

PI6C4512 PLL Clock Multiplier

Features

- Zero ppm multiplication error
- Input crystal frequency range: 5 30MHz
- Input clock frequency range: 4 50MHz
- Output clock frequencies range $\leq 200 MHz$
- Period jitter ≤ 100 ps (typ)
- + 9 Selectable frequencies controlled by S_0 and S_1 pins
- Supply voltage: $3.3V \pm 10\%$ or $5.0V \pm 10\%$

Description

The PI6C4512 is a precision general-purpose clock synthesizer with fmax \leq 200MHz. The PI6C4512 uses an external low-cost crystal to generate a very accurate rate and stable system clocks.

Block Diagram

Clock Output Table⁽¹⁾

S ₁	S ₀	CLK			
0	0	x 4			
0	М	x (16/3)			
0	1	x 5			
М	0	x 2.5			
М	М	x 2			
М	1	x (10/3)			
1	0	x 6			
1	М	x 3			
1	1	x 8			

Notes:

1. M = Mid-level (unconnected, biases to $V_{CC}/2$).

Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested)

Storage temperature	65°C to +150°C
Ambient Operating Temperature	0°C to +70°C
Supply Voltage to Ground Potential (V _{CC})	-0.3V to +7.0V
Inputs (Referenced to GND)	0.5V to V_{CC} +0.5V
Clock Output (Referenced to GND)	0.5V to V_{CC} +0.5V
Soldering Temperature (Max of 10 seconds)	260°C
1	

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Pin Description

Name	Pin	Description	
X1/ICLK	1	Crystal connection or clock input.	
V _{CC}	2	Supply voltage: $3.3V \pm 10\%$ or $5.0V \pm 10\%$	
GND	3	Connect to GND	
REF	4	Buffered crystal oscillator output clock	
CLK	5	Clock output	
S ₀	6	Multiplier select pin 0. Connect to GND or V _{CC} or float (no connection).	
S ₁	7	Multiplier select pin 1. Connect to GND or V _{CC} or float (no connection).	
X2	8	Crystal connection. Leave unconnected for clock input.	

Note:

External Components

The PI6C4512 requires a minimum number of external components for proper operation. Decoupling capacitors of $0.1 \mu F \parallel 0.01 \mu F$ should be connected between each V_{DD} and GND and placed as close to the chip as possible. A series termination resistor of 33 Ω may be used for clock outputs. If a crystal is used, it should be a fundamental mode, parallel resonant crystal. Crystal capacitors should be connected from X₁ to ground and from X₂ to ground to according to the crystal specifications. The value of capacitors is given by the following equation, where C_L is the crystal load capacitance: Crystal caps (pF) = (C_L -15) x 2.

Recommended Operation Conditions

Symbol	Description	Test Condition	Min.	Тур.	Max.	Units
V _{CC}	Supply Voltage		3		5.5	V
T _A	Operating Temperature		0		+70	°C

Symbol	Description	Test Condition	Pin	Min.	Тур.	Max.	Units
V _{CC}	Supply voltage		V _{CC}	3		5.5	V
I _{CC}	Supply current	No load, 20MHz crystal	V _{CC}	`	12	30	mA
V _{IH}	Input logic HIGH		ICLK	$(V_{CC}/2) + 1$	$V_{CC}/2$		V
V _{IL}	Input logic LOW		ICLK		$V_{CC}/2$	(V _{CC} /2)-1	V
V _{IH}	Input logic HIGH		S ₀ , S ₁	V _{CC} -0.5			V
V _{IM}	Input mid-level		S ₀ , S ₁		$V_{CC}/2$		V
V _{IL}	Input logic LOW		S ₀ , S ₁			0.5	V
V _{OH}	High-level output voltage	$I_{OH} = -12mA$	CLK, REF	2.4			V
V _{OL}	Low-level output voltage	$I_{OL} = +12mA$	CLK, REF			0.4	V
Is	Short circuit current		CLK		±70		mA

DC Electrical Characteristics ($V_{CC} = 3.3V \pm 10\%$ and $5.0V \pm 10\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$, unless otherwise noted)

AC Electrical Characteristics ($V_{CC} = 3.3V \pm 10\%$ and $5.0V \pm 10\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$, unless noted)

Symbol	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
	Crystal	ICLK	5		30	MHz	
F _{IN}	Input Frequency	Clock	ICLK	4		50	MHz
Е		V _{CC} : 4.5V to 5.5V	CLK	20		200	MHz
F _{OUT}	Output frequency ⁽¹⁾	V _{CC} : 3.0V to 3.6V	CLK	20		180	MHz
T _R	Output clock rise time	0.8V to 2.0V, C _L = 15pF load	CLK		1		ns
$T_{\rm F}$	Output clock fall time	2.0V to 0.8V, $C_L = 15$ pF load	CLK		1		ns
T _{DC} Output clock duty-cycle	At V _{CC} /2, $f \le 150$ MHz	CLK	45	50	55	%	
	At $V_{CC}/2$, f > 150MHz	CLK	40	50	60	70	
BW	PLL bandwidth	$f \le 150 MHz$	CLK	10			kHz
Трј	Period Jitter	100MHz to 200MHz	CLK		100	250	ps

Notes:

1. The phase relationship between input and output clocks can change at power up.

Recommended Crystal

Pericom recommends the Pericom 49S SMD series crystal, which is a low cost, low profile SMD crystal packaged in a HC-49/u short SMD package.

Recommended Crystal Specifications

Parameter	Value	Units
Mode of Oscillation	Fundamental	AT
Frequency	5 - 30	MHz
Frequency Tolerance	±50	PPM
Temperature and Aging Stability	±50	PPM
CO/CI Ratio	240	
Load Cap	18	pF
Equivalent Series Resistance	30	Ω

Packaging Mechanical: 8-Pin SOIC (W)

Ordering Information^(1,2)

Ordering Code	Package Code	Package Description
PI6C4512W	W	8-pin SOIC
PI6C4512WE	WE	Pb-Free and Green 8-pin SOIC

Note:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. E = Pb-free and Green