TRUMENTS www.ti.com

FEATURES

- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meet or Exceed the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operate With 3-V to 5.5-V V_{CC} Supply
- Operate up to 1000 kbit/s
- Five Drivers and Three Receivers
- Auto-Powerdown Plus Feature Enables Flexible Power-Down Mode
- Low Standby Current . . . 1 µA Typical
- External Capacitors . . . 4 \times 0.1 μF
- Accept 5-V Logic Input With 3.3-V Supply
- Always-Active Noninverting Receiver Output (ROUT1B)
- ESD Protection for RS-232 Interface Pins

 ±15 kV Human-Body Model (HBM)
 - \pm 8 kV IEC61000-4-2, Contact Discharge
 - \pm 15 kV IEC61000-4-2, Air-Gap Discharge

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Subnotebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment
- Modems
- Printers

C2+11 28 C1+ GND 2 27 V+ 26 VCC C2-[]3 $V - \Pi 4$ 25 C1-DOUT1 5 24 DIN1 DOUT2[6 23 DIN2 DOUT3 22 DIN3 RIN1 8 21 **ROUT1** RIN2 20 ROUT2 DOUT4 10 19 DIN4 RIN3 11 18 ROUT3 DOUT5 12 17 DIN5 16 ROUT1B FORCEON 13 FORCEOFF 14 15 INVALID

DB, DW, OR PW PACKAGE

(TOP VIEW)

SLLS726-MAY 2006

DESCRIPTION/ORDERING INFORMATION

The SN65C3238E and SN75C3238E consist of five line drivers, three line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection on the driver output (DOUT) and receiver input (RIN) terminals. The devices meet the requirements of TIA/EIA-232-F and provide the electrical interface between notebook and subnotebook computer applications. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the devices include an always-active noninverting output (ROUT1B), which allows applications using the ring indicator to transmit data while the device is powered down. These devices operate at data signaling rates up to 1000 kbit/s.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS726-MAY 2006

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-powerdown plus feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the devices do not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 μ A. By disconnecting the serial port or placing the peripheral drivers off, auto-powerdown plus occurs if there is no activity in the logic levels for the driver inputs. Auto-powerdown plus can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown plus enabled, the devices activate automatically when a valid signal is applied to any receiver or driver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s. Refer to Figure 5 for receiver input levels.

T _A	PAC	CKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DB	Tube of 50	SN75C3238EDB	75020205
	330P - DB	Reel of 2000	SN75C3238EDBR	- 7503230E
	TSSOP – PW Tube of 50 SN75C3238EPW	SN75C3238EPW	Broviow	
0°C to 70°C	1330P - PW	Reel of 2000	SN75C3238EPWR	Pieview
	SOIC - DW	Tube of 50	SN75C3238EDW	75020205
	50IC - DW	Reel of 2000	SN75C3238EDWR	TOP-SIDE MARKING 75C3238E Preview 75C3238E Preview 65C3238E Preview 65C3238E Preview 65C3238E Preview Preview
		SN75C3238ECRHBR	Preview	
	SSOP – DB	Tube of 50	SN65C3238EDB	65C2228E
	330F - DB	Reel of 2000	SN65C3238EDBR	0000200E
	TSSOP – PW	Tube of 50	SN65C3238EPW	Droviow
–40°C to 85°C	1350P - PW	Reel of 2000	SN65C3238EPWR	Pieview
	SOIC - DW	Tube of 50	SN65C3238EDW	65C2228E
	3010 - DW	Reel of 2000	SN65C3238EDWR	0000200E
	QFN – RHB	Reel of 2000	SN65C3238EIRHBR	Preview

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SLLS726-MAY 2006

FUNCTION TABLES

Each Driver⁽¹⁾

		INPUTS			
DIN	FORCEON	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	OUTPUT DOUT	DRIVER STATUS
Х	Х	L	X	Z	Powered off
L	Н	Н	Х	Н	Normal operation with
н	Н	Н	x	L	auto-powerdown plus disabled
L	L	Н	<30 s	Н	Normal operation with
Н	L	Н	<30 s	L	auto-powerdown plus enabled
L	L	Н	>30 s	Z	Powered off by
н	L	Н	>30 s	Z	auto-powerdown plus feature

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

Each Receiver⁽¹⁾

		INPUTS		OUT	PUTS	
RIN1	RIN2-RIN3	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	ROUT1B	ROUT2 AND ROUT3	RECEIVER STATUS
L	Х	L	Х	L	Z	Powered off while
н	Х	L	х	Н	Z	ROUT1B is active
L	L	Н	<30 s	L	Н	
L	Н	Н	<30 s	L	L	Normal operation with
н	L	Н	<30 s	Н	н	auto-powerdown plus
н	Н	Н	<30 s	Н	L	disabled/enabled
Open	Open	н	<30 s	L	н	

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

LOGIC DIAGRAM (POSITIVE LOGIC) DIN1 _____ 5 DOUT1 DIN2 _____23 6 DOUT2 7 DOUT3 DIN3 _____ DIN4 _____ 10 DOUT4 DIN5 _____ 12 DOUT5 14 FORCEOFF -15 INVALID Auto-powerdown Plus 13 FORCEON -16 ROUT1B -Π ROUT1 _____ 8 _____ RIN1 ROUT2 _____ 9 — RIN2 11 RIN3 ╜

PRODUCT PREVIEW

SLLS726-MAY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V	
V+	Positive-output supply voltage range ⁽²⁾		-0.3	7	V	
V–	Negative-output supply voltage range ⁽²⁾		0.3	-7	V	
V+ – V–	Supply voltage difference ⁽²⁾			13	V	
\ <i>\</i>		Driver (FORCEOFF, FORCEON)	-0.3	6	V	
VI	Input voltage range	Receiver	-25	25	V	
		Driver	-13.2	13.2	V	
Vo	Output voltage range	Receiver (INVALID)	-0.3	V _{CC} + 0.3		
		DB package		62		
0	Declares the surged interval $(3)(4)$	DW package		46		
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	PW package		62	°C/W	
		RHB package		TBD		
TJ	Operating virtual junction temperature	· ·		150	°C	
T _{stg}	Storage temperature range		-65	150	°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

Maximum power dissipation is a function of $T_{I}(max)$, θ_{IA} , and T_{A} . The maximum allowable power dissipation at any allowable ambient (3) temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with JESD 51-7. (4)

Recommended Operating Conditions⁽¹⁾

See Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 V$	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	v
v	Driver and control high lovel input veltage	DIN, FORCEOFF,	V _{CC} = 3.3 V	2		5.5	V
VIH		FORCEON	$V_{CC} = 5 V$	2.4		5.5	v
VIL	Driver and control low-level input voltage	DIN, FORCEOFF, FOR	CEON	0		0.8	V
VI	Receiver input voltage			-25		25	V
-			SN75C3238E	0		70	°C
Τ _Α	Operating free-air temperature		SN65C3238E	-40		85	÷C

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARA	METER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μΑ
		Auto-powerdown plus disabled	No load, FORCEOFF and FORCEON at V_{CC}		0.5	2	mA
Icc	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
	$(T_A = 25^{\circ}C)$	Auto-powerdown plus enabled	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μΑ

Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.4 V ± 0.3 V; (1) and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2)

SLLS726-MAY 2006

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TE	ST CONDITIONS	6	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	All DOUT at $R_L = 3 \ k\Omega$ to	GND		5	5.4		V
V _{OL}	Low-level output voltage	All DOUT at $R_L = 3 \ k\Omega$ to	GND		-5	-5.4		V
I _{IH}	High-level input current	$V_{I} = V_{CC}$				±0.01	±1	μA
I	Low-level input current	V _I at GND				±0.01	±1	μΑ
	O b and a line it and a second (3)	V _{CC} = 3.6 V,	$V_{O} = 0 V$			±35	±60	
IOS	Short-circuit output current ⁽³⁾	V _{CC} = 5.5 V,	$V_0 = 0 V$			±40	±100	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_0 = \pm 2 V$		300	10M		Ω
		FORCEOFF = GND	$V_0 = \pm 12 V$,	V_{CC} = 3 V to 3.6 V			±25	۸
I _{OZ}	Output leakage current	FURGEUFF = GND	$V_{O} = \pm 10 V$,	V_{CC} = 4.5 V to 5.5 V			±25	μA

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

(2) All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}C$.

(3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate (see Figure 1)		C _L = 1000 pF		250			
		$R_L = 3 k\Omega$, One DOUT switching	C _L = 250 pF,	V_{CC} = 3 V to 4.5 V	1000			kbit/s
			C _L = 1000 pF,	V_{CC} = 4.5 V to 5.5 V	1000			
t _{sk(p)}	Pulse skew ⁽³⁾	$C_{L} = 150 \text{ pF} \text{ to } 2500 \text{ pF},$	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$,	See Figure 2		25		ns
SR(tr)	Slew rate, transition region (see Figure 1)	$C_{L} = 150 \text{ pF} \text{ to } 1000 \text{ pF},$	$R_L = 3 k\Omega$ to 7 k Ω ,	V _{CC} = 3.3 V	18		150	V/µs

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

(2) All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}C$.

(3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	
DOUT	IEC 61000-4-2, Air-Gap Discharge	±15	kV
	IEC 61000-4-2, Contact Discharge	±8	

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1 mA	$V_{CC} - 0.6$	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
V	Positive-going input threshold voltage	$V_{CC} = 3.3 V$		1.5	3 2.4	V
V _{IT+}	Positive-going input theshold voltage	$V_{CC} = 5 V$		1.8		v
V	Negative-going input threshold voltage	$V_{CC} = 3.3 V$	0.6	1.2		V
V _{IT-}	Negative-going input theshold voltage	$V_{CC} = 5 V$	0.8	1.5		v
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.3		V
I _{OZ}	Output leakage current (except ROUT1B)	FORCEOFF = 0 V		±0.05	±10	μA
r _i	Input resistance	$V_1 = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2)

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_L = 150 \text{ pF}$, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	$C_L = 150 \text{ pF}$, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0. (1) and C2–C4 = 0.33 μF at V_{CC} = 5 V \pm 0.5 V.

(2) All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}C$. (3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	HBM	±15	
RIN	IEC 61000-4-2, Air-Gap Discharge		kV
	IEC 61000-4-2, Contact Discharge	±8	

SLLS726-MAY 2006

AUTO-POWERDOWN PLUS SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{\text{FORCEOFF}} = V_{CC}$		2.7	V	
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-2.7		V	
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-0.3	0.3	V	
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}$, FORCEON = GND, FORCEOFF = V_{CC}	V _{CC} – 0.6		V	
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V _{CC}		0.4	V	

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{valid}	Propagation delay time, low- to high-level output		0.1		μs
t _{invalid}	Propagation delay time, high- to low-level output		50		μs
t _{en}	Supply enable time		25		μs
t _{dis}	Receiver or driver edge to auto-powerdown plus	15	30	60	S

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25 ^{\circ}C.

SLLS726-MAY 2006

PARAMETER MEASUREMENT INFORMATION

- TEST CIRCUI
- A. C_L includes probe and jig capacitance.

Texas

TRUMENTS www.ti.com

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

TEST CIRCUIT

VOLTAGE WAVEFORMS

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$.

Figure 3. Receiver Propagation Delay Times

SLLS726-MAY 2006

TEST CIRCUIT

VOLTAGE WAVEFORMS

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 4. Receiver Enable and Disable Times

SLLS726-MAY 2006

PARAMETER MEASUREMENT INFORMATION (continued)

NOTES: A. CL includes probe and jig capacitance.

[†] Auto-powerdown plus disables drivers and reduces supply current to 1 μA.

Figure 5. INVALID Propagation-Delay Times and Supply-Enabling Time

SLLS726-MAY 2006

APPLICATION INFORMATION

Figure 6. Typical Operating Circuit and Capacitor Values

3 V to 5.5 V

0.22 μ**F**

1 μ**F**

shown.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65C3238EDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN65C3238EDWR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
SN75C3238EDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN75C3238EDWR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

30-Dec-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65C3238EDBR	SSOP	DB	28	2000	853.0	449.0	35.0
SN65C3238EDWR	SOIC	DW	28	1000	350.0	350.0	66.0
SN75C3238EDBR	SSOP	DB	28	2000	853.0	449.0	35.0
SN75C3238EDWR	SOIC	DW	28	1000	350.0	350.0	66.0

DW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AE.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB0028A

PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

DB0028A

EXAMPLE BOARD LAYOUT

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DB0028A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated