Dual D-Type Positive Edge-Triggered Flip-Flop The MC74AC74/74ACT74 is a dual D–type flip–flop with Asynchronous Clear and Set inputs and complementary (Q,\overline{Q}) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input. Asynchronous Inputs: I OW input to \overline{S}_{D} (Set LOW input to \overline{S}_D (Set) sets Q to HIGH level LOW input to \overline{C}_D (Clear) sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH #### **Features** - Outputs Source/Sink 24 mA - 'ACT74 Has TTL Compatible Inputs - These are Pb-Free Devices Figure 1. Pinout: 14-Lead Packages Conductors (Top View) #### **PIN ASSIGNMENT** | PIN | FUNCTION | |---|---------------------| | D ₁ , D ₂ | Data Inputs | | CP ₁ , CP ₂ | Clock Pulse Inputs | | $\overline{C}_{D1}, \overline{C}_{D2}$ | Direct Clear Inputs | | $\overline{S}_{D1}, \overline{S}_{D2}$ | Direct Set Inputs | | $\overline{Q}_1, \overline{Q}_1, Q_2, \overline{Q}_2$ | Outputs | ### ON Semiconductor® www.onsemi.com SOIC-14 D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G xxx = AC or ACT A = Assembly Location WL or L = Wafer Lot Y = Year WW or W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. TRUTH TABLE (Each Half) | | Inp | Out | outs | | | |------------------------|--------------------|-----|------|-------|------------------| | <u></u> S _D | \overline{C}_{D} | СР | D | Q | Q | | L | Н | Х | Х | Н | L | | Н | L | Χ | Χ | L | Н | | L | L | Χ | Χ | Н | Н | | Н | Н | | Н | Н | L | | Н | Н | | L | L | Н | | Н | Н | L | Х | Q_0 | \overline{Q}_0 | NOTE: H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial; \square = LOW-to-HIGH Clock Transition $Q_0(\overline{Q}_0)$ = Previous $Q(\overline{Q})$ before LOW-to-HIGH Transition of Clock Figure 2. Logic Symbol NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. Figure 3. Logic Diagram #### **MAXIMUM RATINGS** | Symbol | Paramet | ter | Value | Unit | |-----------------------|--|--|-----------------------------------|------| | V _{CC} | DC Supply Voltage | | -0.5 to +7.0 | V | | VI | DC Input Voltage | | $-0.5 \le V_I \le V_{CC} + 0.5$ | V | | Vo | DC Output Voltage | (Note 1) | $-0.5 \le V_{O} \le V_{CC} + 0.5$ | V | | I _{IK} | DC Input Diode Current | | ±20 | mA | | lok | DC Output Diode Current | | ±50 | mA | | Io | DC Output Sink/Source Current | | ±50 | mA | | Icc | DC Supply Current per Output Pin | | ±50 | mA | | I _{GND} | DC Ground Current per Output Pin | | ±50 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead temperature, 1 mm from Case fo | r 10 Seconds | 260 | °C | | TJ | Junction temperature under Bias | | + 150 | °C | | θ_{JA} | Thermal Resistance (Note 2) | SOIC
TSSOP | 125
170 | °C/W | | P _D | Power Dissipation in Still Air at 85°C | SOIC
TSSOP | 125
170 | mW | | MSL | Moisture Sensitivity | | Level 1 | | | F _R | Flammability Rating | Oxygen Index: 30% – 35% | UL 94 V-0 @ 0.125 in | | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 3)
Machine Model (Note 4)
Charged Device Model (Note 5) | > 2000
> 200
> 1000 | V | | I _{Latch-Up} | Latch-Up Performance Above V _{CC} a | and Below GND at 85°C (Note 6) | ±100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. I_O absolute maximum rating must be observed. - The package thermal impedance is calculated in accordance with JESD51–7. Tested to EIA/JESD22–A114–A. - 4. Tested to EIA/JESD22-A115-A. - 5. Tested to JESD22-C101-A. - 6. Tested to EIA/JESD78. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | Min | Тур | Max | Unit | |------------------------------------|---|-------------------------|-----|-----|-----------------|------| | ., | 0 1 1 1 1 | 'AC | 2.0 | 5.0 | 6.0 | ., | | V _{CC} | Supply Voltage | 'ACT | 4.5 | 5.0 | 5.5 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Ref. to GND) | - | 0 | _ | V _{CC} | V | | | | | _ | 150 | _ | | | t _r , t _f | Input Rise and Fall Time (Note) 'AC Devices except Schmitt Inputs | V _{CC} @ 4.5 V | _ | 40 | _ | ns/V | | AC Devices except Scrimit inputs | The Devices except commit inputs | V _{CC} @ 5.5 V | _ | 25 | _ | | | | Input Rise and Fall Time (Note) | V _{CC} @ 4.5 V | _ | 10 | _ | // | | t _r , t _f | 'ACT Devices except Schmitt Inputs | V _{CC} @ 5.5 V | _ | 8.0 | _ | ns/V | | TJ | Junction Temperature (PDIP) | | _ | _ | 140 | °C | | T _A | Operating Ambient Temperature Range | | | 25 | 85 | °C | | I _{OH} | Output Current – High | | _ | _ | -24 | mA | | I _{OL} | Output Current – Low | | _ | _ | 24 | mA | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. - V_{in} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times. V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times. #### **DC CHARACTERISTICS** | | | | 74 | AC | 74AC | | | |------------------|--------------------------------------|---------------------|-------------------------|----------------------|---------------------------------------|------|---| | Symbol | Parameter | V _{CC} (V) | T _A = | +25°C | T _A =
-40°C to
+85°C | Unit | Conditions | | | | | Тур | Guar | Guaranteed Limits | | | | V _{IH} | Minimum High Level
Input Voltage | 3.0
4.5
5.5 | 1.5
2.25
2.75 | 2.1
3.15
3.85 | 2.1
3.15
3.85 | V | V _{OUT} = 0.1 V
or V _{CC} – 0.1 V | | V _{IL} | Maximum Low Level
Input Voltage | 3.0
4.5
5.5 | 1.5
2.25
2.75 | 0.9
1.35
1.65 | 0.9
1.35
1.65 | V | V _{OUT} = 0.1 V
or V _{CC} – 0.1 V | | V _{OH} | Minimum High Level
Output Voltage | 3.0
4.5
5.5 | 2.99
4.49
5.49 | 2.9
4.4
5.4 | 2.9
4.4
5.4 | V | I _{OUT} = -50 μA | | | | 3.0
4.5
5.5 | | 2.56
3.86
4.86 | 2.46
3.76
4.76 | V | * V _{IN} = V _{IL} or V _{IH} -12 mA $_{OH}$ -24 mA $_{-24}$ mA | | V _{OL} | Maximum Low Level
Output Voltage | 3.0
4.5
5.5 | 0.002
0.001
0.001 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | I _{OUT} = 50 μA | | | | 3.0
4.5
5.5 | -
-
- | 0.36
0.36
0.36 | 0.44
0.44
0.44 | V | * V _{IN} = V _{IL} or V _{IH} 12 mA 1 _{OL} 24 mA 24 mA | | I _{IN} | Maximum Input
Leakage Current | 5.5 | - | ±0.1 | ±1.0 | μΑ | V _I = V _{CC} , GND | | I _{OLD} | †Minimum Dynamic | 5.5 | _ | _ | 75 | mA | V _{OLD} = 1.65 V Max | | I _{OHD} | Output Current | 5.5 | - | _ | -75 | mA | V _{OHD} = 3.85 V Min | | I _{CC} | Maximum Quiescent
Supply Current | 5.5 | - | 4.0 | 40 | μΑ | $V_{IN} = V_{CC}$ or GND | ^{*}All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time. NOTE: I $_{\rm IN}$ and I $_{\rm CC}$ @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V $_{\rm CC}$. #### **AC CHARACTERISTICS** | | | | | 74AC | | 74AC | | | | |------------------|---|------------|------------|-------------|--------------|-------------|--------------|-----|-----| | Symbol | Parameter $ \begin{array}{c c} V_{CC}^* & T_A = +25^{\circ}C \\ (V) & C_L = 50 \text{ pF} \end{array} $ | | | | Unit | Fig.
No. | | | | | | | | Min | Тур | Max | Min | Max | | | | f _{max} | Maximum Clock
Frequency | 3.3
5.0 | 100
140 | 125
160 | _
_ | 95
125 | -
- | MHz | 3–3 | | t _{PLH} | Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to \overline{Q}_{n} | 3.3
5.0 | 5.0
3.5 | 8.0
6.0 | 12.5
9.0 | 4.0
3.0 | 13.0
10.0 | ns | 3–6 | | t _{PHL} | Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to \overline{Q}_{n} | 3.3
5.0 | 4.0
3.0 | 10.5
8.0 | 12.0
9.5 | 3.5
2.5 | 13.5
10.5 | ns | 3–6 | | t _{PLH} | Propagation Delay C_{Pn} to Q_n or \overline{Q}_n | 3.3
5.0 | 4.5
3.5 | 8.0
6.0 | 13.5
10.0 | 4.0
3.0 | 16.0
10.5 | ns | 3–6 | | t _{PHL} | Propagation Delay C_{Pn} to Q_n or \overline{Q}_n | 3.3
5.0 | 3.5
2.5 | 8.0
6.0 | 14.0
10.0 | 3.5
2.5 | 14.5
10.5 | ns | 3–6 | ^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V. #### **AC OPERATING REQUIREMENTS** | | | | | 74AC | 74AC | | | |------------------|---|--------------------------|--------------|------------|------------|----|-------------| | Symbol | Parameter | V _{CC} *
(V) | | | | | Fig.
No. | | | | | | | d Minimum | | | | t _s | Set-up Time, HIGH or LOW
D _n to CP _n | 3.3
5.0 | 1.5
1.0 | 4.0
3.0 | 4.5
3.0 | ns | 3–9 | | t _h | Hold Time, HIGH or LOW D _n to CP _n | 3.3
5.0 | -2.0
-1.5 | 0.5
0.5 | 0.5
0.5 | ns | 3–9 | | t _w | C _{Pn} or C Dn or S Dn Pulse Width | 3.3
5.0 | 3.0
2.5 | 5.5
4.5 | 7.0
5.0 | ns | 3–6 | | t _{rec} | Recovery Time C _{Dn} or S _{Dn} to CP | 3.3
5.0 | -2.5
-2.0 | 0
0 | 0
0 | ns | 3–9 | ^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V. #### **DC CHARACTERISTICS** | | | | 74 <i>A</i> | CT | 74ACT | | | |------------------|--|---------------------|--------------------|--------------|---------------------------------------|------|---| | Symbol | Parameter | V _{CC} (V) | T _A = - | +25°C | T _A =
-40°C to
+85°C | Unit | Conditions | | | | | Typ Guara | | anteed Limits | | | | V _{IH} | Minimum High Level
Input Voltage | 4.5
5.5 | 1.5
1.5 | 2.0
2.0 | 2.0
2.0 | V | V _{OUT} = 0.1 V
or V _{CC} – 0.1 V | | V _{IL} | Maximum Low Level
Input Voltage | 4.5
5.5 | 1.5
1.5 | 0.8
0.8 | 0.8
0.8 | V | V _{OUT} = 0.1 V
or V _{CC} – 0.1 V | | V _{OH} | Minimum High Level
Output Voltage | 4.5
5.5 | 4.49
5.49 | 4.4
5.4 | 4.4
5.4 | V | I _{OUT} = -50 μA | | | | 4.5
5.5 | -
- | 3.86
4.86 | 3.76
4.76 | V | $^*V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA I_{OH} -24 mA | | V _{OL} | Maximum Low Level
Output Voltage | 4.5
5.5 | 0.001
0.001 | 0.1
0.1 | 0.1
0.1 | V | I _{OUT} = 50 μA | | | | 4.5
5.5 | | 0.36
0.36 | 0.44
0.44 | V | $^{*}V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA I_{OL} 24 mA | | I _{IN} | Maximum Input
Leakage Current | 5.5 | _ | ±0.1 | ±1.0 | μΑ | V _I = V _{CC} , GND | | ΔI_{CCT} | Additional Max. I _{CC} /Input | 5.5 | 0.6 | _ | 1.5 | mA | $V_{I} = V_{CC} - 2.1 \text{ V}$ | | I _{OLD} | †Minimum Dynamic | 5.5 | - | _ | 75 | mA | V _{OLD} = 1.65 V Max | | I _{OHD} | Output Current | 5.5 | - | - | -75 | mA | V _{OHD} = 3.85 V Min | | I _{CC} | Maximum Quiescent
Supply Current | 5.5 | _ | 4.0 | 40 | μΑ | $V_{IN} = V_{CC}$ or GND | $^{^{\}star}\text{All}$ outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time. #### **AC CHARACTERISTICS** | | | | | 74ACT | | 74ACT | | | | |------------------|--|--------------------------|-----|-------|---|-------|------|-------------|-----| | Symbol | Parameter | V _{CC} *
(V) | | | T _A = -
to +8
C _L = 9 | 35°C | Unit | Fig.
No. | | | | | | Min | Тур | Max | Min | Max | | | | f _{max} | Maximum Clock
Frequency | 5.0 | 145 | 210 | - | 125 | - | MHz | 3–3 | | t _{PLH} | Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to \overline{Q}_{n} | 5.0 | 3.0 | 5.5 | 9.5 | 2.5 | 10.5 | ns | 3–6 | | t _{PHL} | Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to \overline{Q}_{n} | 5.0 | 3.0 | 6.0 | 10.0 | 3.0 | 11.5 | ns | 3–6 | | t _{PLH} | Propagation Delay C_{Pn} to Q_n or \overline{Q}_n | 5.0 | 4.0 | 7.5 | 11.0 | 4.0 | 13.0 | ns | 3–6 | | t _{PHL} | Propagation Delay C_{Pn} to Q_n or \overline{Q}_n | 5.0 | 3.5 | 6.0 | 10.0 | 3.0 | 11.5 | ns | 3–6 | ^{*}Voltage Range 5.0 V is 5.0 V ± 0.5 V. #### **AC OPERATING REQUIREMENTS** | | | | | 74ACT | 74ACT | | | | | |------------------|---|--------------------------|--|-----------|-----------|----|-----|--|-------------| | Symbol | Parameter | V _{CC} *
(V) | T _A = +25°C
C _L = 50 pF | | | | | | Fig.
No. | | | | | Тур | Guarantee | d Minimum | | | | | | t _s | Set-up Time, HIGH or LOW
D _n to CP _n | 5.0 | 1.0 | 3.0 | 3.5 | ns | 3–9 | | | | t _h | Hold Time, HIGH or LOW
D _n to CP _n | 5.0 | -0.5 | 1.0 | 1.0 | ns | 3–9 | | | | t _w | C_{Pn} or \overline{C}_{Dn} or \overline{S}_{Dn}
Pulse Width | 5.0 | 3.0 | 5.0 | 6.0 | ns | 3–6 | | | | t _{rec} | Recovery Time \overline{C}_{Dn} or \overline{S}_{Dn} to CP | 5.0 | -2.5 | 0 | 0 | ns | 3–9 | | | ^{*}Voltage Range 5.0 V is 5.0 V ± 0.5 V. #### **CAPACITANCE** | Symbol | Parameter | Value
Typ | Unit | Test Conditions | |-----------------|-------------------------------|--------------|------|-------------------------| | C _{IN} | Input Capacitance | 4.5 | pF | V _{CC} = 5.0 V | | C _{PD} | Power Dissipation Capacitance | 35 | pF | V _{CC} = 5.0 V | #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|-----------------------|-----------------------| | MC74AC74DG | SOIC-14
(Pb-Free) | 55 Units/Rail | | MC74AC74DR2G | SOIC-14
(Pb-Free) | 2500/Tape & Reel | | MC74AC74DTR2G | TSSOP-14
(Pb-Free) | 2500/Tape & Reel | | MC74ACT74DG | SOIC-14
(Pb-Free) | 55 Units/Rail | | MC74ACT74DR2G | SOIC-14
(Pb-Free) | 2500/Tape & Reel | | MC74ACT74DTR2G | TSSOP-14
(Pb-Free) | 2500/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. △ 0.10 SOIC-14 NB CASE 751A-03 ISSUE L **DATE 03 FEB 2016** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT - MAXIMUM MATERIAL CONDITION. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. - 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.35 | 1.75 | 0.054 | 0.068 | | A1 | 0.10 | 0.25 | 0.004 | 0.010 | | АЗ | 0.19 | 0.25 | 0.008 | 0.010 | | b | 0.35 | 0.49 | 0.014 | 0.019 | | D | 8.55 | 8.75 | 0.337 | 0.344 | | Е | 3.80 | 4.00 | 0.150 | 0.157 | | е | 1.27 BSC | | 0.050 BSC | | | Н | 5.80 | 6.20 | 0.228 | 0.244 | | h | 0.25 | 0.50 | 0.010 | 0.019 | | L | 0.40 | 1.25 | 0.016 | 0.049 | | M | 0 ° | 7° | 0 ° | 7° | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code Α = Assembly Location WL = Wafer Lot Υ = Year = Work Week WW = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ## **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS C SEATING PLANE #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-14 NB | | PAGE 1 OF 2 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### SOIC-14 CASE 751A-03 ISSUE L #### DATE 03 FEB 2016 | STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:
CANCELLED | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE | |---|---|---|---| | STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE | | DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-14 NB | | PAGE 2 OF 2 | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. **DATE 17 FEB 2016** - NOTES. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY - REFERENCE ONLY. DIMENSION A AND B ARE TO BE - DETERMINED AT DATUM PLANE -W-. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 | BSC | | М | o° | 8 ° | 0 ° | 8 ° | #### **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot V = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | so | OLDERING FOOT | PRINT | |--|---------------|-------------| | ~ | 7.06 — | - | | 1 | | | | | | | | —————————————————————————————————————— | | | | | | 0.65 | | <u> </u> | 1 | | | 0.36 T | 14X | | | DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repositor,
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|--|-------------| | DESCRIPTION: | TSSOP-14 WB | • | PAGE 1 OF 1 | **DIMENSIONS: MILLIMETERS** onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative