

TMR26XX

TMR Linear Sensor with Built-in Signal Conditioning Circuitry

Introduction

The TMR26XX series of TMR linear sensors are linear magnetic field sensors that integrate Tunneling Magnetoresistance (TMR) sensors with built-in signal conditioning circuitry. The signal conditioning circuitry performs calibration and correction to the TMR sensor parameters including offset, sensitivity, measurement range and linearity, with adjustable gains to normalize its output signal to a full-scale voltage signal. In addition to TMR technology's benefits of high resolution, high signal-to-noise ratio, and low-power, TMR26XX features excellent uniformity of device sensitivity, full-scale voltage output and small offset drift, offering enhanced flexibility and versatility for the design and application of TMR-based magnetic sensor systems. The TMR26XX linear sensors are available in an SOP8 (6mm×5mm×1.5mm) package.

Features

- Tunneling Magnetoresistance (TMR) technology
- High uniformity in sensitivity with small offset drift
- Outstanding temperature stability
- Low Hysteresis
- Full-scale linear output under 3.3/5.0V voltage supply
- No need for set/reset signal

Applications

- Magnetic field measurement
- Current sensors
- Position sensors

Transfer Curve

The following figures illustrate the typical responses of TMR26XX in two categories TMR26XX-P3 and TMR26XX-P5. TMR26XX-P3 requires a 3.3V (typical) voltage supply, and its full-scale output range is 0.3 ~ 3.0V, with the zero offset at 1.65V. TMR26XX-P5 requires a 5.0V (typical) voltage supply, and its full-scale output range is 0.5 ~ 4.5V, with the zero offset at 2.5V.

Pin Configuration

NC VREF VDD VOUT	Pin No.	Name	Description
	1, 2, 8	N/A	
8 7 6 5	3	GND	Ground
	4	FILT	A filtering capacitor should
			be connected between
- Sensing direction			FILT to GND.
(positive voltage output)	5	V _{OUT}	Analog voltage output
	6	V_{DD}	Supply Voltage
	7	VREF	Internal voltage reference
			output (recommend to
NC NC GND FILT			leave open)
(top view)	-	-	

Absolute Maximum Ratings

Parameter	Symbol	Limit	Unit
Supply Voltage	V _{CC}	5.5	V
Reverse Supply Voltage	V _{RCC}	0.5	V
Magnetic Field Exposure	H _E	1200	Oe ⁽¹⁾
ESD Voltage (HBM)	V _{ESD}	4	kV
Operating Temperature	T _A	-40~125	°C
Storage Temperature	Tstg	-50~150	C°

Specifications (T_A=25 $^{\circ}$ C)

Parameter	Symbol	Conditions (P/N specific)	Min	Typical	Мах	Unit
Supply Voltage	V _{cc}	TMR26XX-P3	3.2	3.3	5.5	V
		TMR26XX-P5	4.8	5.0	5.5	V
Supply Current	I _{CC}	TMR26XX-P3 (Vcc=3.3V)		3.2		mA
		TMR26XX-P5 (Vcc=5.0V)		4.2		mA
Linear Range	H _{sat} -	TMR2602-P3/TMR2602-P5	-25		25	Oe
		TMR2604-P3/TMR2604-P5	-80		80	
Sensitivity (within linear range)	SEN -	TMR2602-P5		80		mV/Oe
		TMR2602-P3		54		
		TMR2604-P5		25		
		TMR2604-P3		16.875		
Offset Voltage	V _{offset} -	TMR26XX-P5		2.5		- V
		TMR26XX-P3		1.65		
Non-linearity	NONL	TMR2602-P3/TMR2602-P5		0.5		
Error (within		TMR2604-P3/TMR2604-P5		1		%FS
linear range)		1 WIR2004-F3/1 WIR2004-P3				

Datasheet Ver. 1.0a1

					Dutuone	VCI. 1.00
Hysteresis		TMR2602-P3/TMR2602-P5		0.1		
(within linear	Hys	TMR2604-P3/TMR2604-P5		0.5		Oe
range)				0.0		
3dB Bandwidth	F	A 10nF capacitor is connected between		200		kHz
		FILT and GND.				
Temperature						
Coefficient of	TCO	H=0 Oe		-0.17		mV/°C
Offset						
Temperature						
Coefficient of	TCS	TMR26XX		-800		PPM/°C
Sensitivity						

Note: (1) 1 Oe (Oersted) = 1 Gauss in air = 0.1 millitesla=79.8 A/m.

Application Circuit

Package Specification

TMR Sensor Position

MultiDimension Technology Co., Ltd.

Address:No.7 Guangdong Road, Zhangjiagang Free Trade Zone, Jiangsu, 215634, China Web: www.dowaytech.com/en Email: info@dowaytech.com

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.

"MultiDimension", "MultiDimension Sensing the Future", and "MDT" are registered trademarks of MultiDimension Technology Co., Ltd.