LCD and Camera EMI Filter Array with ESD Protection

Description

The CM1451 is an inductor-capacitor (L-C) based EMI filter array with integrated ESD protection in CSP. The CM1451-06 and CM1451-08 are configured in 6 and 8 channel formats respectively. Each channel is implemented as a 5-pole L-C filter with the component values 9.5 pF - 17 nH - 9.5 pF - 17 nF - 9.5 pF. The CM1451's roll-off frequency at -10 dB attenuation is 500 MHz. It can be used in applications where the data rates are as high as 200 Mbps while providing greater than 35 dB attenuation over the 800 MHz to 2.7 GHz frequency range. The device has ESD protection diodes on every pin that provide a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The ESD protection diodes connected to the filter ports safely dissipate ESD strikes of ±15 kV, exceeding the Level 4 requirement of the IEC61000-4-2 international standard. Using the MIL-STD-883 (Method 3015) specification for Human Body Model (HBM) ESD, the pins are protected for contact discharges at greater than ± 30 kV.

This device is particularly well-suited for portable electronics (e.g. wireless handsets, PDAs) because of its small package format and easy-to-use pin assignments. In particular, the CM1451 is ideal for EMI filtering and protecting data and control lines for the LCD display and camera interface in wireless handsets while maintaining the integrity of signals that have rise/fall times as fast as 2 ns.

The CM1451 incorporates OptiGuard, a coating that results in improved reliability at assembly. The CM1451 is available in a space–saving, low–profile Chip Scale Package with RoHS compliant lead–free finishing.

Features

- High Bandwidth, High RF Rejection Filter Array
- Six and Eight Channels of EMI Filtering
- Utilizes Inductor-Based Design Technology for True L-C Filter Implementation
- OptiGuard Coating for Improved Reliability
- Chip Scale Package (CSP) Features Extremely Low Lead Inductance for Optimum Filter and ESD Performance
- 15 kV ESD Protection on Each Channel (IEC 61000-4-2 Level 4, Contact Discharge)
- 30 kV ESD Protection on Each Channel (HBM)
- Better than 40 dB of Attenuation at 1 GHz
- Maintains Signal Integrity for Signals that Have a Risetime and Falltime as Fast as 2 ns

Applications

- LCD and Camera Data Lines in Mobile Handsets
- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- Wireless Handsets / Cell Phones

ON Semiconductor®

http://onsemi.com

WLCSP15 CP SUFFIX CASE 567BT WLCSP20 CP SUFFIX CASE 567CL

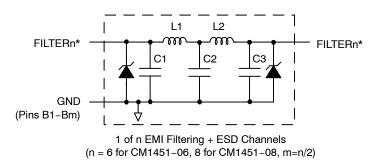
MARKING DIAGRAM

N516

N518

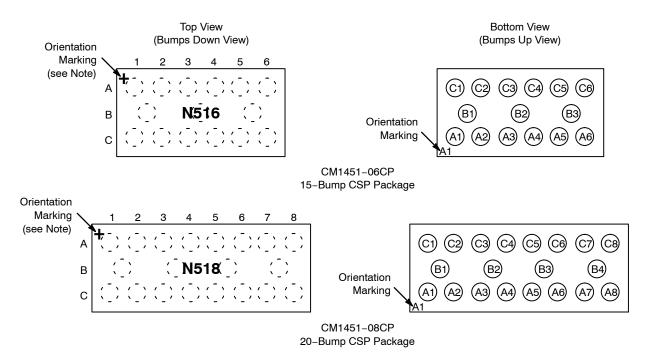
CM1451-06 15-Bump CSP Package CM1451-08 20-Bump CSP Package

N516 = CM1451-06CP N518 = CM1451-08CP


ORDERING INFORMATION

Device	Package	Shipping [†]
CM1451-06CP	CSP-15 (Pb-Free)	3500/Tape & Reel
CM1451-08CP	CSP-20 (Pb-Free)	3500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure. BRD8011/D.


- 15-Bump, 3.006 mm x 1.376 mm Footprint Chip Scale Package (CM1451-06CP)
- 20-Bump, 4.006 mm x 1.376 mm Footprint Chip Scale Package (CM1451-08CP)
- These Devices are Pb-Free and are RoHS Compliant
- EMI Filtering for Data Ports in Cell Phones, PDAs or Notebook Computers
- Handheld PCs / PDAs
- LCD and Camera Modules

BLOCK DIAGRAM

*See Package/Pinout Diagrams for expanded pin information.

PACKAGE / PINOUT DIAGRAMS

Note: Lead-free devices are specified by using a "+" character for the top side orientation mark.

Table 1. PIN DESCRIPTIONS

CM1451-06	CM1451-08			CM1451-06	CM1451-08		
Pin(s)	Pin(s)	Name	Description	Pin(s)	Pin(s)	Name	Description
A1	A1	FILTER1	Filter Channel 1	C1	C1	FILTER1	Filter Channel 1
A2	A2	FILTER2	Filter Channel 2	C2	C2	FILTER2	Filter Channel 2
A3	A3	FILTER3	Filter Channel 3	СЗ	C3	FILTER3	Filter Channel 3
A4	A4	FILTER4	Filter Channel 4	C4	C4	FILTER4	Filter Channel 4
A5	A 5	FILTER5	Filter Channel 5	C5	C5	FILTER5	Filter Channel 5
A6	A6	FILTER6	Filter Channel 6	C6	C6	FILTER6	Filter Channel 6
-	A7	FILTER7	Filter Channel 7	-	C7	FILTER7	Filter Channel 7
-	A8	FILTER8	Filter Channel 8	-	C8	FILTER8	Filter Channel 8
B1-B3	B1-B4	GND	Device Ground				

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Storage Temperature Range	-65 to +150	°C
Current per Inductor	30	mA
DC Package Power Rating	500	mW

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
L _{TOT}	Total Channel Inductance (L ₁ + L ₂)			34		nH
L ₁ , L ₂	Inductance			17		nH
R _{DC IN-OUT}	DC Channel Resistance			18		Ω
C _{TOT}	Total Channel Capacitance (C ₁ + C ₂ + C ₃)	At 2.5 V DC, 1 MHz, 30 mV AC	22.8	28.5	34.2	pF
C ₁ , C ₂ , C ₃	Capacitance At 2.5 V DC, 1 MHz, 30 mV AC		7.6	9.5	11.4	pF
f _C	Cut-off Frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω			260		MHz
f _{RO}	Roll–off Frequency at –10 dB Attenuation Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω			500		MHz
V _{DIODE}	Diode Standoff Voltage	I _{DIODE} = 10 μA		6.0		٧
I _{LEAK}	Diode Leakage Current	V _{DIODE} = +3.3 V		0.1	1.0	μΑ
V _{SIG}	Signal Clamp Voltage Positive Clamp Negative Clamp		5.6 -1.5	6.8 -0.8	9.0 -0.4	V
V _{ESD}	In-system ESD Withstand Voltage a) Human Body Model, MIL-STD-883, Method 3015 b) Contact Discharge per IEC 61000-4-2 Level 4	odel, MIL-STD-883, Method 3015				kV
R _{DYN}	Dynamic Resistance Positive Negative			2.30 0.90		Ω

^{1.} $T_A = 25^{\circ}C$ unless otherwise specified. 2. ESD applied to input and output pins with respect to GND, one at a time.

PERFORMANCE INFORMATION

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

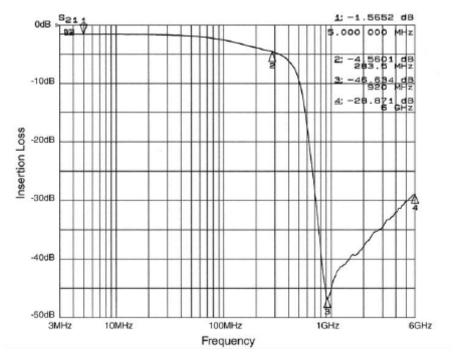


Figure 1. Insertion Loss vs. Frequency (A1-C1 to GND B1)

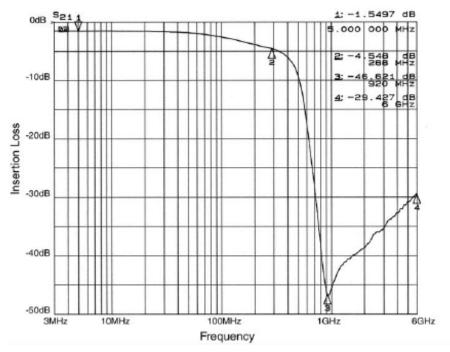


Figure 2. Insertion Loss vs. Frequency (A2-C2 to GND B1)

PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

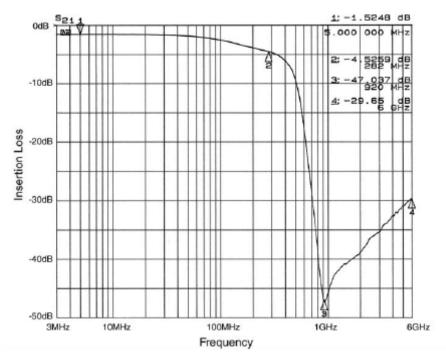


Figure 3. Insertion Loss vs. Frequency (A3-C3 to GND B2)

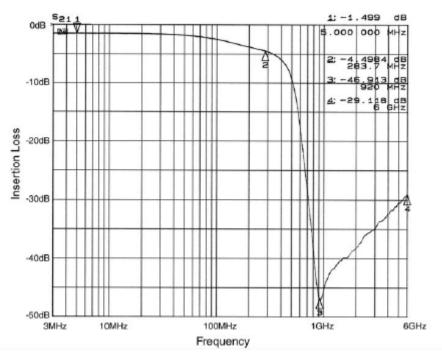


Figure 4. Insertion Loss vs. Frequency (A4-C4 to GND B2)

PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

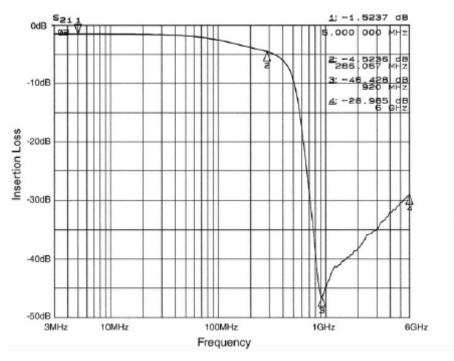


Figure 5. Insertion Loss vs. Frequency (A5-C5 to GND B3)

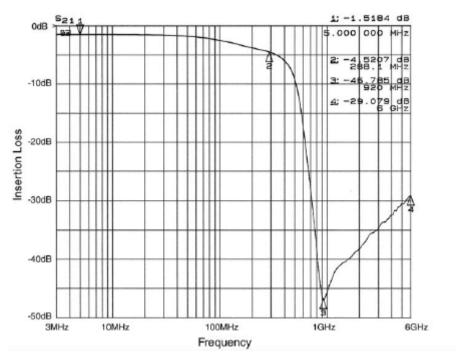


Figure 6. Insertion Loss vs. Frequency (A6-C6 to GND B3)

PERFORMANCE INFORMATION (Cont'd)

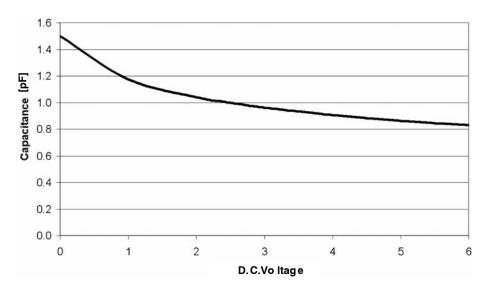


Figure 7. Filter Capacitance vs. Input Voltage over Temperature (normalized to capacitance at 2.5 VDC and 25°C)

Transient Response Characteristics

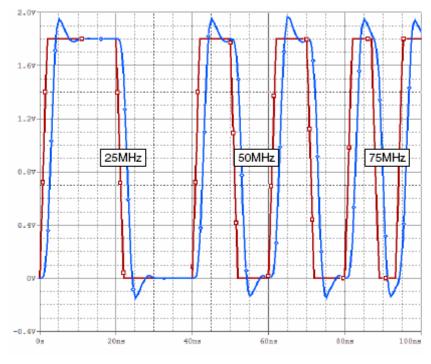


Figure 8. Simulated Transient Response (input signal risetime and falltime = 2 ns, clocked at 25, 50 and 75 MHz, 15 Ω Source Resistance, 5 pF Load)

APPLICATION INFORMATION

Table 5. PRINTED CIRCUIT BOARD RECOMMENDATIONS

Parameter	Value			
Pad Size on PCB	0.240 mm			
Pad Shape	Round			
Pad Definition	Non-Solder Mask defined pads			
Solder Mask Opening	0.290 mm Round			
Solder Stencil Thickness	0.125 – 0.150 mm			
Solder Stencil Aperture Opening (laser cut, 5% tapered walls)	0.300 mm Round			
Solder Flux Ratio	50/50 by volume			
Solder Paste Type	No Clean			
Pad Protective Finish	OSP (Entek Cu Plus 106A)			
Tolerance – Edge To Corner Ball	±50 μm			
Solder Ball Side Coplanarity	±20 μm			
Maximum Dwell Time Above Liquidous	60 seconds			
Maximum Soldering Temperature for Lead-free Devices using a Lead-free Solder Paste	260°C			

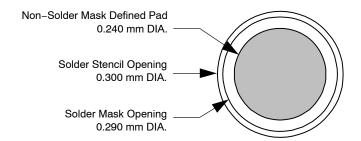


Figure 9. Recommended Non-Solder Mask Defined Pad Illustration

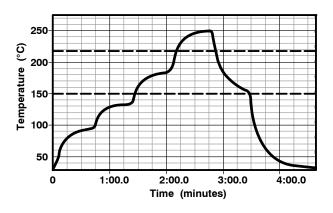
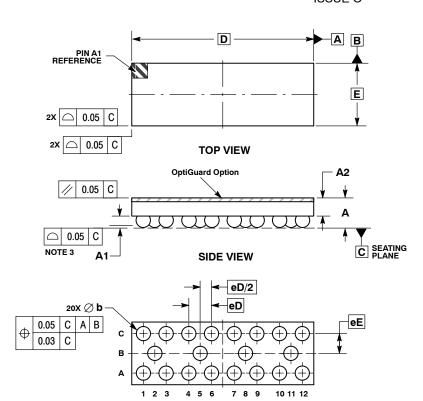
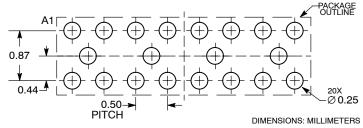



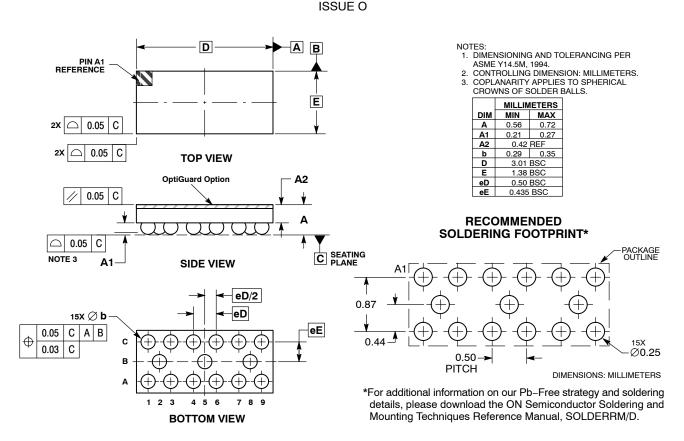
Figure 10. Lead-free (SnAgCu) Solder Ball Reflow Profile


PACKAGE DIMENSIONS

WLCSP20, 4.01x1.38 CASE 567CL-01 **ISSUE O**

RECOMMENDED SOLDERING FOOTPRINT*

BOTTOM VIEW


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.56	0.72		
A1	0.21	0.27		
A2	0.42 REF			
b	0.29	0.35		
D	4.01 BSC			
E	1.38 BSC			
eD	0.50 BSC			
еE	0.435 BSC			

PACKAGE DIMENSIONS

WLCSP15, 3.01x1.38 CASE 567BT-01

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative