operation, ESTC[0]=1h			5.0	%	
to operating temp.	ST2	ST circuit 2 nd operation, ESTC[0]=1h		±0.4		%	Based on ST1
Sensitivity variation characteristics 2	SV3	SV circuit initial operation, ESTC[0]=0h			5.0	%	
to supply voltage	SV4	SV circuit 2 nd operation, ESTC[0]=0h		±0.2		%	Based on SV3
Sensitivity variation		ST circuit initial operation, ESTC[0]=0h			5.0	%	
to operating temp.	ST4	ST circuit 2 nd operation, ESTC[0]=0h		±0.2		%	Based on ST3

9-2-6) Supply Voltage & Temperature Sensitivity Variation Adjustment Circuit (STV) ^{Note)} VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted

9-2-7) LPF, S/H & Buffer

9-2-7) LPF, 5/H & Buffer							
	VD	D=3, 3.3, 5V±5%, Ta=-	20 to 85°0	<u>C, register</u>	default, u	nless ot	herwise noted
ltem	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Measurement in test mode after offset voltage and span voltage adjustment							
LPF freq.	Fc1		40	60	80	kHz	
response							
S/H&Buffer gain	SHG		1.935	2.222	2.523	times	
S/H&Buffer out	SHerr		-65		65	mV	
pre-adj. error			00		00		
BUF gain adj.	Bufg		1.000	1.111	1.222	times	
width							
	Vbuf+	Load resistance	0.98			V	
VOUT output		9.5kΩ	*VDD				
voltage range	Vbuf-	(with VDD or VSS)			0.02	V	
					*VDD		
BUF feedback	Rbuf		102	146	190	kΩ	
resistor value				. 10			

9-2-8) Level shift

	V	DD=3, 3.3, 5V±5%, Ta=-	20 to 85°0	C, register	default, u	nless of	herwise noted
Item	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Measurement in	test mod	e after offset voltage ar	nd span v	oltage ad	justment		
Output reference voltage adj. width (Level shift)	VIv+ VIv-	Max ELV[8]=1h ELV[7:0]=FFh Min		1.00 *VDD 0.00		V	Note) Note)
		ELV[8]=0h ELV[7:0]=FFh		*VDD			,
Adj. step	VIstp			0.002 *VDD		V	

Note) It is limited to 0.98*VDD from 0.02*VDD by the VOUT output range.

9-2-9) SCF & SMF

VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise noted

Item	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Measurement in test mode after offset voltage and span voltage adjustment							
SCF&SMF freq. response	Fc1	ESCF[1:0]=1h 10Hz referenced -3dB	0.8	1.0	1.2	kHz	
	Fc2	ESCF[1:0]=2h 10Hz referenced -3dB	400	500	600	Hz	
Fc3 ESCF[1:0]=3h 10Hz referenced -3dB		200	250	300	Hz		
SCF&SMF gain	SCFG1	ESCF[1:0]=1h	1.000	1.111	1.222	times	

9-2-10) External temperature sensor drive circuit

VDD=3, 3.3, 5V±5%, Ta=-20 to 85°C, register default, unless otherwise no							therwise noted
ltem	Symbol	Conditions	Min.	Тур.	Max.	units	Comments
Temperature sensor driving current	lconst	After IREF adj.	40	50	60	μA	
Input voltage	Extpv4	VS=4V After VREF adj.	3220	3400	3580	mV	
range	Extpv2	VS=2.2V After VREF adj.	1474	1600	1726	mV	

Operation Sequence

Initial oper	ration for STV (first time)			Pressure measurement period	Idling period 1kHz:450
	Approx. 500µsec	0		8	18 50	10kHz: 0
NO.	00	10		30	4	13
status	Start Up	ST0		STV0	MSR	ST3
VDD						
STV				P. supply & sens. variation adj.	(First) Initial operation	
S/H1&2						
VOUT		1/2*V	DD for c	output ref. voltage		
	Detection "H" set					
DET1/2	Detection "L" set					
Normal ope	eration for STV (2nd tim	e & later)			
	Idling period 1kHz :450		,			
CLK (1=500kH;	10kHz: 0	∢ 0	4	8	Pressure measurement period 50	▶◀▶
NO.		11	21	31	4	13
status	ST3	ST1	ST2	STV1	MSR	ST3
VDD			012	0111		
STV				P. supply & sens.	(2nd time & after) Normal	
S/H1&2				variation adj.	operation	
VOUT				(
ν001 γ	Detection "H" set		VOUT	(11-1)	Detection: "L" ((n. 1)th judge)	
DET1/2					Detection: "H" ((n-1)th judge)	
	_Detection "L" set	ļ			Cetection: "L" ((n-1)th judge)	X

No.	State	CLK	Operations
00	Start Up		It is the time until analog circuits operate stably. Analog reference circuits as VREF, IREF, etc. start up
			and adjusted output reference voltage is output from the VOUT pin.
10	ST0		Clock count start Analog circuits startup
30	STV0	CLK=8	STV initial operation
4	MSR	CLK=18	The result of pressure correction is output from VOUT pin.
13	ST3	CLK=51	Idling With fs=10kHz, no idling and in continuous operation. Idling period 1kHz 450 CLK 10kHz 0 CLK
11	ST1	CLK1=51	Pressure detection circuit 1 operation and analog circuit startup
21	ST2	CLK=4+CLK1	Pressure detection circuit 2 operation
31	STV1	CLK=8+CLK1	STV normal operation Pressure detection DET1/2 output (the (n-1)th pressure determination)
:	:	:	:

Description of Operation Timing Status (pressure detection circuit effective)

Adjustment Sequence Span OSC adjustment Span adjustment fine adjustment Power ON (CAdd 00h D[4:1] set (Add 02h D[7:0] set) Add 02h D[7:0] set) Add 10h D[3:0] set) MP adjustment **EEPROM** Write ex. Pressure:0kPa ex. Ta:85°C (CAdd 00h D[4:1] sei Enable set Add 13h D[1] & Add 1Eh D[0] set) 11h D[7:0] set) Pressure Detector 1 ex. Pressure:0kPa setting routine S/H circuit output EEPROM initialize error adjustment (Add 1Fh D[7:0] set) Offset temperature routine adjustment Pressure Detector 2 (Add 03h D[0] & setting routine 94b D[7:0] set) Control Register Offset adjustment (Add 00h D[3:0] & Access set Control Register Add 1Dh D[0] set) 01h D[7:0] set) ex. Pressure:100kPa Access set Add 1Dh D[7] set) ex. Pressure:100kPa Dain(G1/G2/G3) set pan temperature Add 0Ch D[4:0]=1C he adjustment EEPROM Write Add 02h D[7:0]=FF bex (Add 05h D[0] & 06h_D[7:01_set) Enable set Add 1Fh D[0] set Gain(G1/G2) set Add 0Ch D[4:0] set) Measurement ex. Pressure:0kPa mode routine Power OFF ex. Pressure:0kPa ex. Ta:25°C ex. Ta:25°C Øffset readjustment Offset (Add 00h D[3:0] & ex. Pressure:0kPa fine adjustment 01h D[7:0] set) dd 01h D[7:0] set) VREF adjustment Level shift set ex. Pressure:100kPa CAdd 00h D[4:1] set (Add 0Ah D[0] & 0Bh D[7:0] set) IREF adjustment ex. Pressure:100kPa CAdd 00h D[4:1] set

note1) EEPROM Address is indicated by "Add", Control Register Address is indicated by "CAdd".

note2) Please refer the digital part flow chart for EEPROM / Control Register writing and reading.

Functional Description

1) Adjustment Procedure Description (Example)

The adjustment procedure for the AK8998 follows (See "Adjustment Sequence.").

Note) When shipped in package form, the adjustments for the items 1-4 below have been completed. It is necessary to read the data (items 1-4 below) from a chip first and after initializing the EEPROM, rewrite the readout data. Note that depending on the required accuracy and implementation form, there could be some cases where items 1-4 should be readjusted. AK8998 is shipped with adjustment at VDD=5V & VS=4V mode (EVD[1:0]=0h) and internal temperature sensor use (ETMP[0]=1h). If other modes (EVD[1:0]=1, 2, 3h, ETMP[0]=0h) are the actual operating condition, readjustment is required. Even if VDD=5V&VS=4V (EVD[1:0]=0h) and internal temperature sensor use (ETMP[0]=1h) are the operating condition, readjustment is recommended.

Keep the sequence as adjustment of VREF adjustment, IREF adjustment, OSC adjustment, and VTMP adjustment in turn. If VREF adjustment and IREF adjustment are performed after OSC adjustment, adjusted Oscillating frequency will shift.

The EEPROM address is referred to as "address," while the control register (volatile memory) address is referred to as "C address."

1. VREF Adjustment (completed when shipped in package form)

The reference voltage is adjusted to 1.0V by VREF voltage adjustment EEPROM (address: 0Eh, data EVR[2:0]). Adjusting the VREF voltage also means adjustment of the sensor drive voltage (VS). VREF voltage is observed at VOUT pin (See "Recommended Connection Examples for Components") while the CSCLK pin High (CSCLK High Time) after the writing of an adjustment mode register (C address: 00h, data AM[3:0]= 1h).

2. IREF Adjustment (completed when shipped in package form)

The reference current is adjusted to 1.0µA.

The external resistor $(1M\Omega)$ is connected to VOUT pin. Reference current is supplied to the external resistor, and IREF current adjustment EEPROM (address: 0Fh, data EIR[3:0]) is adjusted so that the voltage across the both ends of the external resistor is set to 1.0V. And it can adjust more accurate by taking into consideration the input impedance (input resistance) of adjustment apparatus. With $1M\Omega$ external resistor to the VOUT pin, it is adjusted in voltage domain. The external $1M\Omega$ should be connected only at the time of IREF adjustment. When with resistance $1M\Omega$ is connected always in outside, please be careful of the input impedance of adjustment apparatus. The input impedance of adjustment apparatus should become more than $10G\Omega$. IREF current is observed at VOUT pin (See "Recommended Connection Examples for Components") while the CSCLK pin High (CSCLK High Time) after the writing of an adjustment mode register (C address: 00h, data AM[3:0]= 2h).

3. OSC Adjustment (completed when shipped in package form)

The intermittent operation control clock is adjusted to 1,000kHz.

Oscillation frequency can be adjusted without monitoring frequency directly.

The high level for the fixed period (2.0msec±1%) is inputted from the CSCLK pin after the writing of an adjustment mode register (C address: 00h, data AM[3:0]= 3h). The internal clock pulses are counted in the integrated counter circuit, and the count value is stored in the control register (C address: 01h, data CT[7:0]). The adjustment data (address: 10h, data EFR[3:0]) for oscillation frequency is calculated from the stored count value. The adjustment can be done within 1000kHz±5% accuracy by writing the adjustment data in EEPROM. Since the error of High period turns into an adjustment error of frequency, please set period as 2.0ms±1%.

The explanation of oscillation frequency adjustment data (address: 10h, data EFR[3:0]) is as follows.

The count value stored in the control register (C address: 01h, data CT[7:0]) is read for the ratio check. A ratio will be 0% (ideal value), when the High level period of CSCLK pin is 2 msec and the frequency of the internal oscillator is 1000 kHz. The ratio varies from 0% by the error of High level period and the frequency variation of the internal oscillator. And the High time which can be set up becomes a range from which a ratio will be -99% to 154%. Be aware that the error is easily affected when the ratio is small. In addition, the counter value shown as FF hex means overflow, please measure again by changing High level period.

Please set the adjustment data of oscillation frequency as the sum of the ratio of CT [7:0] data and the ratio of EFR [3:0] data is close to 0%.

CT[7:0]		Count value	Ratio	Comments	
Dec	Dec Hex Bin		(time)	(%)	
0	00	00000000	0	0	Default
1	01	0000001	1	-99	
:	:	:	:	:	
98	62	01100010	98	-2	
99	63	01100011	99	-1	
100	64	01100100	100	0	Ideal value
101	65	01100101	101	1	
102	66	01100110	102	2	
:	:	:	•	:	
254	FE	11111110	254	154	
255	FF	11111111	-	-	Counter error

Address : 01 hex	D[7:0]=CT[7:0]
------------------	----------------

EFR[3:0]		Ratio	Frequency ∆f	Comments	
Dec	Hex	Bin	(%)	(kHz)	
-5	В	1011	-34	-251	
-4	С	1100	-25	-197	
-3	D	1101	-17	-146	
-2	E	1110	-11	-99	
-1	F	1111	-5	-52	
0	0	0000	0	0	Default
1	1	0001	5	49	
2	2	0010	10	106	
3	3	0011	14	162	
4	4	0100	18	224	
5	5	0101	22	274	
6	6	0110	25	329	
7	7	0111	28	384	

Address : 10 hex D[3:0]=EFR[3:0]

Note1) Hex 8 to A are prohibited for setup.

When High level period is not 2 msec, the ideal value of CT [7:0] can be calculated as follows.

Considering the calculated ideal value as 100%, and a ratio should be redefined. Please set the adjustment data of oscillation frequency as the sum of the ratio of CT [7:0] data and the ratio of EFR [3:0] data is close to 0%.

Count value[time]=High time[msec] / 2 * 100 ex.) In the case of 3 msec, 100 time \rightarrow 150 time.

4. VTMP Adjustment (completed when shipped in package form)

Temperature sensor output (VTMP) voltage is adjusted to match the VREF voltage. When the external temperature sensor is used, connect the external temperature sensor to the EXTMP pin, and set up a measurement mode EEPROM (address: 0Dh, data ETMP[0]= 0h). VTMP voltage is observed at VOUT pin while the CSCLK pin High (CSCLK High Time) after the writing of an adjustment mode register (C address: 00h, data AM[3:0]= 4h).

*In sampling frequency 1kHz mode (ESF[0] =1h), the external temperature sensor (ETMP[0] =0h) cannot be used.

5. S/H Circuit Output Error Adjustment

The S/H circuit output voltage is adjusted to become 0.0V at VOUT pin by using the Output reference voltage adjustment EEPROM (address:0Ah data:ELV[8], address:0Bh data:ELV[7:0]).

6. Offset Voltage Adjustment

The offset voltage for the pressure sensor is adjusted including the AK8998 internal error by using the offset voltage adjustment EEPROM (address:00, 01h data:EOCR[3:0], EOCF[7:0]).

■Offset Voltage Adjustment Example (@VDD:5V)

EOCR[3]: Offset voltage rough adjustment sign bit

If unadjusted output is more than 0.5*VDD, set EOCR[3]=1h.

If unadjusted output is less than 0.5*VDD, set EOCR[3]=0h.

EOCR[2:0]: Offset voltage rough adjustment: Adjust in 1600-mV steps.

EOCF[7]: Offset voltage fine adjustment sign bit

If unadjusted output is more than 0.5*VDD, set EOCF[7]=1h.

If unadjusted output is less than 0.5*VDD, set EOCF[7]=0h.

EOCF[6:0]: Offset voltage fine adjustment: Adjust in 8-mV steps.

When the offset voltage is +360mV (0.5*VDD reference), set EOCF[7]=1h and EOCF[6:0]=45dec. 360[mV]-(8[mV]*45[dec])=0.0[mV]

7. Input gain (G1/G2) setup

Set up G1/G2 gain so that Gain Amp.1/2 output voltages become the ranges (In the case of VDD=5V, G1 \leq 1700mV, G2 \leq 1950mV). The voltage and temperature coefficient which are used for calculation is as follows.

The offset voltage and the span voltage in 25 °C are calculated by dividing the measurement result (VOUT pin) of the 1st offset voltage and the Span voltage by 18.35 (total gain). And for the offset voltage temperature drift coefficient and the sensitivity temperature drift coefficient, the MIN value (minus polarity) of the pressure sensor assumed is used.

In addition, since offset voltage and the offset voltage temperature drift coefficient are adjusted with Gain Amp.1 output, G2 gain is calculated noting that only the Span voltage and the sensitivity temperature drift coefficient.

Voff25: Offset voltage of the pressure sensor@25°C Vsp25: Span voltage of the pressure sensor @25°C Ktoff: Offset voltage temperature drift coefficient of the pressure sensor (MIN value) Ktsp: Sensitivity temperature drift coefficient of the pressure sensor (MIN value)

■ In the case of VDD=5V and temperature=-20 to 85° C Gain Amp.1 output =G1*(Voff25+Vsp25+ktoff*(-20[°C]-25[°C])+Vsp25*ktsp*(-20[°C]-25[°C])) ≤ 1700mV Gain Amp.2 output =G1*G2*(Vsp25+Vsp25*ktsp*(-20[°C]-25[°C])) ≤ 2100mV

■ In the case of VDD=3.3V/3.0V and temperature=-20 to 85° C Gain Amp.1 output =G1*(Voff25+Vsp25+ktoff*(-20[°C]-25[°C])+Vsp25*ktsp*(-20[°C]-25[°C])) ≤ 800mV/800mV Gain Amp.2 output =G1*G2*(Vsp25+Vsp25*ktsp*(-20[°C]-25[°C])) ≤ 1250mV/1150mV

8. Offset Voltage Readjustment

The offset voltage is readjusted.

The offset voltage adjustment EEPROM is once reset to ALL"0", and the adjustment should be done again using the offset voltage adjustment EEPROM.

9. Output Reference Voltage Adjustment

Adjust the output reference voltage. The output reference voltage is adjusted by using the output reference voltage adjustment EEPROM (address: 0A, 0Bh data: ELV[8:0]).

■Output Reference Voltage Adjustment Example (@VDD:5V) When the output reference voltage is 100mV, set ELV[8]=0h and ELV[7:0]=240dec. 2500[mV]+(-0.002*VDD*240[dec])*5000[mV]=100[mV]

10. Output Span Voltage Adjustment

The output span voltage for the connected pressure sensor is adjusted, including the AK8998 internal error, by using the output span voltage adjustment register (address: 02h data: ESC[7:0]).

■Output Span Voltage Adjustment Example (@VDD:5V) When the output is 3700mV, set ESC[7:0]=140dec (target span voltage 4800mV). (3700[mV]-100[mV])*1.8*100/(100+0.25*(140))=4800[mV]

11. Offset Temperature Drift Adjustment

The offset temperature drift for the pressure sensor is adjusted, including the AK8998 internal error, by using the offset voltage temperature drift adjustment register (address: 03, 04h data: EOT[8:0]).

■Offset Temperature Drift Adjustment Example (@VDD:5V)

EOT[8]: Offset voltage adjustment sign bit

If unadjusted output is greater than the output reference voltage, set EOT[8]=1h.

If unadjusted output is smaller than the output reference voltage, set EOT[8]=0h.

EOT[7:0]: Offset voltage adjustment: Adjust in 0.144mV/°C steps (@VDD: 5V).

If the offset voltage is +300mV (with respect to the output reference voltage e.g.100mV) at Ta=85°C, set EOT[8]=1h, EOT[7:0]=35dec.

(100[mV]+300[mV])-(85[°C]-25[°C])*(0.144[mV/°C]*35[dec])=97.6[mV]

12. Sensitivity Temperature Drift Adjustment

The sensitivity temperature drift for the pressure sensor is adjusted, including the AK8998 internal error, by using the sensitivity temperature drift adjustment register (address: 05, 06h data: EST[8:0]).

Sensitivity Temperature Drift Adjustment Example (@VDD:5V, ESTC[0]=1hex) EST[8]: Sensitivity temperature drift adjustment sign bit (target span voltage 4800mV)

If unadjusted output is greater than 4800mV (with respect to the output reference voltage) at $Ta=85^{\circ}C$, set EST[8]=1h.

If unadjusted output is smaller than 4800mV (with respect to the output reference voltage) at Ta=85°C, set EST[8]=0h.

EST[7:0]: Sensitivity temperature drift adjustment: Adjust in 18ppm/°C steps (@VDD: 5V). If the output voltage is +4,400mV (with respect to the output reference voltage e.g.100mV) at Ta=85°C, set EST[8]=0h, EST[7:0]=77dec.

4400[mV])+(85[°C]-25[°C])*(18[ppm/°C]*77[dec])*4800[mV]=4799.2[mV]

13. Offset Voltage Fine Adjustment

The offset voltage error is caused by compensating the offset voltage temperature drift. The offset voltage is adjusted using the offset voltage fine adjustment EEPROM (Address: 01h data: EOCF[7:0]).

14. Output Span Voltage Fine Adjustment

The output span voltage error is caused by compensating the offset voltage temperature drift. The output span voltage is adjusted using the output span voltage adjustment register (Address: 02h data: ESC[7:0]).

2) Finding the VOUT and VO Pins External Capacitance (Cap)

This section explains how the VOUT and VO pins external capacitance is defined. The requirements for determining the VOUT and VO pins external capacitance values are the stabilization time on power-up and S/(N+D)=Signal/(Noise+Distortion).

1. VOUT Pin Output Voltage Stabilization Time

Note that depending on the VOUT and VO pins external capacitance values, the measurement values (VOUT pin voltage) may contain errors upon power-up.

"99% Settling time (3+4 in the figure)" in the table below represents the analog stabilization time 3 in the figure and the time required to settle down to 99% of the output voltage (0.1*VDD in this case) according to the pressure applied during the period (3+4 in the figure). The period 3 in the figure is 0.30msec (typ).

Subsequently, the output voltage will settle to 99% according to the pressure during period @ in the figure. When the VO pin capacitance is 1µF, the period @ in the figure will settle within 672.4msec.

Settling time (period in the figure) =-146[k Ω]*1[µF]*ln(1-99/100)=672.4 [msec]

Therefore, the settling time up to 99% (period 3+4 in the figure) will be as follows:

<u>99% settling time (period ③+④ in the figure) = 0.30[msec] + 672.4[msec] = 672.7 [msec]</u>

Referring to the previous calculation example, determine the stabilization time based on true terms of use:

Prerequisites: VO pin external capacitance: VO pin internal resistance: Period ③_in the figure: Cap (Cap[μ F] typ., Cap*1.1[μ F] worst) Res (146[$k\Omega$] typ., 190[$k\Omega$] worst) Time (0.30[msec] typ., 0.40[msec] worst)

<u>Settling time (period ④ in the figure) = -Res*Cap*In(1-99/100)</u> 99% settling time (period ③+④ in the figure) = Time + Settling time

① - ④ Reference designators

①: Sampling timing; this diagram represents 10kHz (0.1msec).

2: Power-up rise time (VDD).

③: Settling time for stable analog operation.

(0): Pressure signal detection time. This time depends on the VO pin external capacitance and the internal 146k Ω resistance.

VO pin	Cutoff	Fig ③Time (msec)		99% Settling time (ms) (④)		99% Settling time (ms) (③+④)	
Ext. cap (nF)	Freq.(Hz) (Typical)	Typical case	Worst case _{Note)}	Typical case	Worst case _{Note)}	Typical case	Worst case
1000	1.090	0.300	0.400	672.4	962.5	672.7	962.9
220	4.955	0.300	0.400	147.9	211.7	148.2	212.1
22	49.55	0.300	0.400	14.79	21.17	15.09	21.57
2.2	495.5	0.300	0.400	1.479	2.117	1.779	2.517
0.22	4.96k	0.300	0.400	0.148	0.212	0.448	0.612
0.1	10.9k	0.300	0.400	0.067	0.096	0.367	0.496

Note) Worst case for external capacitance ±10% and lot variations.

2. VOUT pin S/(N+D)

Summarized in this table is the relationship between the VO pin's external capacitance and S/(N+D).

Note that the S/(N+D) should be 40dB or larger if 1.0% FS adjustment accuracy is required.

Sampling	VO pin	Cutoff	S/(N+D) characteristics		
Freq.(Hz)	Ext. cap (nF)	Freq.(Hz) (Typical)	Typical case	Worst case	
	1000	1.090	68.8	64.6	
1	220	4.955	55.6	51.4	
	22	49.55	35.6	31.4	
	2.2	495.5	15.8	11.8	
	220	4.955	75.6	71.4	
10	22	49.55	55.6	51.4	
10	2.2	495.5	35.6	31.4	
	0.22	4.96k	15.8	11.8	

Note) Worst case for external capacitance ±10% and lot variations.

As mentioned in Sections "1. VOUT pin output voltage stabilization time" and "2. VOUT pin S/(N+D)", the VO pin external capacitance value should be reduced to decrease the measurement time. For increased S/(N+D), the VO pin external capacitance value should be greater. On determining the VO pin external capacitance value, the various conditions should be thoroughly reviewed according to the application requirements.

3) Pressure Detection Operation at Power-Up

Use caution when operating the pressure detection circuits. VOUT pin output voltage is settled down based on the time constant determined by the internal

resistance $146k\Omega$ and VO pin external capacitance Cap value (see <u>2</u>) Finding the VO Pin External <u>Capacitance (Cap)</u>). Note that errors may be detected during the time in which VOUT pin output is not settled down to the voltage required according to the pressure applied.

4) Power Consumption

Current values described in 3) Supply Voltage Current in the Electrical Characteristics are those for the average current. The maximum current is shown in the table below. Use a power supply with sufficient supply capacity by referring to this table:

	units	VDD:3.6V	VDD:5.5V	Comments
Max. Current	mA	5.5	7.5	Reference value for design

5) Pressure Detectors 1 and 2

5-1) Pressure Detector's Detection Threshold

The internal setup and external setup for the pressure detectors' (1 and 2) detection threshold is described.

Block diagram of the pressure detectors 1 and 2:

The detection threshold of the pressure detectors 1 and 2 can be set up, as shown in the block diagram. For the pressure detectors 1 either through the external input (DET/PTH pin) or internal setup (EEPROM setup EPT1[4:0]) is used, for the pressure detector 2 only the internal setup (EEPROM setup EPT2[4:0]) is used.

5-2) Pressure Detector's hysteresis voltage

The hysteresis voltage in the pressure detectors' (1 and 2) detection threshold is described.

The hysteresis voltage to the detection threshold of the pressure detectors 1 and 2 is as follows by the detection threshold setup (Detect pressure above or below threshold).

Detect pressure above threshold: Detection threshold – Hysteresis voltage Detect pressure below threshold: Detection threshold + Hysteresis voltage

In addition, the setting range of "Detection threshold \pm hysteresis voltage" should be set between from 0.125*VDD to 0.9*VDD (same setting range as the detection threshold of the pressure detector).

6) VOUT Output

The AK8998 VOUT output shows four kinds of output waveforms below according to the condition. Please use the AK8998 understanding of those output waveforms may come.

No	Item	Content				
	Description	VOUT output time change 1 : When the band is not limited, a VOUT output shows stepwise change for every sampling period in the following figures. Since its change occurs for every sampling period, it can be reduced by using bandwidth shaping filter.				
3	Output Waveform	VOUT(V) ST or SV 1 step				
	Description	VOUT output time change 2 : When temperature changes slowly to compare with the band-limited time, a VOUT output shows stepwise change with temperature change in the following figures. For example, it occurs when the temperature in a thermostat chamber changes slowly.				
4	Output Waveform	ST 1 step VOUT(V) Temp Temperature change Time(min)				
Serial Interface Description

The data of EEPROM and control register (volatile memory) in the AK8999 can be written and read through a two-wire serial interface, consisting of CSCLK pin and VOUT pin. When CSCLK=High is maintained beyond a definite period of time (1.0 msec), VOUT output will change from the Analog output to SDI/O (Serial data I/O).

And data is captured from VOUT synchronously with the rising edge of CSCLK after SDI/O shift. Input data contains three instruction bits (I2 - I0), five address bits (A4 - A0) and eight data bits (D7 - D0). Provide the data in the order of I2 \rightarrow I0 \rightarrow A4 \rightarrow A0 \rightarrow D7 \rightarrow D0. And when CSCLK=Low is maintained beyond a definite period of time (0.5 msec), VOUT output will return from SDI/O to the Analog output. On the WRITE instruction, allow 5msec or more write time for EEPROM and 10µsec or more write time for the control register (see Twr in 6) Digital AC Characteristics in the Electrical Characteristics section). For the READ instruction, data is written up to 8CLK for CSCLK and the data output starting at the rising edge of 9CLK is read out.

1) Data Configuration

Configuration of data written to or read out through the serial interface is shown below. There are 16 specific bits of data in total comprised of three instruction bits, five address bits and eight data bits.

_ In:	structi	on		Add	Iress						Data	l			
12	1	10	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
←Data	a input	directi	on												

2) Description of Instructions

Instruction codes are summarized below.

Co	ode ^{Not}	te 1)	Instruction	Description
12	I1	10	Instruction	Description
1	1	0	EEPROM read (Read Mode)	Reads out the data written in the EEPROM
1	0	1	EEPROM write (Write Mode)	Writes data to the EEPROM. Write time (from 16 th CSCLK rising edge to CSCLK falling edge) requires 5msec or more.
			EEPROM batch write (Write Mode)	If the 1Fh address is written, input data is written to all addresses except for 1Eh. Write time (from 16 th CSCLK rising edge to CSCLK falling edge) requires 10msec or more.
0	1	0	Control reg. read (Read Mode)	Reads out the data written in the control register.
0	0	1	Control reg. write (Write Mode)	Writes the data to the control register. Write time (from 16 th CSCLK rising edge to CSCLK falling edge) requires 10µsec or more.

Note) Instructions other than this are prohibited.

3) Flow chart of Digital block

The flow chart of digital block is shown below.

4) Serial Interface Timing Diagram

4.3) Timing chart 3

5) Register Map

5.1) EEPROM Map Plan

ý		Address				Data	Note 1)			
Name	Content	(hex)	D7	D6	D5	Data D4	D3	D2	D1	D0
		0.01					EOCR[3]	EOCR[2]	EOCR[1]	EOCR[0]
OCR	Offset voltage rough adj.	00h					0	0	0	0
			EOCF[7]	EOCF[6]	EOCF[5]	EOCF[4]	EOCF[3]	EOCF[2]	ECCF[1]	EOCF[0]
OCF	Offset voltage fine adj.	01h	0	0	0	0	0	0	0	0
			ESC[7]	ESC[6]	ESC[5]	ESC[4]	ESC[3]	ESC[2]	ESC[1]	ESC[0]
SC	Output span voltage adj.	02h	0	0	0	0	0	0	0	0
			Ŭ	Ŭ	Ŭ	v	Ŭ	Ŭ	Ű	EOT[8]
OTS	Offset voltage temp. drift adj.	03h								0
			EOT[7]	EOT[6]	EOT[5]	EOT[4]	EOT[3]	EOT[2]	EOT[1]	EOT[0]
ОТ	Offset voltage temp. drift adj.	04h	0	0	0	0	0	0	0	0
			Ū	0	0	v	0	0	0	EST[8]
STS	Sens. temp. drift adj.	05h								0
			ECT[7]	E O TIOI	E O TIGI	ESTIA	ECT[2]	ESTIN	ECT[4]	-
ST	Sens. temp. drift adj.	06h	EST[7] 0	EST[6] 0	EST[5] 0	EST[4] 0	EST[3] 0	EST[2]	EST[1]	EST[0]
								0	0	0
PTH1	Pressure detector 1	07h	EINV1[0]	EINE1[0]	EIN1L[0]	EPT1[4]	EPT1[3]	EPT1[2]	EPT1[1]	EPT1[0]
			0	0	0	0	0	0	0	0
PTH2	Pressure detector 2	08h	EINV2[0]	EINE2[0]	EIN2L[0]	EPT2[4]	EPT2[3]	EPT2[2]	EPT2[1]	EPT2[0]
	Duran and the stars		0	0	0	0	0	0	0	0
HYS1	Pressure detector comparator hysteresis	09h	EPTH1[0]				EHYS2[1]	EHYS2[0]	EHYS1[1]	EHYS1[0]
HYS2	voltage adj.		0				0	0	0	0
										ELV[8]
LVS	Output ref. voltage adj.	0Ah								0
			EL \/[7]	ELV/(C)		ELVIA	EL \/[2]	EL \/[2]	EL \/[4]	
LV	Output ref. voltage adj.	0Bh	ELV[7]	ELV[6]	ELV[5]	ELV[4]	ELV[3]	ELV[2]	ELV[1]	ELV[0]
			0	0	0	0	0	0	0	0
ING	Input gain adj.	0Ch				EIG[4]	EIG[3]	EIG[2]	EIG[1]	EIG[0]
						0	0	0	0	0
MM1	Meas. mode	0Dh	EAGND[0]	EVPN[0]	ETMP[0]	ESCF[1]	ESCF[0]	EVD[1]	EVD[0]	ESF[0]
			0	0	0	0	0	0	0	0
VREF *	VREF voltage adj.	0Eh						EVR[2]	EVR[1]	EVR[0]
								0	0	0
IREF *	IREF current adj.	0Fh					EIR[3]	EIR[2]	EIR[1]	EIR[0]
							0	0	0	0
OSC *	OSC frequency adj.	10h					EFR[3]	EFR[2]	EFR[1]	EFR[0]
							0	0	0	0
VTMP *	VTMP adjustment	11h	ETM[7]	ETM[6]	ETM[5]	ETM[4]	ETM[3]	ETM[2]	ETM[1]	ETM[0]
• • • •			0	0	0	0	0	0	0	0
UE	User-writable data	12h	EUE[7]	EUE[6]	EUE[5]	EUE[4]	EUE[3]	EUE[2]	EUE[1]	EUE[0]
θĽ		1211	0	0	0	0	0	0	0	0
STC	Sensitivity temperature drift adjustment range	13h							ETM[8]	ESTC[0]
510	and VTMP adj.	130							0	0
		14h –								
	Reserved	1Ch					1	1		
	Control register access									ETST[0]
MM2	setup	1Dh								0
										EWE[0]
EWE	EEPROM Write Enable	1Eh								0
			EAW[7]				EAW[3]	EAW[2]	EAW[1]	EAW[0]
AW	EEPROM batch write	1Fh		EAW[6]	EAW[5]	EAW [4]	LAVVIJI			

Note 1) Lower line of each data represents the factory settings written to EEPROM.

Note 2) Access to the reserved addresses is prohibited.

Note 3) Write "0" to the unused D[7:0].

Note 4) For a packaged device, registers marked with * are adjusted before shipment. Therefore, defaults are not "0".

5.2) Control Register (Volatile Memory) Map

Name	Content	Address	_	Data ^{Note 1)}									
INAILIE		(hex)	D7	D6	D5	D4	D3	D2	D1	D0			
CM1	Adjustment mode	00h					AM[3]	AM[2]	AM[1]	AM[0]			
CIVIT							0	0	0	0			
CM2	OSC variable ratio	01h	CT[7]	CT[6]	CT[5]	CT[4]	CT[3]	CT[2]	CT[1]	CT[0]			
GIVIZ	Note4)	0111	0	0	0	0	0	0	0	0			
SH1	S/H circuit output error	19h					SH1[3]		SH1[3]				
5111	adjustment 1	1911					0		0				
SH2	S/H circuit output error	10h			SH2[5]	SH2[4]		SH2[2]					
5112	adjustment 2	1011			0	0		0					
SH3	S/H circuit output error	12h		SH3[6]									
313	adjustment 3	1211		0									
SH4	S/H circuit output error	17h					SH4[3]						
314	adjustment 4	1711					0						
	Reserved	others											
	Reserved	others											

Note 1) Lower line of each data represents the control register data upon power-up.

Note 2) Access to the reserved addresses is prohibited.

Note 3) Write "0" to the unused D[7:0].

Note 4) Access to this register serves as ReadOnly.

6) EEPROM and control register Description

6.1) Description of EEPROM 6.1.1) Adjustment Section EEPROM

Offset and span adjustment should be made after measurement mode setup and adjustment of the reference generator section including VREF, IREF, OSC and VTMP.

a) Offset voltage adjustment (EEPROM names: OCR, OCF)

Rough adjustment should be performed first, followed by a fine adjustment for the offset voltage. The content of the adjustment EEPROMs are shown here.

a-1) Offset voltage rough adjustment (OCR)

The offset voltage is adjusted roughly.

The offset adjustment voltage varies ratiometrically with respect to the supply voltage. The ratio in the table below is benchmarked to a VOUT output of 4800 mV (@VDD: 5V) as 100% (ratio = (Offset voltage @VDD: 5V)/4800[mV]*100[%]).

	EOCR [2:0]		Ratio	VDD	D:3V	VDD):5V	
Dec	Hex	Bin	(%)	EOCR [3]=0 (mV)	EOCR [3]=1 (mV)	EOCR [3]=0 (mV)	EOCR [3]=1 (mV)	Comments
0	0	000	0.00	0	0	0	0	Default
1	1	001	33.33	800	-800	1600	-1600	
2	2	010	66.67	1600	-1600	3200	-3200	
3	3	011	100.00	2400	-2400	4800	-4800	
4	4	100	133.33	3200	-3200	6400	-6400	
5	5	101	166.67	4000	-4000	8000	-8000	
6	6	110	200.00	4800	-4800	9600	-9600	
7	7	111	233.33	5600	-5600	11200	-11200	

Address: 00 hex D[3:0]=EOCR[3:0]

a-2) Offset voltage fine adjustment (OCF)

The offset voltage is adjusted finely.

The offset adjustment voltage varies ratiometrically with respect to the supply voltage. The ratio in the table below is benchmarked to a VOUT output of 4800mV (@VDD: 5V) as 100% (ratio = (Offset voltage @VDD: 5V)/4800[mV]*100[%]).

Add	lress :	01hex D[7:0]=EOCF[7:0]				
	EOCF	[6:0]	Ratio	VDD	D:3V	VDD):5V	
Dec	Hex	Bin	(%)	EOCF [7]=0 (mV)	EOCF [7]=1 (mV)	EOCF [7]=0 (mV)	EOCF [7]=1 (mV)	Comments
0	00	0000000	0	0	0	0	0	Default
1	01	0000001	0.17	4	-4	8	-8	
:	:	:	:	:	:	:	:	
15	0F	0001111	2.50	60	-60	120	-120	
16	10	0010000	2.67	64	-64	128	-128	
:	:	:	:	:	:	:	:	
31	1F	0011111	5.17	124	-124	248	-248	
32	20	0100000	5.33	128	-128	256	-256	
:	:	:	:	:	:	:	:	
63	3F	0111111	10.50	252	-252	504	-504	
64	40	1000000	10.67	256	-256	512	-512	
:	:	:	:	:	:	:	:	
126	7E	1111110	21.00	504	-504	1008	-1008	
127	7F	1111111	21.17	508	-508	1016	-1016	

b) Output span voltage adjustment (EEPROM name:SC)

The span voltage is adjusted.

The magnification factor in this table represents an adjustment factor benchmarked to a VOUT output of 4800mV (@VDD: 5V) as 1 (factor) = 100[%]/100[%].

The output and sensitivity describes the adjustable output voltages with the assumed reference output (2400mV@VDD: 3V, 4800mV@VDD: 5V) when ESC[7:0] = 0 dec.

	ESC[7:0]	Magnification	VDD):3V	VDD):5V	
Dec	Hex	Bin	(Factor)	Output (mV)	Sens. (Factor)	Output _ (mV) _	Sens. (Factor)	Comments
0	00	00000000	100/100.00	2400	60.0	4800	60.0	Default
1	01	0000001	100/100.25	2394	59.9	4788	59.9	
2	02	00000010	100/100.50	2388	59.7	4776	59.7	
3	03	00000011	100/100.75	2382	59.6	4764	59.6	
4	04	00000100	100/101.00	2376	59.4	4752	59.4	
:	:	:	:	:	•	:	:	
123	7B	01111011	100/130.75	1836	45.9	3671	45.9	
124	7C	01111100	100/131.00	1832	45.8	3664	45.8	
125	7D	01111101	100/131.25	1829	45.7	3657	45.7	
126	7E	01111110	100/131.50	1825	45.6	3650	45.6	
127	7F	01111111	100/131.75	1822	45.5	3643	45.5	
128	80	1000000	100/132.00	1818	45.5	3636	45.5	Center
129	81	10000001	100/132.25	1815	45.4	3629	45.4	
130	82	10000010	100/132.50	1811	45.3	3623	45.3	
131	83	10000011	100/132.75	1808	45.2	3616	45.2	
132	84	10000100	100/133.00	1805	45.1	3609	45.1	
133	85	10000101	100/133.25	1801	45.0	3602	45.0	
:	:	:	• •	:	••	:	:	
251	FB	11111011	100/162.75	1475	36.9	2949	36.9	
252	FC	11111100	100/163.00	1472	36.8	2945	36.8	
253	FD	11111101	100/163.25	1470	36.8	2940	36.8	
254	FE	11111110	100/163.50	1468	36.7	2936	36.7	
255	FF	11111111	100/163.75	1466	36.6	2931	36.6	

Address: 02 hex D[7:0]=ESC[7:0]

c) Offset voltage temperature drift adjustment (EEPROM name: OT)

The offset voltage temperature drift for the pressure sensor is adjusted, including the AK8998 internal error.

After performing the offset voltage adjustment at 25°C, use the EEPROM's offset voltage temperature characteristic coefficients for adjustment so that the absolute values of the AK8998's coefficient are matched to those of the sensor's coefficient.

	EOT[7:0]	Ratio):3V	VDE):5V	
1				EOT	ЕОТ	EOT	EOT	Comments
Dec	Hex	Bin	(%)	[8]=0	[8]=1	[8]=0	[8]=1	Comments
				_(mV/°C)	(mV/°C)	(mV/°C)	_(mV/°C)	
0	00	00000000	0.00	0.000	0.000	0.000	0.000	Default
1	01	0000001	0.39	0.087	-0.087	0.144	-0.144	
2	02	00000010	0.78	0.173	-0.173	0.289	-0.289	
3	03	00000011	1.18	0.260	-0.260	0.433	-0.433	
4	04	00000100	1.57	0.346	-0.346	0.577	-0.577	
:	:	:	•	:	:	:	:	
122	7A	01111010	47.84	10.564	-10.564	17.606	-17.606	
123	7B	01111011	48.24	10.650	-10.650	17.751	-17.751	
126	7E	01111110	49.41	10.910	-10.910	18.184	-18.184	
127	7F	01111111	49.80	10.997	-10.997	18.328	-18.328	
128	80	1000000	50.20	11.083	-11.083	18.472	-18.472	
129	81	10000001	50.59	11.170	-11.170	18.616	-18.616	
130	82	10000010	50.98	11.256	-11.256	18.761	-18.761	
131	83	10000011	51.37	11.343	-11.343	18.905	-18.905	
132	84	10000100	51.76	11.430	-11.430	19.049	-19.049	
133	85	10000101	52.16	11.516	-11.516	19.194	-19.194	
:	:	:	:	:	:	:	:	
236	EC	11101100	92.55	20.435	-20.435	34.058	-34.058	
237	ED	11101101	92.94	20.521	-20.521	34.202	-34.202	
238	EE	11101110	93.33	20.608	-20.608	34.347	-34.347	
239	EF	11101111	93.73	20.695	-20.695	34.491	-34.491	
:	:	:	:	:	:	:	:	
255	FF	11111111	100.00	22.080	-22.080	36.800	-36.800	

Address : 03 hex - 04 hex D[8:0]=EOT[8:0]

d) Sensitivity temperature drift adjustment range change (EEPROM name: ESTC)

The adjustment range of the sensitivity temperature drift coefficient is changed. By setting the sensitivity temperature drift coefficient adjustment range (ESTC [0]) as "H", the sensitivity temperature drift coefficient adjustment range will be set from +2500 ppm/°C to -4000ppm/°C. By setting "L" is used, it will be set from +1000 ppm/°C to -2500 ppm/°C.

D[0]	Symbol	Mode setup
D[0]	ESTC[0]	Sensitivity temperature drift adjustment range change
0	ST25	Sensitivity temperature drift adjustment range : -2500ppm/°C to +1000ppm/°C (Default)
1	ST40	Sensitivity temperature drift adjustment range : -4000ppm/°C to +2500ppm/°C

Address : 13 hex D[0]= ESTC[0]

e) Sensitivity temperature drift adjustment (EEPROM name: ST)

The sensitivity temperature drift for the pressure sensor is adjusted, including the AK8998 internal error.

After performing the span voltage adjustment at 25°C, use the EEPROM's sensitivity temperature drift coefficients for adjustment so that the absolute values of the AK8998's coefficient are matched to those of the sensor's coefficient.

	EST[7:0]	Ratio	VDE):3V	VDD	D:5V	
				EST	EST	EST	EST	Comments
Dec	Hex	Bin	(%)	[8]=0	[8]=1	[8]=0	[8]=1	Comments
				_(ppm/°C)	_(ppm/°C)_	_(ppm/°C)	_(ppm/°C)	
0	0	00000000	0.00	0	0	0	0	Default
1	1	0000001	0.39	18	-18	18	-18	
2	2	00000010	0.78	36	-36	36	-36	
:	:	:	•	:	:	:	:	
25	19	00011001	9.80	451	-451	451	-451	
26	1A	00011010	10.20	469	-469	469	-469	
27	1B	00011011	10.59	487	-487	487	-487	
28	1C	00011100	10.98	505	-505	505	-505	
:	:	:	:	:	:	:	:	
137	89	10001001	53.73	2471	-2471	2471	-2471	
138	8A	10001010	54.12	2489	-2489	2489	-2489	
139	8B	10001011	54.51	2507	-2507	2507	-2507	
140	8C	10001100	54.90	2525	-2525	2525	-2525	
:	:	:	:	:	:	:	:	
220	DC	11011100	86.27	3969	-3969	3969	-3969	
221	DD	11011101	86.67	3987	-3987	3987	-3987	
222	DE	11011110	87.06	4005	-4005	4005	-4005	
223	DF	11011111	87.45	4023	-4023	4023	-4023	
:	:	:	:	:	:	:	:	
254	FE	11111110	99.61	4582	-4582	4582	-4582	
255	FF	11111111	100.00	4600	-4600	4600	-4600	

Address : 05 hex - 06 hex D[8:0]=EST[8:0]

Note) When ESTC[0] is set to 1hex, adjust in -4000ppm/°C to +2500 ppm/°C. When ESTC[0] is set to 0hex, adjust in -2500ppm/°C to +1000 ppm/°C.

f) Pressure detector 1 (EEPROM name: PTH1, HYS1)

The operating mode, the detection threshold values and the hysteresis voltage of the comparator for the pressure detector 1 are individually set up.

The detector threshold voltage varies and the hysteresis voltage ratiometrically with respect to the supply voltage.

f-1) Pressure detector operating mode setup

Address : 07 hex D[7:5] = EINV1[0], EINE1[0], EIN1L[0]

D[7:5]	Symbol	Mode setup
D[7]	EINV1[0]	Pressure detector output polarity setup EEPROM
0	EINV11	High output when detected (default)
1	EINV10	Low output when detected
D[6]	EINE1[0]	Pressure detector enabled setup EEPROM
0	INT1E	Pressure detector 1 enable (default)
1	INT1D	Pressure detector 1 disable
D[5]	EIN1L[0]	Pressure detector 1 detection threshold setup EEPROM
0	INT1<	Detect pressure above threshold (default)
1	INT1>	Detect pressure below threshold

Address : 09 hex D[7] = EPTH1[0]

D[7]	Symbol	Mode setup
D[7]	EPTH1[0]	Pressure detector 1 detection threshold selection EEPROM
0	PTH1R	EEPROM setup (default)
1	PTH1E	DET2/PTH pin external setup

f-2) Pressure detector detection threshold adjustment Address : 07 hex_D[4:0]=EPT1[4:0]

Address : 07 nex D[4:0]=EPTT[4:0]							
	EPT1	[4:0]	0] Detection threshold (V)		Comments		
Dec	Hex	Bin	Detect threshold	ex. VDD:5V			
-16	10	10000	0.900*VDD	4.500			
-15	11	10001	0.875*VDD	4.375			
-14	12	10010	0.850*VDD	4.250			
:	:	:	:	:			
-3	1D	11101	0.575*VDD	2.875			
-2	1E	11110	0.550*VDD	2.750			
-1	1F	11111	0.525*VDD	2.625			
0	00	00000	0.500*VDD	2.500	Default		
1	01	00001	0.475*VDD	2.375			
2	02	00010	0.450*VDD	2.250			
:	:	•	:	:			
14	0E	01110	0.150*VDD	0.750			
15	0F	01111	0.125*VDD	0.625			

f-3) Comparator hysteresis voltage adjustment for pressure detection Address : 09 hex D[1:0]=EHYS1[1:0]

	EHYS	1[1:0]	Hysteresis v	Hysteresis voltage (mV)		
Dec	Hex	Bin	Hysteresis voltage	ex. VDD:5V	Comments	
2	2	10	0.030*VDD	150.0		
3	3	11	0.040*VDD	200.0		
0	0	00	0.050*VDD	250.0	Default	
1	1	01	0.060*VDD	300.0		

g) Pressure detector 2 (EEPROM name: PTH2, HYS2)

The operating mode, the detection threshold values and the hysteresis voltage of the comparator for the pressure detector 2 are individually set up.

The detector threshold voltage varies and the hysteresis voltage ratiometrically with respect to the supply voltage.

g-1) Pressure detector operating mode setup

D[7:5]	Symbol	Mode setup			
D[7]	EINV2[0]	Pressure detector output polarity setup EEPROM			
0	EINV21	High output when detected (default)			
1	EINV20	Low output when detected			
D[6]	EINE2[0]	Pressure detector enabled setup EEPROM			
0	INT2E	Pressure detector 2 enable (default)			
1	INT2D	Pressure detector 2 disable			
D[5]	EIN2L[0]	Pressure detector 2 detection threshold setup EEPROM			
0	INT2<	Detect pressure above threshold (default)			
1	INT2>	Detect pressure below threshold			

g-2) Pressure detector detection threshold adjustment Address : 08 hex D[4:0]=EPT2[4:0]

	EPT2	[4:0]	Detection th	nreshold (V)	Comments
Dec	Hex	Bin	Detect threshold	ex. VDD:5V	
-16	10	10000	0.900*VDD	4.500	
-15	11	10001	0.875*VDD	4.375	
-14	12	10010	0.850*VDD	4.250	
:	:	:	:	:	
-3	1D	11101	0.575*VDD	2.875	
-2	1E	11110	0.550*VDD	2.750	
-1	1F	11111	0.525*VDD	2.625	
0	00	00000	0.500*VDD	2.500	Default
1	01	00001	0.475*VDD	2.375	
2	02	00010	0.450*VDD	2.250	
:	:	:	:	:	
13	0D	01101	0.175*VDD	0.875	
14	0E	01110	0.150*VDD	0.750	
15	0F	01111	0.125*VDD	0.625	

g-3) Comparator hysteresis voltage adjustment for pressure detection Address : 09 hex D[3:2]=EHYS2[1:0]

	EHYS	2[1:0]	Hysteresis v	Comments	
Dec	Hex	Bin	Hysteresis voltage	ex. VDD:5V	
2	2	10	0.030*VDD	150.0	
3	3	11	0.040*VDD	200.0	
0	0	00	0.050*VDD	250.0	Default
1	1	01	0.060*VDD	300.0	

h) Output reference voltage adjustment (EEPROM names: LVS, LV)

Adjusts the output reference voltage.

The content of the adjustment EEPROMs is shown here.

Address : 0A hex - 0B hex D[8:0]=ELV[8:0]

ELV[7:0]		VOUT pin	-	Comments	
Dec	Hex	Bin	ELV[8]=0h	ELV[8]=1h	
0	00	00000000	0.500	0.500	Default
1	01	0000001	0.498	0.502	
2	02	00000010	0.496	0.504	
3	03	00000011	0.494	0.506	
4	04	00000100	0.492	0.508	
:	:	:	:	:	
124	7C	01111100	0.252	0.748	
125	7D	01111101	0.250	0.750	
126	7E	01111110	0.248	0.752	
127	7F	01111111	0.246	0.754	
128	80	1000000	0.244	0.756	
:	:	:	:	•	
240	F0	11110000	0.020	0.980	
241	F1	11110001	0.018	0.982	
242	F2	11110010	0.016	0.984	
243	F3	11110011	0.014	0.986	
:	:	:	:	:	
250	FA	11111010	0.000	1.000	
251	FB	11111011	0.000	1.000	
252	FC	11111100	0.000	1.000	
253	FD	11111101	0.000	1.000	
254	FE	11111110	0.000	1.000	
255	FF	11111111	0.000	1.000	

i) Input gain adjustment (EEPROM name: ING)

EEPROM for setting the total gain.

The input gain is adjusted according to the full-scale voltage of the pressure sensor.

i-1) Sensitivity temperature drift adj. range: -4000ppm/°C to +2500ppm/°C (ESTC[0]=1h)

Addre	Address : 0C hex D[4:0]=EIG[4:0]									
	EIG[3:0]		G1 Gain	Total Gain (times)						
Dec	Hex	Bin	(times)	EIG[4]=0 G2: 3x	EIG[4]=1 G2: 1.5x	Comments				
0	0	0000	70.0	210.0	105.0	Default				
1	1	0001	60.0	180.0	90.0					
2	2	0010	50.0	150.0	75.0					
3	3	0011	40.0	120.0	60.0					
4	4	0100	35.0	105.0	52.5					
5	5	0101	30.0	90.0	45.0					
6	6	0110	25.0	75.0	37.5					
7	7	0111	20.0	60.0	30.0					
8	8	1000	15.0	45.0	22.5					
9	9	1001	12.0	36.0	18.0					
10	Α	1010	10.0	30.0	15.0					
11	В	1011	7.0	21.0	10.5					
12	С	1100	5.0	15.0	7.5					
13	D	1101	Sotup	Sotup	Sotup					
14	E	1110	Setup prohibited	Setup prohibited	Setup prohibited					
15	F	1111	prombiled	prombiled	prombited					

Address : OC box D[4:0]=E[C[4:0]

i-2) Sensitivity temperature drift adj. range: -2500ppm/°C to +1000ppm/°C (ESTC[0]=0h)

Address : 0C hex D[4:0]=EIG[4:0]

Addre	EIG[3:0] G1 Gain Total Gain (times)			0		
Dec	Hex	Bin	(times)	EIG[4]=0 G2: 2.352x	EIG[4]=1 G2: 1.176x	Comments
0	0	0000	70.0	164.7	82.4	初期値
1	1	0001	60.0	141.2	70.6	
2	2	0010	50.0	117.6	58.8	
3	3	0011	40.0	94.1	47.1	
4	4	0100	35.0	82.4	41.2	
5	5	0101	30.0	70.6	35.3	
6	6	0110	25.0	58.8	29.4	
7	7	0111	20.0	47.1	23.5	
8	8	1000	15.0	35.3	17.6	
9	9	1001	12.0	28.2	14.1	
10	Α	1010	10.0	23.5	11.8	
11	В	1011	7.0	16.5	8.2	
12	С	1100	5.0	11.8	5.9	
13	D	1101	Setup	Setup	Setup	
14	E	1110	prohibited	prohibited	prohibited	
15	F	1111	promblied	promblied	prombiled	

j) measurement mode setup (EEPROM name: MM)

EEPROM is used for setting up the measurement mode for the AK8998.

A setup of a sampling frequency, supply voltage & sensor drive voltage, the enable / disable of Internal SCF & SMF, the internal / external of a temperature sensor, and the internal switching of VP & VN can be performed.

Address : 0D hex D[7:0]= EAGND[0], EVPN[0], ETMP[0], ESCF[1:0], EVD[1:0], ESF[0]

D[7:0]	Symbol	Mode setup
D[7]	EAGND[0]	AGND pin setup EEPROM
0	AGNDD	AGND pin disable (default)
1	AGNDE	AGND pin enable
D[6]	EVPN[0]	VP & VN internal switching EEPROM
0	VPNN	VP->VP, VN->VN (default)
1	VPNR	VP->VN, VN->VP
D[5]	ETMP[0]	Temperature sensor Internal & External change EEPROM
0	TMPE	External temperature sensor use (default) *Cannot be used in Sampling frequency as 1kHz (ESF[0]=1h).
1	TMPI	Internal temperature sensor use
D[4:3]	ESCF[1:0]	Internal SCF & SMF setup EEPROM
00	SCDS	Internal SCF & SMF disable (default)
01	SCEN1	Internal SCF & SMF enable & Cutoff frequency 1kHz
10	SCEN2	Internal SCF & SMF enable & Cutoff frequency 500Hz
11	SCEN3	Internal SCF & SMF enable & Cutoff frequency 250Hz
D[2:1]	EVD[1:0]	Supply voltage & sensor drive voltage setup EEPROM
00	VDD504	Supply voltage at 5V & sensor drive voltage at 4V (default)
01	VDD502	Supply voltage at 5V & sensor drive voltage at 2.2V
10	VDD332	Supply voltage at 3.3V & sensor drive voltage at 2.2V
11	VDD302	Supply voltage at 3V & sensor drive voltage at 2.2V
D[0]	ESF[0]	Sampling frequency setup EEPROM
0	SF10	Sampling frequency 10kHz (default)
1	SF1	Sampling frequency 1kHz *Cannot be used at the time of External temperature sensor is used (ETMP[0]=0h).

6.1.2) Reference Voltage Generator EEPROM

k) VREF voltage adjustment (EEPROM name: VREF)

EEPROM for adjusting the AK8998 reference voltage. Perform an adjustment to attain the reference voltage of 1000 mV (See Recommended Connection Examples for Components). Δ VREF3/5 in the table below indicates a value varying with the setup values of the EEPROM. Δ VS3/5 represents the values of Δ VREF3/5 multiplied by two and four, respectively. The ratio is benchmarked to 1000mV (VREF ideal value) as 100% (Ratio = (Δ VREF3/5) /1000[mV]*100[%]).

Address : 0E hex D[2:0]=EVR[2:0]

E	VR[2:0)]	Ratio	VDD: 3V, 3	3.3V mode	VDD:5V		
Dec	Hex	Bin	(%)	∆VREF3 (mV)	∆VS3 (mV)	∆VREF5 (mV)	∆VS5 (mV)	Comments
-4	4	100	-4	-40	-80	-40	-160	
-3	5	101	-3	-30	-60	-30	-120	
-2	6	110	-2	-20	-40	-20	-80	
-1	7	111	-1	-10	-20	-10	-40	
0	0	000	0	0	0	0	0	Default
1	1	001	1	+10	+20	+10	+40	
2	2	010	2	+20	+40	+20	+80	
3	3	011	3	+30	+60	+30	+120	

I) IREF current adjustment (EEPROM name: IREF)

EEPROM for adjusting the AK8998 reference current. The external resistor $(1M\Omega)$ is connected to VOUT pin. Reference current is supplied to external resistor, and it adjusts so that the voltage across the both ends of external resistor may be set to 1.0V (See Recommended Connection Examples for Components).

IREF in the table below indicates a current value with the setup values of the EEPROM. VIREF (=IREF*1[MΩ]) is a voltage value varying with the external resistance (1MΩ) at the time of adjustment. The ratio is benchmarked to 1.0 μ A (IREF ideal value) as 100% (Ratio = (IREF-1.0 [μ A])/1.0 [μ A]*100[%]).

	EIR[3	6:0]	Ratio	IREF	VIREF	Comments
Dec	Hex	Bin	(%)	(μΑ)	(V)	Comments
-8	8	1000	-17.0	0.830	0.830	
-7	9	1001	-15.2	0.848	0.848	
-6	Α	1010	-13.4	0.866	0.866	
-5	В	1011	-11.5	0.885	0.885	
-4	С	1100	-9.5	0.905	0.905	
-3	D	1101	-7.3	0.927	0.927	
-2	E	1110	-5.0	0.950	0.950	
-1	F	1111	-2.6	0.974	0.974	
0	0	0000	0.0	1.000	1.000	Default
1	1	0001	2.8	1.028	1.028	
2	2	0010	5.7	1.057	1.057	
3	3	0011	8.8	1.088	1.088	
4	4	0100	12.2	1.122	1.122	
5	5	0101	15.9	1.159	1.159	
6	6	0110	19.8	1.198	1.198	
7	7	0111	24.1	1.241	1.241	

Address : 0F hex D[3:0]=EIR[3:0]

m) OSC frequency adjustment (EEPROM name: OSC)

EEPROM for adjusting the AK8998 operation clock. Perform an adjustment to attain a frequency of 1000kHz. Reading the ratio data from the OSC variable ratio register (CT[7:0]), the adjustment data of the OSC frequency adjustment EERPOM is calculated.

Frequency Δf in the table below indicates a value varying with the setup values of the EEPROM. The ratio is benchmarked to 1.000kHz (OSC ideal value) as 100% (Ratio = Frequency $\Delta f/($ Frequency $\Delta f+1000[kHz])*100[\%]$).

EFR[3:0]			Ratio	Frequency ∆f	Comments
Dec	Hex	Bin	(%)	(kHz)	
-5	В	1011	-34	-251	
-4	С	1100	-25	-197	
-3	D	1101	-17	-146	
-2	E	1110	-11	-99	
-1	F	1111	-5	-52	
0	0	0000	0	0	Default
1	1	0001	5	49	
2	2	0010	10	106	
3	3	0011	14	162	
4	4	0100	18	224	
5	5	0101	22	274	
6	6	0110	25	329	
7	7	0111	28	384	

Address : 10 hex D[3:0]=EFR[3:0]

Note1) Hex 8 to A are prohibited for setup.

n) VTMP voltage adjustment (EEPROM name: VTMP)

Compensates the offset values for the AK8998's internal temperature sensor and external temperature sensor. Adjusts the values so that the difference between VTMP voltage and VREF voltage is close to 0 mV (If VREF is 1005mV, adjust so that VTMP is also 1005mV). The rough adjustment (ETM[8:6]) is invalid when the internal temperature sensor is used (ETMP[0]="H"). The rough adjustment is effective when the external temperature sensor is used (ETMP[0]="L").

 Δ VTMP in the table below indicates a value varying with the setup values of the EEPROM. The ratio is benchmarked to 1000mV (VREF ideal value) as 100% (Ratio = Δ VTMP/1000[mV]*100[%]).

ETM[5:0]		Ratio	Δντμρ	Comments	
Dec	Hex	Bin	(%)	(mV)	Comments
-32	20	100000	+6.4	+64	
-16	30	110000	+3.2	+32	
-8	38	111000	+1.6	+16	
-4	3C	111100	+0.8	+8	
-1	3F	111111	+0.2	+2	
0	00	000000	0.0	0	Default
1	01	000001	-0.2	-2	
4	04	000100	-0.8	-8	
8	08	001000	-1.6	-16	
16	10	010000	-3.2	-32	
31	1F	011111	-6.2	-62	

Address : 1	11 hex [D[5:0]=ETM[5:0)]
-------------	----------	----------------	----

Address : 11 hex D[7:6]=ETM[7:6], 13 hex D[1]=ETM[8]

ETM[8:6]		ΓM[8:6] Ratio ΔV		Δντμρ	Comments
Dec	Hex	Bin	(%)	(mV)	Comments
4	4	100	Setup prohibited	Setup prohibited	
5	5	101	Setup prohibited	Setup prohibited	
6	6	110	+17.0	+170	
7	7	111	+8.5	+85	
0	0	000	0.0	0	Default
1	1	001	-8.5	-85	
2	2	010	-17.0	-170	
3	3	011	Setup prohibited	Setup prohibited	

o) User-writable data space (EEPROM name: UE)

Free area (EEPROM) available to the user.

Name	Content	Address	Data							
Name Content	Audiess	D7	D6	D5	D4	D3	D2	D1	D0	
UE	User-writable data	12 hex	EUE7	EUE6	EUE5	EUE4	EUE3	EUE2	EUE1	EUE0
Default			0	0	0	0	0	0	0	0

Address : 12 hex D[7:0]=EUE[7:0]

p) Control register access setup (EEPROM name: MM2)

The access setup to the control register (volatile memory) is performed.

When the control register access setup is disabled (ETST[0]=0h), the control register (C address: 00h) is fixed to the initial value, and cannot be accessed, unless control register access is validated.

Address : 1D hex D[0]= ETST[0]

D[0]	Symbol	Mode setup
D[0]	ETST[0]	Control register access setup
0	TSTDS	Control register access disable(default)
1	TSTEN	Control register access enable

q) EEPROM Write Enable setup (EEPROM name:EWE)

The EEPROM write enable setup is performed.

When the setup of EEPROM Write Enable is validated (EWE[0]=1h), the writing to EEPROM is permitted. If it is invalid, the writing to EEPROM other then EEPROM Write Enable (address: 00 -1Dh, 1Fh) becomes impossible. And this address cannot be written by batch writing. However, EEPROM read (all the addresses) is possible even in that case.

Address : 1E hex D[0]= EWE[0]

D[0]	Symbol	Mode setup
D[0]	EWE[0]	EEPROM Write Enable setup
0	WEDS	EEPROM Write disable (default)
1	WEEN	EEPROM Write enable

r) EEPROM batch write mode (EEPROM name: AW)

Initializes the addresses 00 hex to 1D hex in the EEPROM map at once or writes identical data. This address is not available in the EEPROM.

Name Content		Contont	Address	Data							
Inal	Name Content	Address	D7	D6	D5	D4	D3	D2	D1	D0	
A١	N	EEPROM batch write	1F hex	EAW7	EAW6	EAW5	EAW4	EAW3	EAW2	EAW1	EAW0

Address : 1F hex D[7:0]=EAW[7:0]

6.2) Description of Control Register (Volatile Memory)

a) Adjustment mode (Register name: CM1)

This register is used to adjust the AK8998 reference voltage and pressure sensor's offset, span, offset temperature drift and sensitivity temperature drift including those of the AK8998. In addition, the value of the register returns to the initial value on the following conditions.

- At the power up
- When CSCLK=Low is maintained 0.5msec or more
- When ETST[0] is set to "L"

Address : 00 hex D[3:0]=AM[3:0]

(This is not a nonvolatile EEPROM, but a volatile register.)

D[7:0]	Symbol	Mode setup	Description			
D[7:4]			Reserved			
D[3:0]	AM[3:0]	IC adjustment mode				
0000			(default)			
0001	AVR	VREF adjustment	The VREF voltage is output at the VOUT pin.			
0010	AIR	IREF adjustment	The IREF current is output at the VOUT pin.			
0011	AFR	OSC adjustment	Input the fixed period of High level (2.0msec) from the CSCLK pin. The count value in the internal counter is stored in the register.			
0100	ΑΤΟ	VTMP adjustment The VTMP voltage is output at the VOUT Adjust this voltage so that it matches th voltage at 25°C.				
0101	ADT1	judge threshold 1 adjustment	The internally set judge threshold value 1 is output at the VOUT pin.			
0110	ADT2	judge threshold 2 adjustment	The internally set judge threshold value 2 is output at the VOUT pin.			
0111	AHY1	hysteresis voltage 1	The hysteresis voltage of the comparator 1 is output at the VOUT pin.			
1000	AHY2	hysteresis voltage 2	The hysteresis voltage of the comparator 2 is output at the VOUT pin.			
1001- 1111		Reserved				

b) OSC variable ratio storing register (Register name: CM2)

It is used for adjustment of the oscillator frequency of AK8998. The counted value in the internal counter is stored. Since the internal counter is overflowing when a count value shows FF hex, measure again by re-defining High level period.

This register is readonly. In addition, the value of the register returns to the initial value on the following conditions.

- At the power up
- When CM1 register is written
- When CSCLK=Low is maintained 0.5msec or more
- When ETST[0] is set to "L"

(This is	(This is not a nonvolatile EEPROM, but a volatile register.)							
	CT[7:0]		Count value	Ratio	Comments			
Dec	Hex	Bin	(time)	(%)				
0	00	00000000	0	0	Default			
1	01	0000001	1	-99				
:	:	:	:	:				
98	62	01100010	98	-2				
99	63	01100011	99	-1				
100	64	01100100	100	0	Ideal value			
101	65	01100101	101	1				
102	66	01100110	102	2				
:	:	•	•	•				
254	FE	11111110	254	154				
255	FF	11111111	_	-	Counter error			

Address : 01 hex D[7:0]=CT[7:0] (This is not a nonvolatile EEPROM, but a volatile registe

c) S/H circuit output error adjustment register (Register name: SH1 to SH4)

It is used for adjustment of the S/H circuit output error of AK8998. The value of the register returns to the initial value on the following conditions.

- At the power up
- When CSCLK=Low is maintained 0.5msec or more

It is necessary to set up a register in order of the following. (This is not a nonvolatile EEPROM, but a volatile register.)

No.	Register Name	Address	Data	Comments
1	SH1	19hex	0Ahex	
2	SH2	10hex	34hex	
3	SH3	12hex	40hex	
4	SH4	17hex	08hex	

Note) Other Data is prohibited for setup.

Recommended Connection Examples for Components

1) VO pin connection example

2) Power supply pin connection example

3) VOUT pin connection examples for adjustment

Package Information

1. Marking

- (1) Pin Number 1 indication mark
- (2) Part Number
- (3) Date Code (3 digits)

2. External Dimensions

The rear-side TAB is recommended to be mounted on the substrate to ensure strength. Do not connect to the power supply, GND or

IMPORTANT NOTICE -

- These products and their specifications are subject to change without notice. When you consider any
 use or application of these products, please make inquiries the sales office of Asahi Kasei
 Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the above
content and conditions, and the buyer or distributor agrees to assume any and all responsibility and
liability for and hold AKM harmless from any and all claims arising from the use of said product in the
absence of such notification.