Vishay Semiconductors # Bicolor Symbol LED in 2.5 mm x 5 mm Untinted Top-Diffused Package #### PRODUCT GROUP AND PACKAGE DATA • Product group: LED • Package: 2.5 mm x 5 mm symbol Product series: bicolor Angle of half intensity: ± 50° #### **FEATURES** - Even luminance of the emitting surface - · Ideal as flush mounted panel indicators - For DC and pulse operation - Color mixing possible due to separate anode terminals - · Luminous intensity selected into groups - · Categorized for green color - Wide viewing angle - Common cathode - Material categorization: For definitions of compliance please see www.vishay.com/doc?99912 #### **APPLICATIONS** · Indicating and illumination purposes | PARTS TABLE | | | | | | | | | | | | | | | |-------------|-------|--------------------------|------|-------------------|--------------------|------|-------------------|------------------------|--------|---------------------------|------------|------|------|------------| | PART | COLOR | LUMINOUS INTENSITY (mcd) | | at I _F | WAVELENGTH
(nm) | | at I _F | FORWARD VOLTAGE
(V) | | at I _F
(mA) | TECHNOLOGY | | | | | | | MIN. | TYP. | MAX. | (mA) | MIN. | TYP. | MAX. | (IIIA) | MIN. | TYP. | MAX. | (MA) | | | TLSV5100 | Red | 0.63 | 1 | - | 10 | 612 | - | 625 | 10 | - | 2.0 | 3.0 | 20 | GaP on GaP | | TLSV5100 | Green | 0.63 | 1 | - | 10 | 562 | - | 575 | 10 | - | 2.4 | 3.0 | 20 | GaP on GaP | | ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) TLSV5100 | | | | | | | | | |--|-----------------------------|-------------------|---------------|------|--|--|--|--| | PARAMETER | TEST CONDITION | SYMBOL | VALUE | UNIT | | | | | | Reverse voltage per diode | | V _R | 6 | V | | | | | | DC forward current per diode | | I _F | 30 | mA | | | | | | Surge forward current per diode | t _p ≤ 10 ms | I _{FSM} | 1 | Α | | | | | | Power dissipation per diode | T _{amb} ≤ 55 °C | P _V | 100 | mW | | | | | | Total power dissipation | T _{amb} ≤ 55 °C | P _{tot} | 150 | mW | | | | | | Junction temperature | | Tj | 100 | °C | | | | | | Operating temperature range | | T _{amb} | - 40 to + 100 | °C | | | | | | Storage temperature range | | T _{stg} | - 55 to + 100 | °C | | | | | | Soldering temperature | $t \le 5$ s, 2 mm from body | T _{sd} | 260 | °C | | | | | | Thermal resistance junction/ambient per diode | | R _{thJA} | 450 | K/W | | | | | | Thermal resistance junction/ambient total | | R _{thJA} | 300 | K/W | | | | | # Vishay Semiconductors | OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) TLSV5100R, RED | | | | | | | | |--|------------------------|----------------|------|------|------|------|--| | PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. | UNIT | | | Luminous intensity (1) | I _F = 10 mA | Ι _V | 0.63 | 1 | - | mcd | | | Dominant wavelength | I _F = 10 mA | λ_{d} | 612 | - | 625 | nm | | | Peak wavelength | I _F = 10 mA | λ_{p} | - | 635 | - | nm | | | Angle of half intensity | I _F = 10 mA | φ | - | ± 50 | - | deg | | | Forward voltage | I _F = 20 mA | V _F | - | 2.0 | 3.0 | V | | | Reverse voltage | I _R = 10 μA | V_R | 6 | 15 | - | ٧ | | | Junction capacitance | $V_R = 0 V, f = 1 MHz$ | Cj | - | 50 | =. | pF | | #### Note ⁽¹⁾ In one packing unit $I_{Vmin.}/I_{Vmax.} \le 0.5$ | OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}C$, unless otherwise specified) TLSV5100G, GREEN | | | | | | | | | |---|---------------------------------|----------------|------|------|------|------|--|--| | PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. | UNIT | | | | Luminous intensity (1) | I _F = 10 mA | I _V | 0.63 | 1 | - | mcd | | | | Dominant wavelength | I _F = 10 mA | λ_{d} | 562 | - | 575 | nm | | | | Peak wavelength | I _F = 10 mA | λ_{p} | - | 565 | - | nm | | | | Angle of half intensity | I _F = 10 mA | φ | | ± 50 | | deg | | | | Forward voltage | I _F = 20 mA | V _F | - | 2.4 | 3.0 | V | | | | Reverse voltage | I _R = 10 μA | V _R | 6 | 15 | - | V | | | | Junction capacitance | V _R = 0 V, f = 1 MHz | Cj | - | 50 | - | pF | | | #### Note ## TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified) Fig. 2 - Forward Current vs. Ambient Temperature for InGaN $^{^{(1)}~}$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$ Fig. 3 - Forward Current vs. Pulse Length Fig. 4 - Relative Luminous Intensity vs. Angular Displacement Fig. 5 - Forward Current vs. Forward Voltage Fig. 6 - Relative Luminous Intensity vs. Ambient Temperature Fig. 7 - Relative Luminous Intensity vs. Forward Current/Duty Cycle Fig. 8 - Relative Luminous Intensity vs. Forward Current Fig. 9 - Relative Intensity vs. Wavelength Fig. 10 - Forward Current vs. Forward Voltage Fig. 11 - Relative Luminous Intensity vs. Ambient Temperature Fig. 12 - Specific Luminous Intensity vs. Forward Current Fig. 13 - Relative Luminous Intensity vs. Forward Current Fig. 14 - Relative Intensity vs. Wavelength ## **PACKAGE DIMENSIONS** in millimeters # **Legal Disclaimer Notice** Vishay # **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.