AVR515: Migrating from ATmega48/88/168 and ATmega48P/88P/168P/328P to ATtiny48/88

Features

- General Porting Considerations
- Pin Configurations
- AVR[®] CPU Core
- Memories
- System Clock and Clock Options
- Power Management and Sleep Modes
- Interrupts
- Timer/Counters
- USART0
- Analogue Comparator
- Memory Programming
- Speed Grades

1 Introduction

This application note is a guide to assist users of ATmega48/88/168 and ATmega48P/88P/168P/328P in converting existing designs to ATtiny48/88. In addition to the differences described in this document, the electrical characteristics of the devices are different. Some of the differences are outlined in this document and some are not. Improvements or added features in ATtiny48/88 that are not in conflict with those in ATmega48/88/168 and ATmega48P/88P/168P/328P are not listed in this document.

The ATtiny48/88 are low-cost, feature-reduced versions of the ATmega48/88/168 and ATmega48P/88P/168P/328P devices. The tinyAVR versions are designed to be pin compatible with the megaAVR versions. Because of improvements that will be mentioned in this application note there may be a need for minor modifications in the application when migrating.

Please see latest data sheets for detailed information.

8-bit **AVR**[®] Microcontrollers

Application Note

Rev. 8089A-AVR-09/07

2 General Porting Considerations

To make the porting process as easy as possible, one should always refer to registers and bit positions using their defined names and avoid using absolute addresses and values. In most cases, register and bit names are unchanged from device to device. When porting a design it is more convenient to include the correct definition file for the new device, rather than manually changing all addresses and bit values. It is also considered good programming practice to use named references instead of absolute values. Some examples are shown below.

To avoid conflicts with added features and register functionality, never access registers that are marked as reserved. Reserved bits should always be written zero, if accessed. This ensures forward compatibility, and added features will stay in their default states when unused.

3 Pin Configurations

Pin output drivers have been optimized for size in ATtiny48/88. Drive strengths are summarised in the table below.

Table 3-1. Pin dr	rive strengths.
-------------------	-----------------

Supply voltage	ATmega48 ATmega88 ATmega168 ATmega168		ATmega48 ATmega88P ATtiny48 ATmega88 ATmega168P		•
	ATmegaroo	ATmega328P	Normal I/O	High Sink	
5 V	20 mA	20 mA	10 mA	20 mA	
3 V	10 mA	10 mA	5 mA	10 mA	

ATtiny48/88 is pin-compatible with ATmega48/88/168 and ATmega48P/88P/168P/328P by default, although some pin functions have been removed and other functions have been added. These changes should not affect pin compatibility by default but have been listed in the table below for clarity.

Table 3-2. Pin	configurations
----------------	----------------

		Pin		Change	
TQFP	MLF	PDIP	Name	Change	
1	1	5	PD3	Removed: OC2B	
2	2	6	PD4	Removed: XCK	
3	3	-	GND (PA2)	Changed: GND to PCINT26 / PA2	
6	6	-	VCC (PA3)	Changed: VCC to PCINT27 / PA3	

2

	Pin			Change
TQFP	MLF	PDIP	Name	Change
7	7	9	PB6	Removed: TOSC1, XTAL1. Added: CLKI
8	8	10	PB7	Removed: TOSC2, XTAL2
9	9	11	PD5	Removed: OC0B
10	10	12	PD6	Removed: OC0A
15	15	17	PB3	Removed: OC2A
19	19	-	PA0 Added: PCINT24, PA0	
20	20	21	PC7	Changed: AREF to PCINT15. Added: PC7
22	22	-	PA1	Added: PCINT25, PA1
30	30	2	PD0	Removed: RXD
31	31	3	PD1	Removed: TXD

4 AVR CPU Core

The AVR core and the microcontroller architecture are the same in all AVR devices, but some instructions have not been implemented in ATtiny48/88. Where ATmega48/88/168 and ATmega48P/88P/168P/328P have 131 instructions, ATtiny48/88 only has 123. The table below summarizes instructions that are available on ATmega48/88/168 and ATmega48P/88P/168P/328P but have not been implemented in ATtiny48/88.

 Table 4-1. Instructions not implemented in ATtiny48/88.

Instruction	Operands	Meaning	
MUL	Rd, Rr	Multiply Unsigned	
MULS	Rd, Rr	Multiply Signed	
MULSU	Rd, Rr	Multiply Signed with Unsigned	
FMUL	Rd, Rr	Fractional Multiply Unsigned	
FMULS	Rd, Rr	Fractional Multiply Signed	
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	
JMP	k	Direct Jump	
CALL	k	Direct Subroutine Call	

The limited instruction set is of concern chiefly when programming in assembler. High-level language (such as "C") compilers automatically take into account the available instruction set and the end user does not need to be aware of limitations.

In applications that extensively rely on the use of multiplication and division there may be a code size and speed penalty when moving from ATmega48/88/168 and ATmega48P/88P/168P/328P to ATtiny48/88. This is because multiplication and division require more instructions and take longer time to execute in the absence of a hardware multiplier.

5 Memories

ATtiny48/88 has less volatile and non-volatile memory than ATmega48/88/168 and ATmega48P/88P/168P/328P, as shown in the table below. This means some firmware may have to be re-engineered or recompiled using memory optimisation algorithms.

Table 5-1. Memory Summary.

Device	Memory Size in Bytes		
Device	Flash	SRAM	EEPROM
ATmega48/48V/48P/48PV	4096	512	256
ATmega88/88V/88P/88PV	8192	1024	512
ATmega168/168V/168P/168PV	16384	1024	512
ATmega328P/328PV	32768	2048	1024
ATtiny48	4096	256	64
ATtiny88	8192	512	64

6 System Clock and Clock Options

ATtiny48/88 has a reduced clock system as compared to ATmega48/88/168 and ATmega48P/88P/168P/328P.

6.1 Clock Sources

ATtiny48/88 does not include a crystal oscillator, but all other clocking options of ATmega48/88/168 and ATmega48P/88P/168P/328P are available, as shown in the table below.

 Table 6-1. Clocking Source Settings.

	CKSEL3	30		
Device Clocking Option	ATmega48/88/168 ATmega48P/88P/168P	ATtiny48/88		
External Clock	0000			
Reserved	0001			
Calibrated Internal RC Oscillator	0010	0010		
Internal 128 kHz RC Oscillator	0011			
Low Fraguency Crystal Occillator	0100			
Low Frequency Crystal Oscillator	0101	N/A ⁽¹⁾		
Full Swing Crustal Oscillator	0110	N/A		
Full Swing Crystal Oscillator	0111			
Reserved	1000 - 1111			

Notes: 1

1. Crystal oscillator not implemented in ATtiny48/88.

4

7 Power Management and Sleep Modes

ATtiny48/88 has less sleep modes than ATmega48/88/168 and ATmega48P/88P/168P/328P. The table below summarises sleep modes in all devices.

Table 7-1.	Sleep	Modes.
------------	-------	--------

	Implementation			
Sleep Mode	ATmega48 ATmega88 ATmega168	ATmega48P ATmega88P ATmega168P ATmega328P	ATtiny48 ATtiny88	
ldle	Х	Х	Х	
ADC Noise Reduction	Х	Х	Х	
Power-down	Х	Х	Х	
Power-save	Х	Х		
Standby	Х	Х		
Extended Standby		Х		

Sleep mode selection bit SM2 has not been implemented in ATtiny48/88.

The BOD disable function in Extended Standby Sleep Mode of ATmega48P/88P/168P/328P can be found in the Power-down Sleep Mode of ATtiny48/88. See device data sheets for more information.

8 Interrupts

The interrupt vector table of ATtiny48/88 differs from those of ATmega48/88/168 and ATmega48P/88P/168P/328P. See table below.

Table	8-1.	Interrup	ot vectors.
-------	------	----------	-------------

Vector Address	ATmega48/88/168	ATmega48P/88P ATmega168P/328P	ATtiny48 ATtiny88	
0x000		RESET		
0x001		INT0		
0x002		INT1		
0x003		PCINT0		
0x004		PCINT1		
0x005		PCINT2		
0x006	V	WDT		
0x007	TIMER	TIMER2_COMPA		
0x008	TIMER	TIMER2_COMPB		
0x009	TIME	TIMER2_OVF		
0x00A	TIMER1_CAPT		TIMER1_COMPB	
0x00B	TIMER1_COMPA		TIMER1_OVF	
0x00C	TIMER	1_COMPB	TIMER0_COMPA	

Vector Address	ATmega48/88/168	ATmega48P/88P ATmega168P/328P	ATtiny48 ATtiny88
0x00D	TIME	R1_OVF	TIMER0_COMPB
0x00E	TIMERC)_COMPA	TIMER0_OVF
0x00F	TIMER0_COMPB		SPI_STC
0x010	TIMER0_OVF		ADC
0x011	SPI_STC		EE_RDY
0x012	USART_RX		ANA_COMP
0x013	USART_UDRE		TWI
0x014	USART_TX		-
0x015	ADC		-
0x016	EE_RDY		-
0x017	ANA_COMP		-
0x018	TWI		-
0x019	SPM_RDY		-

9 Timer/Counters

The Timer/Counters of ATtiny48/88 have reduced functionality as compared to those of ATmega48/88/168 and ATmega48P/88P/168P/328P.

9.1 Timer/Counter0

The 8-bit Timer/Counter0 of ATtiny48/88 does not have a PWM output stage. As a consequence, the control bits of Timer/Counter Control Register A (TCCR0A) have been changed and the Timer/Counter Control Register B (TCCR0B) has been removed. The Compare Match Output (COM0xx) and Waveform Generation Mode (WGMxx) bits of TCCR0A have been replaced by Clear Timer on Compare Match Mode (CTC0). Also, the Clock Select bits of TCCR0B have been moved to TCCR0A.

Waveform generation modes are summarised in the table below.

 Table 9-1.
 Waveform generation modes.

ATmega48/88/168 and ATmega48P/88P/168P/328P					ATtiny48/88
WGM	Mode	ТОР	OCRx	τον	СТС0
000	Normal	0xFF	Immediate	MAX	0
001	Phase correct PWM	0xFF	ТОР	BOTTOM	-
010	CTC	OCRA	Immediate	MAX	1
011	Fast PWM	0xFF	BOTTOM	MAX	-
100	Reserved	-	-	-	-
101	Phase correct PWM	OCRA	ТОР	воттом	-
110	Reserved	-	-	-	-
111	Fast PWM	OCRA	BOTTOM	ТОР	-

8089A-AVR-09/07

See device datasheets for detailed explanations of Timer/Counter functions.

AVR515

9.2 Timer/Counter2

The 8-bit Timer/Counter2 of ATmega48/88/168 and ATmega48P/88P/168P/328P has not been implemented in ATtiny48/88.

10 USART0

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) have not been implemented in ATtiny48/88.

11 Analogue to Digital Converter

The option to use an external voltage reference has not been implemented in ATtiny48/88. The external voltage reference pin (AREF in ATmega48/88/168 and ATmega48P/88P/168P/328P) has been replaced by a general purpose I/O pin. This means in ATtiny48/88 it is not possible to use an external bypass capacitor to stabilize the internal voltage reference.

12 Memory Programming

The differences in Fuse Bytes, Signature Bytes and the Calibration Byte are outlined in the sections below.

12.1 Fuse Bits

ATtiny48/88, ATmega48/88/168 and ATmega48P/88P/168P/328P have identical high fuse bytes, but there are some differences in the extended and low fuse bytes, as shown in the tables below.

Table 12-1. Extended Fuse Byte

Fuse Bit	ATmega88/168 ATmega88P/168P/328P	ATmega48 ATmega48P ATtiny48/88	
73	(not implemented)		
2	BOOTSZ1	(not implemented)	
1	BOOTSZ0	(not implemented)	
0	BOOTRST	SELFPRGEN	

Table 12-2. Low Fuse Byte.

Fuse Bit	ATmega48/88/168 ATmega48P/88P/168P/328P	ATtiny48/88	
7	СК	CKDIV8	
6	СК	СКОИТ	
5	SUT1		
4	SUTO		
3	CKSEL3	(not implemented)	
2	CKSLE2	(not implemented)	
1	CKSEL1		

Fuse Bit	ATmega48/88/168 ATmega48P/88P/168P/328P	ATtiny48/88
0	CKSEL0	

12.2 Signature Bytes

Signature bytes are unique for each device, as shown in the table below.

Table 12-3. Signature bytes.

Device	Signature Byte			
Device	0x000	0x001	0x002	
ATtiny48			0x09	
ATmega48		0x92	0x05	
ATmega48P			0x0A	
ATtiny88	0x1E		0x11	
ATmega88		0x93	0x0A	
ATmega88P			0x0F	
ATmega168		0.04	0x06	
ATmega168P		0x94	0x0B	
ATmega328P		0x95	0x0F	

12.3 Calibration Byte

In ATtiny48/88 there is only one calibration range but in ATmega48/88/168 and ATmega48P/88P/168P/328P devices there are two, as shown in the table below.

Table 12-4. Oscillator Calibration Register.

Device	CAL7	CAL60	
ATmega48/88/168	Selects range of	Tunes frequency within the	
ATmega48P/88P/168P/328P	operation	selected range	
ATtiny48/88	Tunes frequency with	in one, constant range	

13 Speed Grades

The maximum frequency of ATtiny48/88 devices is lower than that of devices ATmega48/88/168 and ATmega48P/88P/168P/328P, as shown in the table below.

Table 13-1. Device speed grades.

Device	1.8 – 5.5 V	2.7 – 5.5 V	4.5 – 5.5 V
ATmega48/88/168 ATmega48P/88P/168P	N/A	10 MHz	20 MHz
ATtiny48/88	N/A	6 MHz	12 MHz
ATmega48V/88V/168V ATmega48PV/88PV/168PV	4 MHz	10 MHz	10 MHz

AVR515

Device	1.8 – 5.5 V	2.7 – 5.5 V	4.5 – 5.5 V
ATmega48/88/168 ATmega48P/88P/168P	N/A	10 MHz	20 MHz
ATtiny48V/88V	4 MHz	6 MHz	6 MHz

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com

Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Request www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof AVR®, and others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.