SILICON LABS

EFM32WG Reference Manual

3

The EFM32 Wonder Gecko MCUs are the world’s most energy-
friendly microcontrollers.

The EFM32WG offers unmatched performance and ultra low power consumption in both
active and sleep modes. EFM32WG devices consume as little as 0.65 pA in Stop mode
and 225 pA/MHz in Run mode. It also features autonomous peripherals, high overall chip
and analog integration, and the performance of the industry standard 32-bit ARM Cortex-
M4 processor, making it perfect for battery-powered systems and systems with high-per-
formance, low-energy requirements.

EFM32WG applications include the following:

* Industrial and home automation
* Alarm and security systems
» Health and fitness applications

* Smart metering
* Water metering
+ Gas metering

Core /| Memory

Clock Management

ARM Cortex™

M4 processor

with FPU and
MPU

Memory
Protection Unit
Auxiliary High
Freq. RC Osc.

Ultra Low Freq.
Debug Interface RC Oscillator

with ETM

Low Frequency
Crystal Oscillator

Low Frequency

RAM Memory RC Oscillator

DMA Controller

——

|
Serial Interfaces

[
32-bit bus

|
/0 Ports

KEY FEATURES

ARM Cortex-M4 at 48 MHz

Ultra low power operation
+ 0.65 pA current in Stop (EM3), with
CRYOTIMER and RAM retention

* 63 pA/MHz in EM1

* 225 yA/MHz in Run mode (EMO)

Fast wake-up time of 2 us

Hardware cryptography (AES)

Up to 256 kB of Flash and 32 kB of RAM

Voltage
Regulator

Energy Management

Voltage
Comparator

Brown-Out
Detector

Power-On Reset

Backup Domain
|| | |

Timers and Triggers

Analog Interfaces

LESENSE

Low Energy Timer
Low Energy

UART™

External
Interrupts

General
Purpose 1/0
Pulse Counter

1’C Pin Reset Pin Wakeup

Back-Up RTC

Lowest power mode with peripheral operational:

EMO - Active

EM2 - Deep Sleep

silabs.com | Building a more connected world.

EMS3 - Stop

LCD Controller

Real Time Counter

Operational
Amplifier

Watchdog Timer

Analog
Comparator

EM4S - Shutoff




Table of Contents

1. Energy Friendly Microcontrollers . . . . . . . . . . . . . . . . . . . . . . . 24
1.1 Typical Applications. . . . . . . . . . . . . . . . . . . . . . . . ... .24
1.2 EFM32WG Development . . . . . . . . . . . . . . . . . . . . . . ... .24

2. AboutThisDocument . . . . . . . . . . . . « &« v v v v v v w v v v o . .25
2.1 Conventions . . . . . . . . . L L ... ...

2.2 Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . .26

3. SystemOverview . . . . . . . . . . . . L L L 000 e e e e e e e e 21
3.1 Introduction. . . . . . . . . . L L L L L s 2T
3.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .28
3.3 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..3
3.4 EnergyModes. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .30
3.5 Product Overview . . . . . . . . . . . . . . L. ..o s 32

3.6 Device Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. System Processor e
4.1 Introduction. . . . . . . . . . . . . . . . . . ... ... . . . .3
4.2 Features. . . . . . LT

4.3 Functional Description . . . . . . . . . . . . . . . . .. ..o oL 3T
4.3.1 Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . .38

5. MemoryandBus System . . . . . . . . . . . . . . . . . . . ... ... .04
5.1 Introduction. . . . . . . . . . . . L L L L L s

5.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . A2
5.21 Bit-Banding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Peripherals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Bus Matrix . . . . e
5.2.4 Access to Low Energy Perlpherals (Asynchronous Reglsters) .. . . . . . . . . .48
525 Flash. . . . . . . . . . . . . . . . . . . ... . .. .. . . ...50
52.6 SRAM . . . . e o X
5.2.7 Device Information (DI) Page T+ 4

6. DBG -DebugInterface . . . . . . . . . . . . . . . . . . . . . . . . .. . 54
6.1 Introduction. . . . . . . . . . . . . . ... ... B
6.2 Features. . . . . . . . . . ..., B

6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . b4
6.3.1 Debug Pins. . . . T o Lo}
6.3.2 Embedded Trace Macrocell v3 5 (ETM) T o 1o
6.3.3 DebugandEM2/EM3 . . . . . . . . . . . . . . . . . . . . . . . . .B5
6.3.4 Debug Lock and Device Erase . . . . . . . . . . . . . . . . . . . . . .b6

6.4 RegisterMap . . . . . . . . . L L L L L Lo ET
6.5 Register Description. . . . . . . . . . . . . . . . . . . . . . . . . . . .b8

silabs.com | Building a more connected world. Rev.1.1] 2




6.5.1 AAP_CMD - Command Register .
6.5.2 AAP_CMDKEY - Command Key Register .
6.5.3 AAP_STATUS - Status Register

6.5.4 AAP_IDR - AAP |dentification Register .

7. MSC - Memory System Controller.
7.1 Introduction.
7.2 Features.

7.3 Functional Description . .
7.3.1 User Data (UD) Page Descrlptlon .
7.3.2 Lock Bits (LB) Page Description.
7.3.3 Device Information (DI) Page.

7.3.4 Post-Reset Behavior .
7.3.5 Erase and Write Operations .

7.4 Register Map .

7.5 Register Description. . .
7.5.1 MSC_CTRL - Memory System ControI Reglster .
7.5.2 MSC_READCTRL - Read Control Register
7.5.3 MSC_WRITECTRL - Write Control Register
7.54 MSC_WRITECMD - Write Command Register
7.5.5 MSC_ADDRB - Page Erase/Write Address Buffer
7.5.6 MSC_WDATA - Write Data Register .
7.5.7 MSC_STATUS - Status Register .
7.5.8 MSC_IF - Interrupt Flag Register .
7.5.9 MSC_IFS - Interrupt Flag Set Register
7.5.10 MSC_IFC - Interrupt Flag Clear Register .
7.5.11 MSC_IEN - Interrupt Enable Register .
7.5.12 MSC_LOCK - Configuration Lock Register
7.5.13 MSC_CMD - Command Register . .
7.5.14 MSC_CACHEHITS - Cache Hits Performance Counter .

7.5.15 MSC_CACHEMISSES - Cache Misses Performance Counter .

7.5.16 MSC_TIMEBASE - Flash Write and Erase Timebase .
7.5.17 MSC_MASSLOCK - Mass Erase Lock Register

8. DMA - DMA Controller
8.1 Introduction.
8.2 Features.
8.3 Block Diagram.

8.4 Functional Description .
8.4.1 Channel Select Conflguratlon
8.4.2 DMA Control .
8.4.3 Channel Control Data Structure .
8.4.4 Looped Transfers
8.4.5 2D Copy. .
8.4.6 Interaction with the EMU
8.4.7 Interrupts
8.4.8 Examples

.58
.58
.59
.59

60
.60
.61

.61
.62
.62
.62
.62
.65

.66

.67
.67
.68
.69
.70
71
71
72
73
73
.74
.74
.75
.76
.76
a7
a7
.78

. 79

.79
.80
.81

.82
.82
.83
.96
106

. 107
107
108
108



8.5 Register Map

8.6 Register Description .

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12
8.6.13
8.6.14
8.6.15
8.6.16
8.6.17
8.6.18
8.6.19
8.6.20
8.6.21
8.6.22
8.6.23
8.6.24
8.6.25
8.6.26
8.6.27
8.6.28
8.6.29

DMA_STATUS - DMA Status Reglsters .
DMA_CONFIG - DMA Configuration Register .
DMA_CTRLBASE - Channel Control Data Base Pomter Reglster

DMA_ALTCTRLBASE - Channel Alternate Control Data Base Pointer Reglster

DMA_CHWAITSTATUS - Channel Wait on Request Status Register
DMA_CHSWREQ - Channel Software Request Register
DMA_CHUSEBURSTS - Channel Useburst Set Register .
DMA_CHUSEBURSTC - Channel Useburst Clear Register
DMA_CHREQMASKS - Channel Request Mask Set Register
DMA_CHREQMASKC - Channel Request Mask Clear Register
DMA_CHENS - Channel Enable Set Register
DMA_CHENC - Channel Enable Clear Register
DMA_CHALTS - Channel Alternate Set Register
DMA_CHALTC - Channel Alternate Clear Register
DMA_CHPRIS - Channel Priority Set Register
DMA_CHPRIC - Channel Priority Clear Register
DMA_ERRORC - Bus Error Clear Register
DMA_CHREQSTATUS - Channel Request Status . )
DMA_CHSREQSTATUS - Channel Single Request Status .
DMA_IF - Interrupt Flag Register
DMA_IFS - Interrupt Flag Set Register .
DMA_IFC - Interrupt Flag Clear Register
DMA_IEN - Interrupt Enable register
DMA_CTRL - DMA Control Register
DMA_RDS - DMA Retain Descriptor State
DMA_LOOPO - Channel 0 Loop Register .
DMA_LOOP1 - Channel 1 Loop Register .
DMA_RECTO - Channel 0 Rectangle Register
DMA_CHx_CTRL - Channel Control Register

9. RMU - Reset Management Unit .

9.1 Introduction.

9.2 Features.

9.3 Functional Description

9.3.1
9.3.2
9.3.3
9.34
9.3.5
9.3.6
9.3.7
9.3.8
9.3.9

RMU_RSTCAUSE Reglster
Power-On Reset (POR)
Brown-Out Detector Reset (BOD)
RESETn Pin Reset

Watchdog Reset .

Lockup Reset .
System Reset Request .
EM4 Reset . :
EM4 Wakeup Reset .

9.4 Register Map

9.5 Register Description .

.109

. 110
. 110
111
111
N V2
. 113
. 114
. 115
17
118
119
120

121

122

123

. 124
125

. .126
. 127
. 129

131

. 133
. 134
135

136
137

. 138
. 139
.139
140
. 144
. 144
. 144

. 145
.146

147

147
. 147
. 148
. 148
. 148
. 148
. 148

.148
. 149



9.5.1 RMU_CTRL - Control Register .
9.5.2 RMU_RSTCAUSE - Reset Cause Reglster
9.5.3 RMU_CMD - Command Register

10. EMU - Energy Management Unit .
10.1 Introduction
10.2 Features

10.3 Functional Description
10.3.1 Energy Modes :
10.3.2 Entering a Low Energy Mode
10.3.3 Leaving a Low Energy Mode
10.3.4 Backup Power Domain

10.4 Register Map.

10.5 Register Description :
10.5.1 EMU_CTRL - Control Reglster :
10.5.2 EMU_LOCK - Configuration Lock Reglster
10.5.3 EMU_AUXCTRL - Auxiliary Control Register : .
10.5.4 EMU_EMA4CONF - Energy Mode 4 Configuration Reglster
10.5.5 EMU_BUCTRL - Backup Power configuration register .
10.5.6 EMU_PWRCONF - Power Connection Configuration Register . .
10.5.7 EMU_BUINACT - Backup Mode Inactive Configuration Register
10.5.8 EMU_BUACT - Backup mode active configuration register
10.5.9 EMU_STATUS - Status register
10.5.10 EMU_ROUTE - I/O Routing Register .
10.5.11 EMU_IF - Interrupt Flag Register
10.5.12 EMU_IFS - Interrupt Flag Set Register
10.5.13 EMU_IFC - Interrupt Flag Clear Register
10.5.14 EMU_IEN - Interrupt Enable Register .
10.5.15 EMU_BUBODBUVINCAL - BU_VIN Backup BOD callbratlon
10.5.16 EMU_BUBODUNREGCAL - Unregulated power Backup BOD callbratlon

11. CMU - Clock Management Unit
11.1 Introduction
11.2 Features

11.3 Functional Description
11.3.1 System Clocks
11.3.2 Oscillator Selection
11.3.3 Oscillator Configuration .o
11.3.4 Configuration For Operating Frequenmes
11.3.5 Output Clock on a Pin.
11.3.6 Protection .

11.4 Register Map.

11.5 Register Description .
11.51 CMU_CTRL - CMU Control Reglster .
11.5.2 CMU_HFCORECLKDIV - High Frequency Core CIock D|V|S|on Reglster
11.5.3 CMU_HFPERCLKDIV - High Frequency Peripheral Clock Division Register

. 149

150

. 1561

. 152
152
152

153

154
157

158
159

. 163

164
164
165

165

. 166

167

. 168
. 169
. 170
171
A7
A72
A72

173
173
174
174

175
A75
A75

176

A77

179

.181
. .185
. 185
. 185

. 186

187
187
190
191



12.

13.

11.54 CMU_HFRCOCTRL - HFRCO Control Register

11.5.5 CMU_LFRCOCTRL - LFRCO Control Register .

11.5.6 CMU_AUXHFRCOCTRL - AUXHFRCO Control Reglster

11.5.7 CMU_CALCTRL - Calibration Control Register .

11.5.8 CMU_CALCNT - Calibration Counter Register .

11.5.9 CMU_OSCENCMD - Oscillator Enable/Disable Command Reglster .

11.5.10 CMU_CMD - Command Register

11.5.11 CMU_LFCLKSEL - Low Frequency Clock Select Reglster

11.5.12 CMU_STATUS - Status Register

11.5.13 CMU_IF - Interrupt Flag Register

11.5.14 CMU_IFS - Interrupt Flag Set Register

11.5.15 CMU_IFC - Interrupt Flag Clear Register

11.5.16 CMU_IEN - Interrupt Enable Register .

11.5.17 CMU_HFCORECLKENO - High Frequency Core CIock Enable Reglster O
11.5.18 CMU_HFPERCLKENO - High Frequency Peripheral Clock Enable Register 0
11.5.19 CMU_SYNCBUSY - Synchronization Busy Register .

11.5.20 CMU_FREEZE - Freeze Register

11.5.21 CMU_LFACLKENO - Low Frequency A CIock Enable Reglster 0 (Async Reg)
11.5.22 CMU_LFBCLKENO - Low Frequency B Clock Enable Register 0 (Async Reg)
11.5.23 CMU_LFAPRESCO - Low Frequency A Prescaler Register 0 (Async Reg)
11.5.24 CMU_LFBPRESCO - Low Frequency B Prescaler Register 0 (Async Reg)
11.5.25 CMU_PCNTCTRL - PCNT Control Register

11.5.26 CMU_LCDCTRL - LCD Control Register

11.5.27 CMU_ROUTE - I/O Routing Register .

11.5.28 CMU_LOCK - Configuration Lock Register .

WDOG - Watchdog Timer
12.1 Introduction
12.2 Features

12.3 Functional Description
12.3.1 Clock Source
12.3.2 Debug Functionality
12.3.3 Energy Mode Handling
12.3.4 Register Access.

12.4 Register Map.

12.5 Register Description
12.5.1 WDOG_CTRL - Control Reglster (Async Reg)
12.5.2 WDOG_CMD - Command Register (Async Reg)
12.5.3 WDOG_SYNCBUSY - Synchronization Busy Register

PRS - Peripheral Reflex System .
13.1 Introduction
13.2 Features

13.3 Functional Description
13.3.1 Asynchronous Mode
13.3.2 Channel Functions .
13.3.3 Producers.

192

. 193

194

. 195
. 196
. 197
. .198
. 199
.201
.203
.204

205
206

. .207
. .208
. 210
.21

. 212

. 212
213
.215

216
217

. 218
. 219

220

220
220

. 220
. 221

221
221

. 221
. 221

222

. 222
224

225

. 226
226
226

. 226
. .227
. 227
. 228



14.

13.3.4 Consumers
13.3.5 Example

13.4 Register Map.

13.5 Register Description
13.5.1 PRS_SWPULSE - Software Pulse Reglster
13.5.2 PRS_SWLEVEL - Software Level Register
13.5.3 PRS_ROUTE - I/0O Routing Register
13.5.4 PRS_CHx_CTRL - Channel Control Register

EBI - External Bus Interface
14.1 Introduction
14.2 Features

14.3 Functional Description
14.3.1 Non-Multiplexed 8-Bit Data, 8 Blt Address Mode
14.3.2 Multiplexed 16-bit Data, 16-bit Address Mode .
14.3.3 Multiplexed 8-Bit Data, 24-Bit Address Mode
14.3.4 Non-Multiplexed 16-Bit Data, N-Bit Address Mode
14.3.5 Page Mode Read Operation
14.3.6 Extended Addressing . .o
14.3.7 Prefetch Unit and Write Buffer .
14.3.8 Strobe Length :
14.3.9 Bus Turn-Around and Idle Cycles :
14.3.10 Timing . .
14.3.11 Data Access Wldth
14.3.12 Bank Access
14.3.13 WAIT/ARDY
14.3.14 NAND Flash Support
14.3.15 Error Correction Code
14.3.16 TFT Direct Drive :
14.3.17 Alpha Blending and Masklng
14.3.18 Direct Drive Timing
14.3.19 Control Signal Polarity
14.3.20 Pin Configuration .
14.3.21 Interrupts
14.3.22 DMA Request

14.4 Register Map.

14.5 Register Description :
14.5.1 EBI_CTRL - Control Reglster .
14.5.2 EBI_ADDRTIMING - Address Timing Reglster
14.5.3 EBI_RDTIMING - Read Timing Register
14.5.4 EBI_WRTIMING - Write Timing Register
14.5.5 EBI_POLARITY - Polarity Register
14.5.6 EBI_ROUTE - I/0O Routing Register .
14.5.7 EBI_ADDRTIMING1 - Address Timing Reglster1
14.5.8 EBI_RDTIMING1 - Read Timing Register 1
14.5.9 EBI_WRTIMING1 - Write Timing Register 1
14.5.10 EBI_POLARITY1 - Polarity Register 1

230

231
. 231

232

. 232
.233

234
235

240

240
240

. 241
. 243
. 244
. 245
.246

247

. 250
. 251

252

. 253

254

255

256
257
258

.264
.267
. 271
274
. .276
. 276

277

. 277
. 278

280

. 280

. 283
.284

. 285

. . 286
. 288

. 290

. 291

. 292

293



14.5.11
14.5.12
14.5.13
14.5.14
14.5.15
14.5.16
14.5.17
14.5.18
14.5.19
14.5.20
14.5.21
14.5.22
14.5.23
14.5.24
14.5.25
14.5.26
14.5.27
14.5.28
14.5.29
14.5.30
14.5.31
14.5.32
14.5.33
14.5.34
14.5.35
14.5.36
14.5.37
14.5.38
14.5.39
14.5.40
14.5.41
14.5.42

EBI_ADDRTIMING2 - Address Timing Register 2
EBI_RDTIMING2 - Read Timing Register 2

EBI_ WRTIMING2 - Write Timing Register 2
EBI_POLARITY2 - Polarity Register 2 .
EBI_ADDRTIMINGS3 - Address Timing Register 3
EBI_RDTIMING3 - Read Timing Register 3
EBI_WRTIMING3 - Write Timing Register 3
EBI_POLARITY3 - Polarity Register 3
EBI_PAGECTRL - Page Control Register
EBI_NANDCTRL - NAND Control Register .
EBI_CMD - Command Register

EBI_STATUS - Status Register .

EBI_ECCPARITY - ECC Parity register
EBI_TFTCTRL - TFT Control Register
EBI_TFTSTATUS - TFT Status Register . .
EBI_TFTFRAMEBASE - TFT Frame Base Reglster .
EBI_TFTSTRIDE - TFT Stride Register
EBI_TFTSIZE - TFT Size Register
EBI_TFTHPORCH - TFT Horizontal Porch Reglster .
EBI_TFTVPORCH - TFT Vertical Porch Register .
EBI_TFTTIMING - TFT Timing Register .
EBI_TFTPOLARITY - TFT Polarity Register
EBI_TFTDD - TFT Direct Drive Data Register .
EBI_TFTALPHA - TFT Alpha Blending Register
EBI_TFTPIXELO - TFT Pixel 0 Register
EBI_TFTPIXEL1 - TFT Pixel 1 Register
EBI_TFTPIXEL - TFT Alpha Blending Result Pixel Reglster
EBI_TFTMASK - TFT Masking Register .

EBI_IF - Interrupt Flag Register

EBI_IFS - Interrupt Flag Set Register .

EBI_IFC - Interrupt Flag Clear Register

EBI_IEN - Interrupt Enable Register

15. USB - Universal Serial Bus Controller.

15.1 Introduction
15.2 Features

15.3 USB System Description .
15.3.1 USB Initialization
15.3.2 Configurations
15.3.3 PHY. .
15.3.4 Voltage Regulator
15.3.5 Interrupts and PRS.
15.3.6 USB in EM2

15.4 USB Core Description. .
15.4.1 Overview: Programming the Core .
15.4.2 Modes of Operation
15.4.3 Host Programming Model
15.4.4 Device Programming Model.

294
295
296
297
298
299
300
301

. .303
. 304

305

. 306
. 307

308
310

. 310
. 311

311

. 312
. 313
. 314

315

. 316
.316

. 317

. 317

. .318
. 318

319

. 320
. 321
.322

. 323
323
324

. 325

325

. .326
. 331

. .331
. 331

. 331

. 332
. 332

336
340

. 372



15.4.5 OTG Revision 1.3 Programming Model .
15.4.6 OTG Revision 2.0 Programming Model .
15.4.7 FIFO RAM Allocation

15.4.8 Suspend/Resume and SRP .

15.4.9 Register Usage .

15.5 Register Map.
15.6 Register Description

15.6.1

15.6.2

15.6.3

15.6.4

15.6.5

15.6.6

15.6.7

15.6.8

15.6.9

15.6.10
15.6.11
15.6.12
15.6.13
15.6.14
15.6.15
15.6.16
15.6.17
15.6.18
15.6.19
15.6.20
15.6.21
15.6.22
15.6.23
15.6.24
15.6.25
15.6.26
15.6.27
15.6.28
15.6.29
15.6.30
15.6.31
15.6.32
15.6.33
15.6.34
15.6.35
15.6.36
15.6.37
15.6.38
15.6.39
15.6.40
15.6.41

USB_CTRL - System Control Reglster

USB_STATUS - System Status Register

USB_IF - Interrupt Flag Register .

USB_IFS - Interrupt Flag Set Register .

USB_IFC - Interrupt Flag Clear Register

USB_IEN - Interrupt Enable Register

USB_ROUTE - I/0 Routing Register

USB_GOTGCTL - OTG Control and Status Reglster

USB_GOTGINT - OTG Interrupt Register .
USB_GAHBCFG - AHB Configuration Register
USB_GUSBCFG - USB Configuration Register
USB_GRSTCTL - Reset Register
USB_GINTSTS - Interrupt Register
USB_GINTMSK - Interrupt Mask Register .
USB_GRXSTSR - Receive Status Debug Read Reglster
USB_GRXSTSP - Receive Status Read and Pop Register
USB_GRXFSIZ - Receive FIFO Size Register . .
USB_GNPTXFSIZ - Non-periodic Transmit FIFO Size Reglster

USB_GNPTXSTS - Non-periodic Transmit FIFO/Queue Status Register .

USB_GDFIFOCFG - Global DFIFO Configuration Register
USB_HPTXFSIZ - Host Periodic Transmit FIFO Size Register
USB_DIEPTXF1 - Device IN Endpoint Transmit FIFO 1 Size Register
USB_DIEPTXF2 - Device IN Endpoint Transmit FIFO 2 Size Register
USB_DIEPTXF3 - Device IN Endpoint Transmit FIFO 3 Size Register
USB_DIEPTXF4 - Device IN Endpoint Transmit FIFO 4 Size Register
USB_DIEPTXF5 - Device IN Endpoint Transmit FIFO 5 Size Register
USB_DIEPTXFG6 - Device IN Endpoint Transmit FIFO 6 Size Register
USB_HCFG - Host Configuration Register

USB_HFIR - Host Frame Interval Register

USB_HFNUM - Host Frame Number/Frame Time Remalnlng Reglster
USB_HPTXSTS - Host Periodic Transmit FIFO/Queue Status Register
USB_HAINT - Host All Channels Interrupt Register
USB_HAINTMSK - Host All Channels Interrupt Mask Reglster
USB_HPRT - Host Port Control and Status Register :
USB_HCx_CHAR - Host Channel x Characteristics Register .
USB_HCx_INT - Host Channel x Interrupt Register
USB_HCx_INTMSK - Host Channel x Interrupt Mask Reglster
USB_HCx_TSIZ - Host Channel x Transfer Size Register .
USB_HCx_DMAADDR - Host Channel x DMA Address Register
USB_DCFG - Device Configuration Register

USB_DCTL - Device Control Register

. 410

. 413

. . 420
. 429

. 438

. 439

. 443
. 443

. . 444
. 444

. 445

. 445
.446

. 446
.. 447
. 449
451

. AS83
. 455

. A57
. 461

. 463

465

. 467
. 467
. 468

469

. 469
. 470

. 47

. 472

. 473

. 474

. 475

. 476

. 477

478

. 479
. 480
480

481

. 484
. 486

. .488
. 489

490

491

493



15.6.42
15.6.43
15.6.44
15.6.45
15.6.46
15.6.47
15.6.48
15.6.49
15.6.50
15.6.51
15.6.52
15.6.53
15.6.54
15.6.55
15.6.56
15.6.57
15.6.58
15.6.59
15.6.60
15.6.61
15.6.62
15.6.63
15.6.64
15.6.65
15.6.66
15.6.67
15.6.68
15.6.69
15.6.70
15.6.71
15.6.72
15.6.73
15.6.74
15.6.75
15.6.76
15.6.77
15.6.78
15.6.79
15.6.80
15.6.81
15.6.82
15.6.83

USB_DSTS - Device Status Register . .
USB_DIEPMSK - Device IN Endpoint Common Interrupt Mask Reglster
USB_DOEPMSK - Device OUT Endpoint Common Interrupt Mask Register
USB_DAINT - Device All Endpoints Interrupt Register

USB_DAINTMSK - Device All Endpoints Interrupt Mask Reglster
USB_DVBUSDIS - Device VBUS Discharge Time Register
USB_DVBUSPULSE - Device VBUS Pulsing Time Register

USB_DIEPEMPMSK - Device IN Endpoint FIFO Empty Interrupt Mask Reglster

USB_DIEPOCTL - Device IN Endpoint O Control Register .

USB_DIEPOINT - Device IN Endpoint O Interrupt Register .
USB_DIEPOTSIZ - Device IN Endpoint 0 Transfer Size Register
USB_DIEPODMAADDR - Device IN Endpoint 0 DMA Address Register
USB_DIEPOTXFSTS - Device IN Endpoint 0 Transmit FIFO Status Register
USB_DIEPx_CTL - Device IN Endpoint x+1 Control Register
USB_DIEPx_INT - Device IN Endpoint x+1 Interrupt Register
USB_DIEPx_TSIZ - Device IN Endpoint x+1 Transfer Size Register
USB_DIEPx_DMAADDR - Device IN Endpoint x+1 DMA Address Register
USB_DIEPx_TXFSTS - Device IN Endpoint x+1 Transmit FIFO Status Register
USB_DOEPOCTL - Device OUT Endpoint 0 Control Register
USB_DOEPOINT - Device OUT Endpoint O Interrupt Register
USB_DOEPOTSIZ - Device OUT Endpoint O Transfer Size Register .
USB_DOEPODMAADDR - Device OUT Endpoint 0 DMA Address Register .
USB_DOEPx_CTL - Device OUT Endpoint x+1 Control Register
USB_DOEPx_INT - Device OUT Endpoint x+1 Interrupt Register
USB_DOEPx_TSIZ - Device OUT Endpoint x+1 Transfer Size Register
USB_DOEPx_DMAADDR - Device OUT Endpoint x+1 DMA Address Register
USB_PCGCCTL - Power and Clock Gating Control Register .
USB_FIFOODx - Device EP 0/Host Channel 0 FIFO .

USB_FIFO1Dx - Device EP 1/Host Channel 1 FIFO .

USB_FIFO2Dx - Device EP 2/Host Channel 2 FIFO .

USB_FIFO3Dx - Device EP 3/Host Channel 3 FIFO .

USB_FIFO4Dx - Device EP 4/Host Channel 4 FIFO .

USB_FIFO5Dx - Device EP 5/Host Channel 5 FIFO .

USB_FIFO6Dx - Device EP 6/Host Channel 6 FIFO .

USB_FIFO7Dx - Host Channel 7 FIFO

USB_FIFO8Dx - Host Channel 8 FIFO

USB_FIFO9Dx - Host Channel 9 FIFO

USB_FIFO10Dx - Host Channel 10 FIFO

USB_FIFO11Dx - Host Channel 11 FIFO

USB_FIFO12Dx - Host Channel 12 FIFO

USB_FIFO13Dx - Host Channel 13 FIFO

USB_FIFORAMXx - Direct Access to Data FIFO RAM for Debugglng (2 KB)

16. I12C - Inter-Integrated Circuit Interface .

16.1 Introduction
16.2 Features

16.3 Functional Description
16.3.1 12C-Bus Overview

. 495

.. 496
. 497
. 498
500

. .501
. 502

. .502
. 503

. 505

507

.508

508

. 509

511

. 513
. 514
514

515
517

. .519
. 520

521

.523
. .525
. 526
. 527
. 528
. 528
. 529
. 529
. 530
. 530
. 531
.531
.532
.532

533
533
534
534

. 535

. 536
536
536

. 837
.538



16.3.2 Enable and Reset

16.3.3 Safely Disabling and Changlng Slave Conflguratlon.

16.3.4 Clock Generation
16.3.5 Arbitration .

16.3.6 Buffers . .
16.3.7 Master Operation
16.3.8 Bus States

16.3.9 Slave Operation.
16.3.10 Transfer Automation .
16.3.11 Using 10-Bit Addresses.
16.3.12 Error Handling .
16.3.13 DMA Support
16.3.14 Interrupts

16.3.15 Wake-Up

16.4 Register Map.
16.5 Register Description

16.5.1 12Cn_CTRL - Control Reglster

16.5.2 12Cn_CMD - Command Register

16.5.3 12Cn_STATE - State Register .

16.5.4 12Cn_STATUS - Status Register .

16.5.5 12Cn_CLKDIV - Clock Division Register

16.5.6 12Cn_SADDR - Slave Address Register

16.5.7 12Cn_SADDRMASK - Slave Address Mask Reglster

16.5.8 12Cn_RXDATA - Receive Buffer Data Register (Actionable Reads)
16.5.9 12Cn_RXDATAP - Receive Buffer Data Peek Register

16.5.10 12Cn_TXDATA - Transmit Buffer Data Register

16.5.11 12Cn_
16.5.12 12Cn_

16.5.13 12Cn

IF - Interrupt Flag Register
IFS - Interrupt Flag Set Register

_IFC - Interrupt Flag Clear Register
16.5.14 12Cn_
16.5.15 12Cn_

IEN - Interrupt Enable Register .
ROUTE - I/0 Routing Register

17. USART - Universal Synchronous Asynchronous Receiver/Transmitter

17.1 Introduction
17.2 Features

17.3 Functional Description
17.3.1 Modes of Operation
17.3.2 Asynchronous Operation .
17.3.3 Synchronous Operation
17.3.4 PRS-Triggered Transmissions .
17.3.5 PRS RX Input
17.3.6 DMA Support
17.3.7 Transmission Delay
17.3.8 Interrupts .
17.3.9 IrDA Modulator/DemoduIator

17.4 Register Map.
17.5 Register Description

. .542
. 542

543

. 544
. 545

545
553

. 553
. 557
. 558
. 558
.560

560
560

. 560

561
561
564

. 565
. 566

567

. .567
. 568
. 568

569
569

570

572
574

. 576
. 577

578
578
579

. 580

581

. 582
. .597
. 603

604
604
604

. 605

606

. 607

608



18.

19.

17.5.1 USARTn_CTRL - Control Register

17.5.2 USARTn_FRAME - USART Frame Format Reglster

17.5.3 USARTn_TRIGCTRL - USART Trigger Control register

17.5.4 USARTn_CMD - Command Register .

17.5.5 USARTNn_STATUS - USART Status Register

17.5.6 USARTN_CLKDIV - Clock Control Register . .

17.5.7 USARTn_RXDATAX - RX Buffer Data Extended Reglster (Actlonable Reads)

17.5.8 USARTNn_RXDATA - RX Buffer Data Register (Actionable Reads) :

17.5.9 USARTn_RXDOUBLEX - RX Buffer Double Data Extended Register (Actlonable Reads)
17.5.10 USARTNn_RXDOUBLE - RX FIFO Double Data Register (Actionable Reads)
17.5.11 USARTNn_RXDATAXP - RX Buffer Data Extended Peek Register .
17.5.12 USARTn_RXDOUBLEXP - RX Buffer Double Data Extended Peek Reglster
17.5.13 USARTn_TXDATAX - TX Buffer Data Extended Register

17.5.14 USARTNn_TXDATA - TX Buffer Data Register

17.5.15 USARTNn_TXDOUBLEX - TX Buffer Double Data Extended Reglster
17.5.16 USARTNn_TXDOUBLE - TX Buffer Double Data Register

17.5.17 USARTN_IF - Interrupt Flag Register .

17.5.18 USARTN_IFS - Interrupt Flag Set Register

17.5.19 USARTN_IFC - Interrupt Flag Clear Register

17.5.20 USARTN_IEN - Interrupt Enable Register

17.5.21 USARTNn_IRCTRL - IrDA Control Register

17.5.22 USARTNn_ROUTE - I/O Routing Register

17.5.23 USARTN_INPUT - USART Input Register

17.5.24 USARTN_I2SCTRL - 12S Control Register

UART - Universal Asynchronous Receiver/ Transmitter
18.1 Introduction

18.2 Features

18.3 Functional Description

18.4 Register Description

18.5 Register Map.

LEUART - Low Energy Universal Asynchronous Receiver/Transmitter
19.1 Introduction
19.2 Features

19.3 Functional Description
19.3.1 Frame Format
19.3.2 Clock Source
19.3.3 Clock Generation
19.3.4 Data Transmission .
19.3.5 Data Reception .
19.3.6 Loopback . . .
19.3.7 Half Duplex Communlcatlon
19.3.8 Transmission Delay
19.3.9 PRS RX Input
19.3.10 DMA Support : .
19.3.11 Pulse Generator / Pulse Extender

. 608
.613
. 615
.616

617

.618

619
619
620
621

.621

622

. 623

. 624
.625

. .626
. 627

. 628
.629

. 630
. 631

633

.634
.635

.637
637
638

. 638
638
. 638

639

639
640
. 641

642

. 642

. .643
. 643

. 645

. .648
. 648

649
649

.649
650



19.3.12

Register Access

19.4 Register Map.
19.5 Register Description

19.5.1
19.5.2
19.5.3
19.5.4
19.5.5
19.5.6
19.5.7
19.5.8
19.5.9
19.5.10
19.5.11
19.5.12
19.5.13
19.5.14
19.5.15
19.5.16
19.5.17
19.5.18
19.5.19
19.5.20

LEUARTNn_CTRL - Control Reglster (Async Reg)
LEUARTN_CMD - Command Register (Async Reg)
LEUARTN_STATUS - Status Register .

LEUARTN_CLKDIV - Clock Control Register (Async Reg)
LEUARTn_STARTFRAME - Start Frame Register (Async Reg)
LEUARTN_SIGFRAME - Signal Frame Register (Async Reg)

LEUARTNn_RXDATAX - Receive Buffer Data Extended Register (Actlonable Reads)

LEUARTNn_RXDATA - Receive Buffer Data Register (Actionable Reads)
LEUARTNn_RXDATAXP - Receive Buffer Data Extended Peek Register
LEUARTN_TXDATAX - Transmit Buffer Data Extended Register (Async Reg)
LEUARTN_TXDATA - Transmit Buffer Data Register (Async Reg)
LEUARTN_IF - Interrupt Flag Register
LEUARTN_IFS - Interrupt Flag Set Register
LEUARTN_IFC - Interrupt Flag Clear Register .
LEUARTN_IEN - Interrupt Enable Register .
LEUARTNn_PULSECTRL - Pulse Control Register (Async Reg)
LEUARTNn_FREEZE - Freeze Register
LEUARTN_SYNCBUSY - Synchronization Busy Reglster
LEUARTNn_ROUTE - I/O Routing Register
LEUARTN_INPUT - LEUART Input Register

20. TIMER - Timer/Counter
20.1 Introduction
20.2 Features

20.3 Functional Description
20.3.1 Counter Modes .
20.3.2 Compare/Capture Channels .
20.3.3 Dead-Time Insertion Unit (TIMERO onIy)
20.3.4 Debug Mode . .
20.3.5 Interrupts, DMA and PRS Output .
20.3.6 GPIO Input/Output .

20.4 Register Map.
20.5 Register Description

20.5.1
20.5.2
20.5.3
20.54
20.5.5
20.5.6
20.5.7
20.5.8
20.5.9
20.5.10
20.5.11

TIMERNn_CTRL - Control Reglster

TIMERN_CMD - Command Register

TIMERNn_STATUS - Status Register

TIMERN_IEN - Interrupt Enable Register

TIMERN_IF - Interrupt Flag Register

TIMERN_IFS - Interrupt Flag Set Register

TIMERN_IFC - Interrupt Flag Clear Register .

TIMERNn_TOP - Counter Top Value Register .

TIMERNn_TOPB - Counter Top Value Buffer Register .
TIMERNn_CNT - Counter Value Register .
TIMERn_ROUTE - I/0O Routing Register .

.650
. 651

652

.652

655

. 656
.657

657

. 658
.658
.659

659

. 660
. 661

662
663

. 664
. 665

. 666

. .667
. 668

. 669

670

671
671
672

. 673
. 673

679
687

. 690
. 691
. 691

. 692

693

.693

695
696

. 699

700
701

. 702
. 703
. 703
. 704
. 705



20.5.12
20.5.13
20.5.14
20.5.15
20.5.16
20.5.17
20.5.18
20.5.19
20.5.20
20.5.21
20.5.22

TIMERn_CCx_CTRL - CC Channel Control Register
TIMERn_CCx_CCV - CC Channel Value Register

TIMERn_CCx_CCVP - CC Channel Value Peek Register .

TIMERNn_CCx_CCVB - CC Channel Buffer Register .
TIMERn_DTCTRL - DTI Control Register
TIMERn_DTTIME - DTI Time Control Register
TIMERn_DTFC - DTI Fault Configuration Register

TIMERNn_DTOGEN - DTI Output Generation Enable Reglster

TIMERN_DTFAULT - DTI Fault Register .
TIMERNn_DTFAULTC - DTI Fault Clear Register
TIMERn_DTLOCK - DTI Configuration Lock Register

21. RTC - Real Time Counter
21.1 Introduction
21.2 Features

21.3 Functional Description

21.3.1
21.3.2
21.3.3
2134
21.3.5
21.3.6

Counter

Compare Channels
Interrupts

DEBUGRUN . . . .
Using the RTC in EM3
Register Access.

21.4 Register Map.
21.5 Register Description

21.51
21.5.2
21.5.3
2154
21.5.5
21.5.6
21.5.7
21.5.8
21.5.9
21.5.10

RTC_CTRL - Control Reglster (Async Reg)
RTC_CNT - Counter Value Register

RTC_COMPO - Compare Value Register 0 (Async Reg) :
RTC_COMP1 - Compare Value Register 1 (Async Reg) .

RTC_IF - Interrupt Flag Register .
RTC_IFS - Interrupt Flag Set Register .
RTC_IFC - Interrupt Flag Clear Register
RTC_IEN - Interrupt Enable Register
RTC_FREEZE - Freeze Register

RTC_SYNCBUSY - Synchronization Busy Reglster .

22. BURTC - Backup Real Time Counter
22.1 Introduction
22.2 Features

22.3 Functi
22.3.1
22.3.2
22.3.3
22.3.4
22.3.5
22.3.6
22.3.7
22.3.8

onal Description
Counter

Clock Source
Compare Channel
PRS Sources
Debug Run

Low Power Mode
Retention Registers
Backup Operation

706
709

. 709
. 710
711

713

715

"7

. 118
. 719
.720

721

721
721
. 122

722
723

. 724
. 724

724

. 724
. 124

. 725
. 725

726

. 726
. 127
. 127
. 728
. 728
729

729

. 730

731
731
731
. 132

732

. 132
. 732

132

733
733

733

. 733



22.3.9
22.3.10
22.3.11

Backup Mode Timestamp
LFXO Failure Detection.
Register Access

22.4 Register Map.
22.5 Register Description

22.51
22.5.2
2253
2254
2255
22.5.6
22.5.7
22.5.8
22.5.9
22.5.10
22.5.11
22.5.12
22.5.13
22.5.14
22.5.15
22.5.16
22.517

23. LETIMER -

BURTC_CTRL - Control Reglster

BURTC_LPMODE - Low power mode conflguratlon (Async Reg) .

BURTC_CNT - Counter Value Register
BURTC_COMPO - Counter Compare Value (Async Reg)
BURTC_TIMESTAMP - Backup mode timestamp
BURTC_LFXOFDET -LFXO . .

BURTC_STATUS - Status Register .

BURTC_CMD - Command Register

BURTC_POWERDOWN - Retention RAM power-down Reglster :

BURTC_LOCK - Configuration Lock Register
BURTC_IF - Interrupt Flag Register

BURTC_IFS - Interrupt Flag Set Register

BURTC_IFC - Interrupt Flag Clear Register
BURTC_IEN - Interrupt Enable Register .
BURTC_FREEZE - Freeze Register .
BURTC_SYNCBUSY - Synchronization Busy Reglster .
RETx_REG - Retention Register

Low Energy Timer.

23.1 Introduction
23.2 Features

23.3 Functional Description

23.3.1
23.3.2
23.3.3
23.34
23.3.5
23.3.6
23.3.7
23.3.8

Timer

Compare Reglsters

Top Value. .
Underflow Output Actlon :
PRS Output

Examples .

Using the LETIMER in EM3
Register Access.

23.4 Register Map.
23.5 Register Description

23.5.1
23.5.2
23.5.3
23.54
23.5.5
23.5.6
23.5.7
23.5.8
23.5.9
23.5.10

LETIMERNn_CTRL - Control Reglster (Async Reg) .
LETIMERNn_CMD - Command Register
LETIMERNn_STATUS - Status Register
LETIMERN_CNT - Counter Value Register
LETIMERn_COMPO - Compare Value Register 0 (Async Reg)
LETIMERNn_COMP1 - Compare Value Register 1 (Async Reg)
LETIMERN_REPO - Repeat Counter Register 0 (Async Reg)
LETIMERNn_REP1 - Repeat Counter Register 1 (Async Reg)
LETIMERN_IF - Interrupt Flag Register

LETIMERN_IFS - Interrupt Flag Set Register

734

. 734
734

. 735
736

736

. 738

738
739

. 739
. . 740
. 741

741

. 742
. 742
.743
743

744

. 744
. . 745
. 745
.746

. 747
747
147

. 748
.748

748

. 748
. 754

. .756
. 756

. 758
. 758

. 759

. .760
. 760

762
762

.763

763
764

.764
.765

765

.766



23.5.11
23.5.12
23.5.13
23.5.14
23.5.15

LETIMERN_IFC - Interrupt Flag Clear Register
LETIMERN_IEN - Interrupt Enable Register
LETIMERNn_FREEZE - Freeze Register

LETIMERNn_SYNCBUSY - Synchronization Busy Reglster

LETIMERn_ROUTE - I/O Routing Register .

24. PCNT - Pulse Counter

24.1 Introd
24.2 Featu

uction

res

24.3 Functional Description

24.31
24.3.2
24.3.3
24.3.4
24.3.5
24.3.6
24.3.7
24.3.8
24.3.9

Pulse Counter Modes .
Hysteresis

Auxiliary Counter
Register Access.

Clock Sources

Input Filter

Edge Polarity .
PRS SOIN and S1IN Input
Interrupts

24 4 Register Map.
24.5 Register Description

24.51
24.5.2
2453
2454
2455
24.5.6
24.5.7
24.5.8
24.5.9
24.5.10
24.5.11
24512
24513
24514
24515

25. LESENSE -

PCNTn_CTRL - Control Reglster (Async Reg)

PCNTn_CMD - Command Register (Async Reg)

PCNTn_STATUS - Status Register .

PCNTn_CNT - Counter Value Register

PCNTNn_TOP - Top Value Register

PCNTn_TOPB - Top Value Buffer Register (Async Reg)

PCNTn_IF - Interrupt Flag Register .

PCNTnN_IFS - Interrupt Flag Set Register .

PCNTn_IFC - Interrupt Flag Clear Register
PCNTn_IEN - Interrupt Enable Register .
PCNTn_ROUTE - I/O Routing Register
PCNTn_FREEZE - Freeze Register
PCNTn_SYNCBUSY - Synchronization Busy Reglster
PCNTn_AUXCNT - Auxiliary Counter Value Register
PCNTNn_INPUT - PCNT Input Register

Low Energy Sensor Interface

25.1 Introduction
25.2 Features

25.3 Functional Description

25.3.1
25.3.2
25.3.3
25.3.4
25.3.5
25.3.6

Channel Configuration
Scan Sequence .
Sensor Timing
Sensor Interaction
Sensor Evaluation
Decoder

767
768

. . 169
. 170
. 771
. 172

772
772

. 173
. 773
. 175

775

. 776
176

176

. 176

776

. 776
. 778

779

779
. .781
. 781

782

. . 182
. 183
. 783
. 784

. .785
. 786

. 787

. .788
. 788
789
.790

792

792
792
. 193

794

. 795
. .796
. 797

. 799
800



25.3.7 Measurement Results.
25.3.8 DAC Interface
25.3.9 ACMP Interface .

25.3.10
25.3.11
25.3.12
25.3.13
25.3.14

ACMP and DAC Duty Cycllng
DMA Requests

PRS Output.

RAM

Application Examples

25.4 Register Map.
25.5 Register Description

25.5.1
25.5.2
25.5.3
2554
25.5.5
25.5.6
25.5.7
25.5.8
2559
25.5.10
25.5.11
25512
25.5.13
25.5.14
25.5.15
25.5.16
25.5.17
25.5.18
25.5.19
25.5.20
25.5.21
25.56.22
25.5.23
25.5.24
25.5.25
25.5.26
25.5.27
25.5.28
25.5.29

LESENSE_CTRL - Control Reglster (Async Reg) :
LESENSE_TIMCTRL - Timing Control Register (Async Reg)
LESENSE_PERCTRL - Peripheral Control Register (Async Reg) .
LESENSE_DECCTRL - Decoder control Register (Async Reg)
LESENSE_BIASCTRL - Bias Control Register (Async Reg)
LESENSE_CMD - Command Register . . .
LESENSE_CHEN - Channel enable Register (Async Reg)
LESENSE_SCANRES - Scan result register (Async Req)
LESENSE_STATUS - Status Register (Async Reg)
LESENSE_PTR - Result buffer pointers (Async Reg)

LESENSE_BUFDATA - Result buffer data register (Async Reg) (Actlonable Reads) .

LESENSE_CURCH - Current channel index (Async Reg) .
LESENSE_DECSTATE - Current decoder state (Async Reg)
LESENSE_SENSORSTATE - Decoder input register (Async Reg) .
LESENSE_IDLECONF - GPIO Idle phase configuration (Async Reg)
LESENSE_ALTEXCONF - Alternative excite pin configuration (Async Reg) .
LESENSE _IF - Interrupt Flag Register .

LESENSE_IFC - Interrupt Flag Clear Register .

LESENSE_IFS - Interrupt Flag Set Register

LESENSE_IEN - Interrupt Enable Register . .
LESENSE_SYNCBUSY - Synchronization Busy Reglster .
LESENSE_ROUTE - I/0 Routing Register (Async Reg) :
LESENSE_POWERDOWN - LESENSE RAM power-down register (Async Reg)
LESENSE_STx_TCONFA - State transition configuration A (Async Reg)
LESENSE_STx_TCONFB - State transition configuration B (Async Reg)
LESENSE_BUFx_DATA - Scan results (Async Reg)
LESENSE_CHx_TIMING - Scan configuration (Async Reg)
LESENSE_CHx_INTERACT - Scan configuration (Async Reg)
LESENSE_CHx_EVAL - Scan configuration (Async Reg)

26. ACMP - Analog Comparator
26.1 Introduction
26.2 Features

26.3 Functional Description
26.3.1 Warm-up Time
26.3.2 Response Time .
26.3.3 Hysteresis

. 803

804

. 804
. 804
. 804
. 804

.805

805

. 810

. 812
. 812

. .815
. 817

820
823

. 824
. 824
.825
826
827

. 827
. 828

828

. 829
. 830

. 834
. 837
. 839

841

. 843
. 845

847

. .848
. 849
. 851

852

.853
. 854
. 856

857

.857
.857

. 858

. .858
. 859

. 860



26.3.4
26.3.5
26.3.6
26.3.7

Input Selection

Capacitive Sense Mode
Interrupts and PRS Output
Output to GPIO .

26.4 Register Map.
26.5 Register Description

26.5.1
26.5.2
26.5.3
26.54
26.5.5
26.5.6
26.5.7
26.5.8

ACMPn_CTRL - Control Reglster

ACMPN_INPUTSEL - Input Selection Reglster

ACMPnNn_STATUS - Status Register .
ACMPnN_IEN - Interrupt Enable Register
ACMPnN_IF - Interrupt Flag Register
ACMPN_IFS - Interrupt Flag Set Register .
ACMPnN_IFC - Interrupt Flag Clear Register
ACMPN_ROUTE - I/O Routing Register

27. VCMP - Voltage Comparator
27.1 Introduction
27.2 Features

27.3 Functional Description

28.

27.3.1
27.3.2
27.3.3
27.34
27.3.5

Warm-Up Time

Response Time .
Hysteresis

Input Selection .
Interrupts and PRS Output

27.4 Register Map.
27.5 Register Description

27.51
27.5.2
27.5.3
2754
27.5.5
27.5.6
27.5.7

VCMP_CTRL - Control Reglster .

VCMP_INPUTSEL - Input Selection Reglster

VCMP_STATUS - Status Register
VCMP_IEN - Interrupt Enable Register
VCMP_IF - Interrupt Flag Register
VCMP_IFS - Interrupt Flag Set Register
VCMP_IFC - Interrupt Flag Clear Register

ADC - Analog to Digital Converter
28.1 Introduction
28.2 Features

28.3 Functional Description

28.3.1
28.3.2
28.3.3
28.3.4
28.3.5
28.3.6
28.3.7
28.3.8

Clock Selection .
Conversions .

Warm-Up Time

Input Selection

Reference Selection :
Programming of Bias Current
ADC Modes

Interrupts, PRS Output

.860
. 861
.861
. 861

. 862

863
863

. .865
. 867
. .867
. 868
. 868

. 869

869

870
870
.870

. 871
. 871
. 872
. 873
.873
.873

. 874

875

. 875

876

.877

877

. 878
.878

879

.880

.880
.881

. 882
. 882
. 883
. 884

.885

.886

.886
. 886

890



28.3.9
28.3.10

DMA Request
Calibration

28.4 Register Map.
28.5 Register Description

28.5.1
28.5.2
28.5.3
28.5.4
28.5.5
28.5.6
28.5.7
28.5.8
28.5.9
28.5.10
28.5.11
28.5.12
28.5.13
28.5.14
28.5.15

29. DAC - Dig

ADCn_CTRL - Control Reglster

ADCn_CMD - Command Register

ADCn_STATUS - Status Register
ADCn_SINGLECTRL - Single Sample Control Reglster
ADCn_SCANCTRL - Scan Control Register .
ADCn_IEN - Interrupt Enable Register .

ADCn_IF - Interrupt Flag Register

ADCn_IFS - Interrupt Flag Set Register

ADCn_IFC - Interrupt Flag Clear Register

ADCn_SINGLEDATA - Single Conversion Result Data (Actlonable Reads)

ADCn_SCANDATA - Scan Conversion Result Data (Actionable Reads)
ADCn_SINGLEDATAP - Single Conversion Result Data Peek Register
ADCn_SCANDATAP - Scan Sequence Result Data Peek Register
ADCn_CAL - Calibration Register

ADCn_BIASPROG - Bias Programming Reglster

ital to Analog Converter

29.1 Introduction

29.2 Featu

res

29.3 Functional Description

29.3.1
29.3.2
29.3.3
29.34
29.3.5
29.3.6
29.3.7
29.3.8
29.3.9
29.3.10

Conversions .
Reference Selection
Programming of Bias Current
Mode . .
Sine Generation Mode
Interrupts and PRS Output
DMA Request
Analog Output
Calibration

Opamps .

29.4 Register Map.
29.5 Register Description

29.5.1
29.5.2
29.5.3
29.54
29.5.5
29.5.6
20.5.7
29.5.8
29.5.9
29.5.10
29.5.11

DACn_CTRL - Control Reglster
DACn_STATUS - Status Register .
DACn_CHOCTRL - Channel 0 Control Reglster .
DACn_CH1CTRL - Channel 1 Control Register .
DACnh_IEN - Interrupt Enable Register .
DACnh_IF - Interrupt Flag Register
DACN_IFS - Interrupt Flag Set Register
DACnh_IFC - Interrupt Flag Clear Register
DACn_CHODATA - Channel 0 Data Register
DACn_CH1DATA - Channel 1 Data Register .
DACn_COMBDATA - Combined Data Register

890

.891
. 892

893

. 893
.895
. .896
. 898
. 902
. 905
.906
907

908

. 908

. 909

. .909
. 910
.. 9N
. 912

.913
913
913

. 914
. 914
915
915
916

916

917

917

917

917

. 917
. 918

. 919
. 919
. .921
. 922
. 924
. 925
.926
927

928
928

.929
929



29.5.12
29.5.13
29.5.14
29.5.15
29.5.16
29.5.17
29.5.18

DACn_CAL - Calibration Register

DACn_BIASPROG - Bias Programming Reglster .
DACn_OPACTRL - Operational Amplifier Control Register
DACn_OPAOFFSET - Operational Amplifier Offset Register
DACn_OPAOMUX - Operational Amplifier Mux Configuration Reglster
DACn_OPA1MUX - Operational Amplifier Mux Configuration Register
DACn_OPA2MUX - Operational Amplifier Mux Configuration Register

30. OPAMP - Operational Amplifier
30.1 Introduction
30.2 Features

30.3 Functional Description
30.3.1 Opamp Configuration .
30.3.2 Opamp Modes .
30.3.3 Opamp DAC Comblnatlon

30.4 Register Description
30.5 Register Map.

31.

AES - Advanced Encryption Standard Accelerator .

31.1 Introduction
31.2 Features

31.3 Functional Description
31.3.1 Encryption/Decryption.
31.3.2 Data and Key Access .
31.3.3 Interrupt Request
31.3.4 DMA Request .
31.3.5 Block Chaining Example :

31.4 Register Map.
31.5 Register Description

31.5.1
31.5.2
31.5.3
31.54
31.5.5
31.5.6
31.5.7
31.5.8
31.5.9
31.5.10
31.5.11
31.5.12
31.5.13
31.5.14
31.5.15
31.5.16
31.5.17

AES_CTRL - Control Reglster

AES_CMD - Command Register .

AES_STATUS - Status Register .

AES_IEN - Interrupt Enable Register

AES_IF - Interrupt Flag Register .

AES_IFS - Interrupt Flag Set Register .

AES _IFC - Interrupt Flag Clear Register .

AES DATA - DATA Register (Actionable Reads) .o

AES XORDATA - XORDATA Register (Actionable Reads) .
AES_KEYLA - KEY Low Register (Actionable Reads)
AES_KEYLB - KEY Low Register (Actionable Reads)
AES_KEYLC - KEY Low Register (Actionable Reads)
AES_KEYLD - KEY Low Register (Actionable Reads)
AES_KEYHA - KEY High Register (Actionable Reads) .
AES_KEYHB - KEY High Register (Actionable Reads) .
AES_KEYHC - KEY High Register (Actionable Reads) .
AES_KEYHD - KEY High Register (Actionable Reads) .

.. 930
. 931

932

. 933

934
937
940

.942
942
942

. 943
. 944
.946
954

954

. 954

. 955
955
.955

. 956
. 956
. 957
958

958

. 959
. 959
960

960

. 961
. 961

. .962
. 962

. 962
.963

. .963
. 964
. 964

. 965

. 965

. . 966
. 966

. 967

. 967

. 968



32. GPIO - General Purpose Input/Output.
32.1 Introduction
32.2 Features

32.3 Functional Description
32.3.1 Pin Configuration
32.3.2 EM4 Wake-Up
32.3.3 EM4 Retention
32.3.4 Alternate Functions
32.3.5 Interrupt Generation
32.3.6 Output to PRS
32.3.7 Synchronization .

32.4 Register Map.
32.5 Register Description

32.5.1
32.5.2
32.5.3
32.54
32.5.5
32.5.6
32.5.7
32.5.8
32.5.9
32.5.10
32.5.11
32.5.12
32.5.13
32.5.14
32.5.15
32.5.16
32.5.17
32.5.18
32.5.19
32.5.20
32.5.21
32.5.22
32.5.23
32.5.24
32.5.25

GPIO_Px_CTRL - Port Control Reglster .
GPIO_Px_MODEL - Port Pin Mode Low Register
GPIO_Px_MODEH - Port Pin Mode High Register .
GPIO_Px_DOUT - Port Data Out Register
GPIO_Px_DOUTSET - Port Data Out Set Register
GPIO_Px_DOUTCLR - Port Data Out Clear Register .
GPIO_Px_DOUTTGL - Port Data Out Toggle Register
GPIO_Px_DIN - Port Data In Register . .
GPIO_Px_PINLOCKN - Port Unlocked Pins Reglster .
GPIO_EXTIPSELL - External Interrupt Port Select Low Reglster
GPIO_EXTIPSELH - External Interrupt Port Select High Register

GPIO_EXTIRISE - External Interrupt Rising Edge Trigger Register .

GPIO_EXTIFALL - External Interrupt Falling Edge Trigger Register
GPIO_IEN - Interrupt Enable Register

GPIO_IF - Interrupt Flag Register

GPIO_IFS - Interrupt Flag Set Register

GPIO_IFC - Interrupt Flag Clear Register
GPIO_ROUTE - I/0O Routing Register

GPIO_INSENSE - Input Sense Register .

GPIO_LOCK - Configuration Lock Register
GPIO_CTRL - GPIO Control Register

GPIO_CMD - GPIO Command Register .
GPIO_EM4WUEN - EM4 Wake-up Enable Reglster
GPIO_EM4WUPOL - EM4 Wake-up Polarity Register
GPIO_EM4WUCAUSE - EM4 Wake-up Cause Register

33. LCD - Liquid Crystal Display Driver
33.1 Introduction
33.2 Features

33.3 Functional Description
33.3.1 LCD Driver Enable . .
33.3.2 Multiplexing, Bias, and Wave Settlngs
33.3.3 Waveform Examples

. 969

969
970

.97

972
975
.975
976

977

977

. 977
. 978

979
.979
. 980

. 982

983
983

. 984

984

. 985
. 985

986

. .989
. 992

992
993

. 993

. 994
994
995

. 996
. 997

997

. 998
. 998

.999

. 1000

.1001
. 1001
. 1001

.1002
. .1002
. 1003

1004



33.3.4 LCD Contrast

33.3.5 V| ¢p Selection

33.3.6 VBOOST Control

33.3.7 Frame Rate

33.3.8 Data Update .

33.3.9 Direct Segment Control (DSC)

33.3.10
33.3.11
33.3.12
33.3.13
33.3.14

Frame Counter (FC) .

LCD Interrupt

Blink, Blank, and Animation Features
LCD in Low Energy Modes

Register Access

33.4 Register Map.
33.5 Register Description

33.5.1
33.5.2
33.5.3
33.5.4
33.5.5
33.5.6
33.5.7
33.5.8
33.5.9
33.5.10
33.5.11
33.5.12
33.5.13
33.5.14
33.5.15
33.5.16
33.5.17
33.5.18
33.5.19
33.5.20
33.5.21
33.5.22
33.5.23
33.5.24
33.5.25
33.5.26
33.5.27
33.5.28
33.5.29

LCD_CTRL - Control Reglster (Async Reg)
LCD_DISPCTRL - Display Control Register
LCD_SEGEN - Segment Enable Register

LCD_BACTRL - Blink and Animation Control Reglster (Async Reg)

LCD_STATUS - Status Register .

LCD_AREGA - Animation Register A (Async Reg)

LCD_AREGB - Animation Register B (Async Reg) .

LCD_IF - Interrupt Flag Register .

LCD_IFS - Interrupt Flag Set Register .
LCD_IFC - Interrupt Flag Clear Register .
LCD_IEN - Interrupt Enable Register .
LCD_SEGDOL - Segment Data Low Register 0 (Async Reg)
LCD_SEGD1L - Segment Data Low Register 1 (Async Reg) .
LCD_SEGD2L - Segment Data Low Register 2 (Async Reg) .
LCD_SEGD3L - Segment Data Low Register 3 (Async Reg) .
LCD_SEGDOH - Segment Data High Register 0 (Async Reg)
LCD_SEGD1H - Segment Data High Register 1 (Async Reg)
LCD_SEGD2H - Segment Data High Register 2 (Async Reg)
LCD_SEGD3H - Segment Data High Register 3 (Async Reg)
LCD_FREEZE - Freeze Register
LCD_SYNCBUSY - Synchronization Busy Reglster :
LCD_SEGDA4H - Segment Data High Register 4 (Async Reg)
LCD_SEGDSH - Segment Data High Register 5 (Async Reg)
LCD_SEGDG6H - Segment Data High Register 6 (Async Reg)
LCD_SEGD7H - Segment Data High Register 7 (Async Reg)
LCD_SEGDAL - Segment Data Low Register 4 (Async Reg) .
LCD_SEGDS5L - Segment Data Low Register 5 (Async Reg) .
LCD_SEGD6L - Segment Data Low Register 6 (Async Reg) .
LCD_SEGDT7L - Segment Data Low Register 7 (Async Reg) .

34. FPUEH - Floating Point Unit Exception Handler
34.1 Functional Description
34.2 Register Map.
34.3 Register Description

. 1021

1022

. 1023

1023

1024
1025
1026

1027
1027

.1030

1030

.1031
. 1032

1032
1033

. 1035

1036

.1038
.1038
.1039
.1039
1039
.1040
.1040
1041
1041
1042
. .1042
. 1043
. 1043
. 1044
. 1044

1045

. 1046
. 1047
. 1048
. 1048
. 1049
1049
1050
1050
1051

1052

. 1052
.1052
. 1053



34.3.1 FPUEH_IF - Interrupt Flag Register . . . . . . . . . . . . . . . . . . .1083

34.3.2 FPUEH_IFS - Interrupt Flag Set Register . . . . . . . . . . . . . . . . .1054

34.3.3 FPUEH_IFC - Interrupt Flag Clear Register . . . . . . . . . . . . . . . 1055

34.3.4 FPUEH_IEN - Interrupt Enable Register . . . . . . . . . . . . . . . . 1056

35. RevisionHistory. . . . . . . . . . . . . . . . . . . . . . . . . . .. 057
35.1 Revision 1.10 e [0 [ Y4
35.2 Revision 1.00 e (0174
35.3 Revision 0.60 e (01574
35.4 Revision 0.51 e [0 oY}
35.5 Revision 0.50 e [0 6%}

36. Abbreviations. . . . . . . . . . . . . . . . . . e . e e e w05

silabs.com | Building a more connected world. Rev. 1.1| 23



EFM32WG Reference Manual
Energy Friendly Microcontrollers

1. Energy Friendly Microcontrollers

1.1 Typical Applications

The EFM32WG Wonder Gecko is the ideal choice for demanding 8-, 16-, and 32-bit energy sensitive applications. These devices are
developed to minimize the energy consumption by lowering both the power and the active time, over all phases of MCU operation. This
unique combination of ultra low energy consumption and the performance of the 32-bit ARM Cortex-M4 processor helps designers get
more out of the available energy in a variety of applications.

Ultra low energy EFM32WG microcontrollers are perfect for:

+ Gas metering

* Energy metering

» Water metering

* Smart metering

« Alarm and security systems

» Health and fitness applications
* Industrial and home automation

1.2 EFM32WG Development

Because EFM32WG use the Cortex-M4 CPU, embedded designers benefit from the largest development ecosystem in the industry, the
ARM ecosystem. The development suite spans the whole design process and includes powerful debug tools, and some of the world’s
top brand compilers. Libraries with documentation and user examples shorten time from idea to market.

The range of EFM32WG devices ensure easy migration and feature upgrade possibilities.

silabs.com | Building a more connected world. Rev. 1.1 | 24




EFM32WG Reference Manual
About This Document

2. About This Document

This document contains reference material for the EFM32WG series of microcontrollers. All modules and peripherals in the EFM32WG
series devices are described in general terms. Not all modules are present in all devices, and the feature set for each device might
vary. Such differences, including pinout, are covered in the device-specific datasheet.

2.1 Conventions

Register Names

Register names are given as a module name prefix followed by the short register name:
TIMERN_CTRL - Control Register

The "n" denotes the numeric instance for modules that might have more than one instance.
Some registers are grouped which leads to a group name following the module prefix:
GPIO_Px_DOUT - Port Data Out Register,

where x denotes the port instance (A,B,...).

Bit Fields

Registers contain one or more bit fields which can be 1 to 32 bits wide. Multi-bit fields are denoted with (x:y), where x is the start bit and
y is the end bit.

Address

The address for each register can be found by adding the base address of the module (found in the Memory Map), and the offset ad-
dress for the register (found in module Register Map).

Access Type

The register access types used in the register descriptions are explained in the table below.

Table 2.1. Register Access Types

Access Type Description

R Read only. Writes are ignored.
RwW Readable and writable.
RwW1 Readable and writable. Only writes to 1 have effect.
RW1H Readable, writable and updated by hardware. Only writes to 1 have effect.
W1 Read value undefined. Only writes to 1 have effect.
w Write only. Read value undefined.
RWH Readable, writable and updated by hardware.

Number format
0x prefix is used for hexadecimal numbers.
0b prefix is used for binary numbers.

Numbers without prefix are in decimal representation.

silabs.com | Building a more connected world. Rev.1.1 | 25




EFM32WG Reference Manual
About This Document

Reserved

Registers and bit fields marked with reserved are reserved for future use. These should be written to O unless otherwise stated in the
Register Description. Reserved bits might be read as 1 in future devices.

Reset Value

The reset value denotes the value after reset. Registers denoted with X have an unknown reset value and need to be initialized before
use. Note that, before these registers are initialized, read-modify-write operations might result in undefined register values.

Pin Connections

Pin connections are given as a module prefix followed by a short pin name:

USn_TX (USARTnN TX pin)

The pin locations referenced in this document are given in the device-specific datasheet.

2.2 Related Documentation

Further documentation on the EFM32WG family and the ARM Cortex-M4 can be found at the Silicon Laboratories and ARM web pa-
ges:

www.silabs.com

www.arm.com

silabs.com | Building a more connected world. Rev. 1.1 | 26



http://www.silabs.com
http://www.arm.com

EFM32WG Reference Manual
System Overview

3. System Overview

3.1 Introduction

The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-
M4, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the
EFM32WG microcontroller is well suited for any battery operated application, as well as other systems requiring high performance and
low-energy consumption. See Figure 3.1 Block Diagram of EFM32WG on page 30 for a block diagram of the EFM32WG device.

silabs.com | Building a more connected world. Rev. 1.1 | 27




EFM32WG Reference Manual

3.2 Features

* ARM Cortex-M4 CPU platform
» High Performance 32-bit processor @ up to 48 MHz
» DSP instruction support and floating-point unit
* Memory Protection Unit
» Wake-up Interrupt Controller
* Flexible Energy Management System
* 20 nA @ 3V Shutoff Mode
* 0.4 yA @ 3 V Shutoff Mode with RTC
* 0.65 pA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention

* 0.95 pA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and
CPU retention

* 63 yA/MHz @ 3 V Sleep Mode
» 225 yA/MHz @ 3 V Run Mode, with code executed from flash
+ 256/128/64 KB Flash
* 32 KB RAM
* Up to 93 General Purpose 1/O pins
» Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
» Configurable peripheral I/O locations
» 16 asynchronous external interrupts
» Output state retention and wake-up from Shutoff Mode
* 12 Channel DMA Controller
» Alternate/primary descriptors with scatter-gather/ping-pong operation
* 12 Channel Peripheral Reflex System
» Autonomous inter-peripheral signaling enables smart operation in low energy modes
+ External Bus Interface (EBI)
» Up to 4x256 MB of external memory mapped space
» TFT Controller supporting Direct Drive
» Universal Serial Bus (USB) with Host and OTG support
» Fully USB 2.0 compliant
* On-chip PHY and embedded 5V to 3.3V regulator
* Integrated LCD Controller for up to 8x36 Segments
» Voltage boost, adjustable contrast adjustment and autonomous animation feature
+ Hardware AES with 128/256-bit Keys in 54/75 cycles
+ Communication Interfaces
» 3x Universal Synchronous/Asynchronous Receiver/Transmitter
* UART/SPI/SmartCard (ISO 7816)/IrDA (USARTO0)/12S (USART1+USART2)
« Triple buffered full/half-duplex operation
* 4-16 data bits
» 2x Universal Asynchronous Receiver/Transmitter
« Triple buffered full/half-duplex operation
+ 8-9 data bits
* 2x Low Energy UART
» Autonomous operation with DMA in Deep Sleep Mode
* 2x |2C Interface with SMBus support
+ Address recognition in Stop Mode
* Timers/Counters
* 4x16-bit Timer/Counter
» 3 Compare/Capture/PWM channels
* Dead-Time Insertion on TIMERO
* 16-bit Low Energy Timer
* 1x 24-bit and 1x 32-bit Real-Time Counter



EFM32WG Reference Manual
System Overview

» 3% 16-bit Pulse Counter
» Asynchronous pulse counting/quadrature decoding
» Watchdog Timer with dedicated RC oscillator @ 50 nA
» Backup Power Domain
» RTC and retention registers in a separate power domain, available in all energy modes
» Operation from backup battery when main power drains out
» Ultra Low Power Precision Analog Peripherals
» 12-bit 1 Msamples/s Analog to Digital Converter
« 8 input channels and on-chip temperature sensor
» Single ended or differential operation
» Conversion tailgating for predictable latency
» 12-bit 500 ksamples/s Digital to Analog Converter
» 2 single ended channels/1 differential channel
» Up to 3 Operational Amplifiers
» Supports rail-to-rail inputs and outputs
* Programmable gain
» 2x Analog Comparator
* Programmable speed/current
» Capacitive sensing with up to 8 inputs
* Supply Voltage Comparator
+ Ultra Low Power Sensor Interface
» Autonomous sensor monitoring in Deep Sleep Mode
» Wide range of sensors supported, including LC sensors and capacitive buttons
+ Ultra Efficient Power-on Reset and Brown-Out Detector
* Debug Interface
» 2-pin Serial Wire Debug interface
» 1-pin Serial Wire Viewer
* Embedded Trace Module v3.5 (ETM)
» Temperature range -40 - 85°C
« Single power supply 1.98 - 3.8 V
» Packages
+ QFN64
+ TQFP64
+ LQFP100
* LFBGA112
* VFBGA120

silabs.com | Building a more connected world. Rev. 1.1 | 29




EFM32WG Reference Manual
System Overview

3.3 Block Diagram

Figure 3.1 Block Diagram of EFM32WG on page 30 shows the block diagram of EFM32WG. The color indicates peripheral availability
in the different energy modes, described in 3.4 Energy Modes .

Core / Memory Clock Management Energy Management Other

ARM Cortex™ Voltage Voltage
M4 processor Memory Regulator Comparator
with FPU and Protection Unit

MPU Auxiliary High Ultra Low Freq. Brown-Out

Debug Interface Freq. RC Osc. RC Oscillator Detector
with ETM

Power-On Reset

Low Frequency Low Frequency

RAM Memory DMA Controller Crystal Oscillator RC Oscillator Backup Domain

| | | |
Serial Interfaces /0 Ports Timers and Triggers Analog Interfaces

LESENSE LCD Controller

Low Energy Timer Real Time Counter
Low Energy External General Operational
UART™ Interrupts Purpose I/O Amplifier
Pulse Counter Watchdog Timer

Analog

12C Pin Reset Pin Wakeup Back-Up RTC Comparator

Lowest power mode with peripheral operational:

Mo - Active  Emt-sicep EM3 - Stop EM4S - Shutort

Figure 3.1. Block Diagram of EFM32WG

0 23@

Figure 3.2. Energy Mode Indicator

Note: In the energy mode indicator, the numbers indicates Energy Mode, i.e EMO-EM4.

3.4 Energy Modes

There are five different Energy Modes (EM0-EM4) in the EFM32WG, see Table 3.1 Energy Mode Description on page 31 . The
EFM32WG is designed to achieve a high degree of autonomous operation in low energy modes. The intelligent combination of periph-
erals, RAM with data retention, DMA, low-power oscillators, and short wake-up time, makes it attractive to remain in low energy modes
for long periods and thus saving energy consumption.

Note: Throughout this document, the first figure in every module description contains an Energy Mode Indicator showing which energy
mode(s) the module can operate.

silabs.com | Building a more connected world. Rev. 1.1 | 30




EFM32WG Reference Manual
System Overview

o

Table 3.1. Energy Mode Description

Name

EMO - Energy Mode 0 (Run mode)

Description

In EMO, the CPU is running and consuming
as little as 225 yA/MHz, when running code
from flash. All peripherals can be active.

EM1 - Energy Mode 1 (Sleep Mode)

In EM1, the CPU is sleeping and the power
consumption is only 63 pA/MHz. All periph-
erals, including DMA, PRS and memory
system, are still available.

o

EM2 - Energy Mode 2 (Deep Sleep Mode)

In EM2 the high frequency oscillator is
turned off, but with the 32.768 kHz oscilla-
tor running, selected low energy peripher-
als (LCD, RTC, LETIMER, PCNT,
LEUART, 12C, LESENSE, OPAMP, USB,
WDOG and ACMP) are still available. This
gives a high degree of autonomous opera-
tion with a current consumption as low as
0.95 pA with RTC enabled. Power-on Re-
set, Brownout Detection and full RAM and
CPU retention is also included.

o
(2N

o
—

m

N N N N 4
w w w (]

=

«Q

® ® ® ©, <
=

]

o

(5]

EM3 - Energy Mode 3 (Stop Mode)

In EM3, the low-frequency oscillator is disa-
bled, but there is still full CPU and RAM re-
tention, as well as Power-on Reset, Pin re-
set, EM4 wake-up and Brown-out Detec-
tion, with a consumption of only 0.65 pA.
The low-power ACMP, asynchronous exter-
nal interrupt, PCNT, and 12C can wake-up
the device. Even in this mode, the wake-up
time is a few microseconds.

3

®

EM4 - Energy Mode 4 (Shutoff Mode)

In EM4, the current is down to 20 nA and
all chip functionality is turned off except the
pin reset, GPIO pin wake-up, GPIO pin re-
tention, Backup RTC (including retention
RAM) and the Power-On Reset. All pins are
put into their reset state.

silabs.com | Building a more connected world.

Rev. 1.1 | 31




EFM32WG Reference Manual
System Overview

3.5 Product Overview

The following table shows a device overview of the EFM32WG Microcontroller Series, including peripheral functionality. For more infor-
mation, the reader is referred to the device specific datasheets.

Table 3.2. EFM32WG Microcontroller Series

o e = -
© m o = %)
& = S E = & s £ 2 £ %
9 = T < e = £ 2 8 2 i
i 2 g I s g 8 ¢t &
= (O] 5) = = - = < (=) g |
h s }
230F64 |64 |32 56 | — | — [ 3|2 2|41 |1|3|1]1|22|Y|—|Y]| 3| QFNe4
(12) (8) | (2) |(16)
230F128 (12832 |56 | — | — | 3 |2 2 |4 | 1|1 |3|1]1|22|Y|—|Y]| 3| QFNe4
(12) (8) | (2) |(16)
230F256 (25632 |56 | — | — | 3 |2 2| 4|1 |1|3|1]1|22|Y|—|Y]| 3| QFNe4
(12) (8) | (2) |(16)
232F64 |64 |32 53| — | — |3 |2 |24 |1 |13 1|1 |2]|2|Y|—|Y]| 3| QFPe4
(11) (8) | (2) |(16)
232F128 (128|132 |53 | — | — | 3 |2 | 2 4|1 |1 |3 | 1|1 |2|2|Y|—|Y]| 3| QFPe4
(11) (8) | (2) |(16)
232F256 (25632 |53 | — | — | 3 |2 | 2|4 |1 |13 | 1|1 |2|2|Y|—|Y]| 3| QFPe4
(11) (8) | (2) |(16)
280F64 |64 |32 |8 | — | — 3+2/ 2 | 2 | 4 |1 |1 |3 | 1|1 2|2 |Y|Y | Y| 3| QFP100
(12) (8) | (2) |(16)
280F128 (128132 |86 | — | — [3+2/ 2 | 2 | 4 |1 |1 |3 | 1|1 2|2 |Y|Y | Y| 3| QFP100
(12) 8) | (2) |(16)
280F256 (256 |32 |86 | — | — |3+2/ 2 | 2 | 4 |1 |1 |3 | 1|1 2|2 |Y|Y | Y| 3| QFP100
(12) 8) | (2) |(16)
200F64 |64 | 32|90 | — | — |3+2/ 2 | 2 | 4 |1 |1 |3 | 1|1 2|2|Y|Y | Y| 3| BGA112
(12) (8) | (2) |(16)
290F128 (128132 |90 | — | — (3+2/ 2 | 2 | 4 |1 |1 |3 | 1|1 2|2 |Y|Y | Y| 3| BGA112
(12) (8) | (2) |(16)
290F256 (25632 |90 | — | — (3+2/ 2 | 2 | 4 |1 |1 |3 | 1|1 2|2 |Y|Y | Y| 3| BGA112
(12) (8) | (2) |(16)
205F64 |64 32|93 | — | — [3+2 2 |2 | 4 1| 1|31 |12 |2|Y|Y|Y]| 3  BGA12
(12) (8) | (2) |(16)
205F128 (128132 | 93 | — | — [3+2 2 | 2 | 4 1 |1 {3 |1 | 1|2 |2|Y]|Y|Y]| 3| BGA120
(12) 8) | (2) |(16)
205F256 (256 |32 |93 | — | — [3+2/ 2 | 2 | 4 |1 |1 |3 |1 |1, 2|2|Y|Y|Y]| 3| BGA120
(12) (8) | (2) |(16)
330F64 |64 32|53 | Y| — | 3| 2|24 ,1 13| 1|1|2|2]|]Y|—|Y]| 3| QFNe4
(12) 8) | (2) |(12)
330F128 (12832 |53 | Y | — | 3| 2|2 |41 1|3 |1 |1|2|2]|Y|—]|Y]| 3| QFNe4
(12) 8) | (2) |(12)
330F256 [256| 32 |53 | Y | — | 3| 2|2 |41 1|3 |1|1|2|2]|]Y|—]Y]| 3| QFNe4
(12) )| (2) |(12)

silabs.com | Building a more connected world. Rev. 1.1 | 32




EFM32WG Reference Manual

System Overview

b _ = — _
& £ < b s & g 2 ¢ ¢ %
o ) T < a =S 2 5 & & z
s S T L ~ § b £ 38 ¢ & 2
o (=]
2 & g - E - = 2 3 3 =
h s |
332F64 | 64 | 32 | 50 — | 3] 2 4 |1 11122 — Y | 3| QFPe64
(11) ®) | (2) |(12)
332F128 | 128 32 | 50 — | 3] 2 4 |1 111122 — Y | 3| QFPe4
(11) 8) | (2) |(12)
332F256 | 256 | 32 | 50 — |3 ]2 4 |1 101122 — Y | 3| QFPe64
(11) 8) | (2) |(12)
380F64 | 64 | 32 | 83 — |3+2] 2 4 | 1 11122 Y | Y | 3| QFP100
(12) 8) | (2) |(12)
380F128 | 128| 32 | 83 — |3+2] 2 4 |1 111122 Y | Y | 3| QFP100
(12) 8) | (2) |(12)
380F256 | 256 | 32 | 83 — |3+2] 2 4 |1 111122 Y | Y | 3| QFP100
(12) 8) | (2) |(12)
390F64 | 64 | 32 | 87 — |3+2] 2 4 |1 111122 Y | Y | 3| BGA112
(12) ®) | (2) |(12)
390F128 | 128| 32 | 87 — |3+2] 2 4 |1 111122 Y | Y | 3| BGA112
(12) 8) | (2) |(12)
390F256 | 256 | 32 | 87 — |3+2] 2 4 |1 111122 Y | Y | 3| BGA112
(12) 8) | (2) |(12)
395F64 | 64 | 32 | 93 — |3+2] 2 4 |1 111122 Y | Y | 3 | BGA120
(12) 8) | (2) |(16)
395F128 | 128| 32 | 93 — |3+2] 2 4 | 1 111122 Y | Y | 3 | BGA120
(12) (8) | (2) |(16)
395F256 | 256 | 32 | 93 — |3+2] 2 4 |1 11122 Y | Y | 3| BGA120
(12) (8) | (2) |(16)
840F64 | 64 | 32 | 56 8x20| 3 | 2 4 |1 111122 — | Y| 3| QFNe4
(12) @) | (2] (®
840F128 | 128| 32 | 56 8x20| 3 | 2 4 |1 111122 — | Y| 3| QFNe64
(12) @) (2| ®
840F256 | 256 | 32 | 56 8x20| 3 | 2 4 |1 101122 — | Y| 3| QFNe64
(12) ®) | (2 | (®
842F64 | 64 | 32 | 53 8x18| 3 | 2 4 | 1 111122 — Y | 3| QFP64
(11) )| ()] (@®
842F128 | 128 32 | 53 8x18| 3 | 2 4 | 1 111122 — Y| 3| QFP64
(11) ®) | (2 | ®
842F256 | 256 | 32 | 53 8x18| 3 | 2 4 |1 111122 — Y| 3| QFP64
(11) ®) | (2 | (®
880F64 | 64 | 32 | 86 8x36 | 3+2| 2 4 |1 111122 y' | Y | 3 | QFP100
(12) 8) | (2) |(16)
880F128 | 128| 32 | 86 8x36 | 3+2| 2 4 |1 111122 Y| Y | 3 | QFP100
(12) (8) | (2) |(16)
880F256 | 256 | 32 | 86 8x36 | 3+2| 2 4 |1 11122 y' | Y | 3 | QFP100
(12) 8) | (2) |(16)

silabs.com | Building a more connected world.

Rev.1.1 | 33




EFM32WG Reference Manual

System Overview

b _ = - _
& 2 < & - g 7 7 ¢ u
o ) T < a =S 2 5 & & z
s S T L ~ § b £ 38 ¢ & 2
o [a]
2 & g - E - = 2 3 3 =
h =
890F64 64 | 32 | 90 8x36 |3+2| 2 4 1 1 1 2 2 4 Y 3 BGA112
(12) (8) | (2) |(16)
890F128 [ 128 | 32 | 90 8x36 |3+2| 2 4 1 1 1 2 2 4 Y 3 BGA112
(12) (8) | (2) |(16)
890F256 | 256 | 32 | 90 8x36 |3+2| 2 4 1 1 1 2 2 4 Y 3 BGA112
(12) (8) | (2) |(16)
895F64 64 | 32 | 93 8x36 |3+2| 2 4 1 1 1 2 2 4 Y 3 BGA120
(12) 8) | (2) |(16)
895F128 | 128 | 32 | 93 8x36 |3+2| 2 4 1 1 1 2 2 \4 Y 3 BGA120
(12) 8) | (2) |(16)
895F256 | 256 | 32 | 93 8x36 |3+2| 2 4 1 1 1 2 2 \4 Y 3 BGA120
(12) (8) | (2) |(16)
940F64 64 | 32 | 53 8x18| 3 2 4 1 1 1 2 1 — Y 3 QFN64
(12) ® 1@ @
940F128 [ 128 | 32 | 53 8x18| 3 2 4 1 1 1 2 1 — Y 3 QFN64
(12) ® @] @
940F256 | 256 | 32 | 53 8x18| 3 2 4 1 1 1 2 1 — Y 3 QFN64
(12) ® @] @
942F64 64 | 32 | 50 8x16| 3 2 4 1 1 1 2 1 — Y 3 QFP64
(11) ®) |2 | @
942F128 | 128 | 32 | 50 8x16| 3 2 4 1 1 1 2 1 — Y 3 QFP64
(11) ®) (@2 | @
942F256 | 256 | 32 | 50 8x16| 3 2 4 1 1 1 2 1 — Y 3 QFP64
(11) @@ @
980F64 64 | 32 | 83 8x34 |3+2| 2 4 1 1 1 2 2 y1 Y 3 LQFP100
(12) (8) | (2) |(12)
980F128 [ 128 | 32 | 83 8x34 |3+2| 2 4 1 1 1 2 2 4 Y 3 LQFP100
(12) (8) | (2) |(12)
980F256 | 256 | 32 | 83 8x34 |3+2| 2 4 1 1 1 2 2 4 Y 3 LQFP100
(12) (8) | (2) |(12)
990F64 64 | 32 | 87 8x34 |3+2| 2 4 1 1 1 2 2 4 Y 3 |LFBGA112
(12) ®) | () |(12)
990F128 | 128 | 32 | 87 8x34 |3+2| 2 4 1 1 1 2 2 4 Y 3 | LFBGA112
(12) ®) | () |(12)
990F256 | 256 | 32 | 87 8x34 |3+2| 2 4 1 1 1 2 2 \4 Y 3 |LFBGA112
(12) 8) | (2 (12
995F64 64 | 32 | 93 8x36 |3+2| 2 4 1 1 1 2 2 4 Y 3 | VFBGA120
(12) (8) | (2) |(16)
995F128 [ 128 | 32 | 93 8x36 |3+2| 2 4 1 1 1 2 2 4 Y 3 | VFBGA120
(12) (8) | (2) |(16)
995F256 | 256 | 32 | 93 8x36 |3+2| 2 4 1 1 1 2 2 4 Y 3 |VFBGA120
(12) 8) | (2) |(16)

silabs.com | Building a more connected world.

Rev.1.1 | 34




EFM32WG Reference Manual
System Overview

LEUART
DAC(pins)
ACMP(pins)
LESENSE

Timer(PWM)
LETIMER
Watchdog
ADC(pins)

= =
= = 14
o £ =
- s :
o)
5 o 5:‘
b (O] (2]
TH |
11}

Note:
1. EBI and LCD share pins in the part. Only a reduced pin count LCD driver can be used simultaneously with the EBI.

3.6 Device Revision

The device revision number is read from the ROM Table. The major revision number and the chip family number is read from PIDO and
PID1 registers. The minor revision number is extracted from the PID2 and PID3 registers, as illustrated in Figure 3.3 Revision Number
Extraction on page 35. The Fam[5:2] and Fam[1:0] must be combined to complete the chip family number, while the Minor Rev[7:4]
and Minor Rev[3:0] must be combined to form the complete revision number.

PID2 (0OxEOOFFFES) PID3 (0OXEOOFFFEC)

31:8 7:4 3:0 31:8 7:4 3:0
Minor Rev[7:4] Minor Rev[3:0]
PIDO (0OXEOOFFFEO) PID1 (OXEOOFFFE4)
31:8 7:6 5:0 31:4 3:0
Fam[1:0] | Major Rev[5:0] Fam[5:2]

Figure 3.3. Revision Number Extraction

For the latest revision of the Wonder Gecko family, the chip family number is 0x03 and the major revision number is 0x01. The minor
revision number is to be interpreted according to the table below.

Table 3.3. Minor Revision Number Interpretation

Minor Rev[7:0] Revision

0x00 A

Rev.1.1 | 35

silabs.com | Building a more connected world.




EFM32WG Reference Manual
System Processor

4. System Processor

123@

DI TI I A I TI ] ]

CM4 Core
Hardware divider Single cycle
32-bit multiplier

Floating-Point Unit UL LT o
Decode
Instruction
e Interface Data Interface

(I e el

NN ENEEEEEEEN

R

HpEREEEEEEEEEEERERERERE

4.1 Introduction

Quick Facts
What?

The industry leading Cortex-M4 processor from
ARM is the CPU in the EFM32WG microcontrollers.

Why?

The ARM Cortex-M4 is designed for exceptional
short response time, high code density, and high 32-
bit throughput while maintaining a strict cost and
power consumption budget.

How?

Combined with the ultra low energy peripherals
available, the Cortex-M4 with Floating-Point Unit
(FPU) makes the EFM32WG devices perfect for 8-
to 32- bit applications. The processor is featuring a
Harvard architecture, 3 stage pipeline, single cycle
instructions, extended Thumb-2 instruction set sup-
port, and fast interrupt handling.

The ARM Cortex-M4 32-bit RISC processor provides outstanding computational performance and exceptional system response to inter-

rupts while meeting low cost requirements and low power consumption.

The ARM Cortex-M4 implemented is revision rOp1.

silabs.com | Building a more connected world.

Rev. 1.1 | 36




EFM32WG Reference Manual
System Processor

4.2 Features

+ Digital Signal Processor
» Enhances speed and reduces the active time with dedicated DSP instructions
* Harvard Architecture
» Separate data and program memory buses (No memory bottleneck as for a single-bus system)
« 3-stage pipeline
* Thumb-2 instruction set
» Enhanced levels of performance, energy efficiency, and code density
+ Single-Precision Floating-Point Unit
» Enables embedded system designers to take full advantage of floating-points
» Extends the instruction set with 28 floating-point instructions
+ Single-cycle multiply and efficient divide instructions
» 32-bit multiplication in a single cycle
» Signed and unsigned divide operations between 2 and 12 cycles
« Atomic bit manipulation with bit banding
» Direct access to single bits of data
» Two 1MB bit banding regions for memory and peripherals mapping to 32MB alias regions
» Atomic operation which cannot be interrupted by other bus activities
+ 1.25 DMIPS/MHz
* Memory Protection Unit
» Up to 8 protected memory regions
» 24-bit System Tick Timer for Real-Time Operating System (RTOS)
» Excellent 32-bit migration choice for 8/16 bit architecture based designs

» Simplified stack-based programmer's model is compatible with traditional ARM architecture and retains the programming simplici-
ty of legacy 8- and 16-bit architectures

» Unaligned data storage and access
» Continuous storage of data requiring different byte lengths
» Data access in a single core clock cycle
* Integrated power modes
» Sleep Now mode for immediate transfer to low power state
» Sleep on Exit mode for entry into low power state after the servicing of an interrupt
» Ability to extend power savings to other system components
» Optimized for low latency, nested interrupts

4.3 Functional Description

For a full functional description of the ARM Cortex-M4 (rOp1) implementation in the EFM32WG family, the reader is referred to the ARM
Cortex-M4 Devices Generic User Guide.

silabs.com | Building a more connected world. Rev.1.1 | 37




EFM32WG Reference Manual
System Processor

4.3.1 Interrupt Operation

Module Cortex-M4 NVIC

SETENA[n]/CLRENA[n]

Active interrupt
Interrupt set clear Interrupt

condition IF[n] ’ cot cloor . request
SETPEND[n]/CLRPEND|n]

Software generated interrupt

Figure 4.1. Interrupt Operation

The EFM32WG devices have up to 40 interrupt request lines (IRQ) which are connected to the Cortex-M4. Each of these lines are
connected to one or more interrupt flags in one or more modules. The interrupt flags are set by hardware on an interrupt condition. It is
also possible to set/clear the interrupt flags through the IFS/IFC registers. Each interrupt flag is then qualified with its own interrupt ena-
ble bit (IEN register), before being OR'ed with the other interrupt flags to generate the IRQ. A high IRQ line will set the corresponding
pending bit (can also be set/cleared with the SETPEND/CLRPEND bits in ISPRO/ICPRO) in the Cortex-M4 NVIC. The pending bit is
then qualified with an enable bit (set/cleared with SETENA/CLRENA bits in ISERO/ICERO) before generating an interrupt request to the
core. The previous figure illustrates the interrupt system. For more information on how the interrupts are handled inside the Cortex-M4,
the reader is referred to the ARM Cortex-M4 Devices Generic User Guide.

Table 4.1. Interrupt Request Lines (IRQ)

0 DMA

1 GPIO_EVEN
2 TIMERO

3 USARTO_RX
4 USARTO_TX
5 USB

6 ACMPO/ACMP1
7 ADCO

8 DACO

9 12C0

10 12C1

11 GPIO_ODD
12 TIMER1

13 TIMER2

14 TIMER3

15 USART1_RX
16 USART1_TX
17 LESENSE
18 USART2_RX

silabs.com | Building a more connected world. Rev. 1.1 | 38




EFM32WG Reference Manual
System Processor

19 USART2_TX
20 UARTO_RX
21 UARTO_TX
22 UART1_RX
23 UART1_TX
24 LEUARTO
25 LEUART1
26 LETIMERO
27 PCNTO

28 PCNT1

29 PCNT2

30 RTC

31 BURTC

32 CMU

33 VCMP

34 LCD

35 MSC

36 AES

37 EBI

38 EMU

silabs.com | Building a more connected world.

Rev. 1.1 | 39




EFM32WG Reference Manual
Memory and Bus System

5. Memory and Bus System

{ (O

Flash

DMA Controller

silabs.com | Building a more connected world.

RAM

EBI

Peripherals

Quick Facts
What?

A low latency memory system, including low energy
flash and RAM with data retention, makes extended
use of low-power energy-modes possible.

Why?

RAM retention reduces the need for storing data in
flash and enables frequent use of the ultra low ener-
gy modes EM2 and EM3 with as little as 0.65 pA
current consumption.

How?

Low energy and non-volatile flash memory stores
program and application data in all energy modes
and can easily be reprogrammed in system. Low
leakage RAM, with data retention in EMO to EM3, re-
moves the data restore time penalty, and the DMA
ensures fast autonomous transfers with predictable
response time.

Rev. 1.1 | 40




EFM32WG Reference Manual
Memory and Bus System

5.1 Introduction

The EFM32WG contains an AMBA AHB Bus system allowing bus masters to access the memory mapped address space. A multilayer
AHB bus matrix, using a Round-robin arbitration scheme, connects the master bus interfaces to the AHB slaves (refer to the following
figure). The bus matrix allows several AHB slaves to be accessed simultaneously. An AMBA APB interface is used for the peripherals,
which are accessed through an AHB-to-APB bridge connected to the AHB bus matrix. The AHB bus masters are:

Cortex-M4 ICode: Used for instruction fetches from Code memory (0x00000000 - Ox1FFFFFFF).

Cortex-M4 DCode: Used for debug and data access to Code memory (0x00000000 - Ox1FFFFFFF).

Cortex-M4 System: Used for instruction fetches, data and debug access to system space (0x20000000 - OxDFFFFFFF).
DMA: Can access EBI, SRAM, Flash and peripherals (0x00000000 - OXxDFFFFFFF).

USB DMA: Can access EBI, SRAM and Flash (0x80000000 - OxDFFFFFFF, 0x00000000 - Ox3FFFFFFF), and the AHB-peripherals:
USB and AES.

AHB Multilayer
Bus Matrix

System

AHB/APB Peripheral 0
Bridge

USB DMA

Peripheral n

Figure 5.1. EFM32WG Bus System

silabs.com | Building a more connected world. Rev. 1.1 | 41




EFM32WG Reference Manual
Memory and Bus System

5.2 Functional Description

The memory segments are mapped together with the internal segments of the Cortex-M4 into the system memory map shown by the
following figures.

OxTTififfe
0xc0100000
OXe00TTTTT | ~
CM4 Peripherals ~
0xe0000000
OXAFFFFrer >
\ ~
0x90000000
. OXBTTTIFir 0xe0100000
EBI Region 3 0 CM4 ROM Table
X8c000000 Y 0xe00ff000
OXBDTTITTT
EBI Region 2 — 0xe0042000
0x88000000 0xe0041000
OX87TTTrfr TPIU
EBI Region 1 0xe0040000
0x84000000 \ 0xe000f000
OxB3TFFIfr System Control Space
EBI Region 0 \ 0xe000e000
0x80000000 0xe0003000
OXTTITTTTT \ il 0%€0002000
DWT
0x44000000 \ — 0xe0001000
Ox43FFIfrr
Peripherals (bit-band) 0xe0000000
0x42000000
OXALTFTfir /
0x41000000 / 0x10008000
Ox40TFfir SRAM (32 kB)
Peripherals / (code space)
0x40000000 4 0x10000000
OX3TIFIfrr
0x0fe08800
0x22400000 DI
Ox223F 1T 0x0fe08000
SRAM (bit-band) /
0x22000000 0x0fe04800
OX2LTFTFFT / Lock bits
y 0x0fe04000
0x20008000
0x0fe00800
SRAM (32 kB) 0x20007Fff User Data
(data space) 0x20000000 0x0fe00000
OXLTIFrfer 0X00040000
X
Code Flash (256 kB)
(main block)
oxo00e0000| / 0x00000000

Figure 5.2. System Address Space with Core and Code Space Listing

silabs.com | Building a more connected world.




EFM32WG Reference Manual

0x400e0400 yiNy oxfffffffe
0x400e0000
0x400cc400 s 0xe0100000
0x400cc000 \ Oxc00TTTTT
0x400ca400 ZLLS) CM4 Peripherals
0x400ca000 0xe0000000
0x400c8400 D
0x400c8000 OxXdTTFTFTT
0x400c6400 —
0x400c6000 090000000
0x400c4400 UE \ SXGTTTTITT
0x400c4000 BAx EBI Region 3
O 0ca00e FPUER 0x8c000000
0x400c0400 T \ ) Ox8bffffff
0x400c0000 \ EBI Region 2 658000660
0x4008¢400 X
0x4008¢000 = OxB7TITITT
0x4008a400 o EBI Region 1
0x4008a000 0x84000000
0x40088400 T \ e
0x40088000 £B1 Region 0
on
0x40086¢c00 TNT? \ €glo! Ox80080000
0x40086800 T X
0x40086400 TNTO OX7TTTTTTT
0x40086000
0x40084800 TEUARTT \ 0x44000000
0x40084400
040084000 = \ OXA3TTTTTT
0x40082400 Peripherals (bit-band)
0x40082000 LETTMERD 0x42000000
0x40081400 OXALTTTTTT
0x40081000 BURTC
i s
0x40011000 - _
0x40010c00 - 3 Peripherals
0x40010800 : 0x40000000
0x40010400 ERO OX3TTTTTTT
040010000 =
O o00ea00 UARTT 0x22400000
UARTO 7
0x4000e000 Ox223TTTFT
0x4000cc00 S— / SRAM (bit-band)
0x4000c800 RARTT 0x22000000
0x4000¢400 OX21TFFFFT
0x4000c000 oARTO /
o o0aga0 i / 020008000
gxgggggggg SRAM (32 kB) 0x20007fff
X:
0x40008000 EEl 7 (data space) g,;0900000
0x40007000 GPIO OXLTTFTTTT
040006000 /
040004400
0x40004000 DACO /
0x40002400
0x40002000 ADCD / Code
0x40001800
0x40001400 S /
0x40001000 7
0x40000400
Ox20000000 VCMP 000000000

Figure 5.3. System Address Space with Peripheral Listing

The embedded SRAM is located at address 0x20000000 in the memory map of the EFM32WG. When running code located in SRAM
starting at this address, the Cortex-M4 uses the System bus to fetch instructions. This results in reduced performance as the Cortex-M4
accesses stack, other data in SRAM and peripherals using the System bus. To be able to run code from SRAM efficiently, the SRAM is
also mapped in the code space at address 0x10000000. When running code from this space, the Cortex-M4 fetches instructions
through the 1/D-Code bus interface, leaving the System bus for data access. The SRAM mapped into the code space can however only
be accessed by the CPU, i.e. not the DMA.

5.2.1 Bit-Banding

The SRAM bit-band alias and peripheral bit-band alias regions are located at 0x22000000 and 0x42000000 respectively. Read and
write operations to these regions are converted into masked single-bit reads and atomic single-bit writes to the embedded SRAM and
peripherals of the EFM32WG.

The standard approach to modify a single register or SRAM bit in the aliased regions, requires software to read the value of the byte,
half-word or word containing the bit, modify the bit, and then write the byte, half-word or word back to the register or SRAM address.
Using bit-banding, this read-modify-write can be done in a single atomic operation. As read-writeback, bit-masking and bit-shift opera-
tions are not necessary in software, code size is reduced and execution speed improved.



EFM32WG Reference Manual
Memory and Bus System

To set or clear a memory SRAM bit:

bit_address = 0x22000000 + (address — 0x20000000) x 32 + bit x 4

where address is the address of the 32-bit word containing the bit to modify, and bit is the index of the bit in the 32-bit word.
To modify a bit in the Peripheral area, use the following address:

bit_address = 0x42000000 + (address — 0x40000000) x 32 + bit x 4

where address and bit are defined as above.

Note that the AHB-peripherals USB and AES does not support bit-banding.

silabs.com | Building a more connected world. Rev. 1.1 | 44




EFM32WG Reference Manual
Memory and Bus System

5.2.2 Peripherals

The peripherals are mapped into the peripheral memory segment, each with a fixed size address range.

Core Peripherals

Table 5.1. Memory System Core Peripherals

Address Range Peripheral
0x400E0400 — 0x41FFFFFF Reserved
0x400E0000 — 0x400EO03FF AES
0x400CC400 — 0x400DFFFF Reserved
0x400CC000 — 0x400CC3FF PRS
0x400CA400 — 0x400CBFFF Reserved
0x400CA000 — 0x400CA3FF RMU
0x400C8400 — 0x400C9FFF Reserved
0x400C8000 — 0x400C83FF CcMU
0x400C6400 — 0x400C7FFF Reserved
0x400C6000 — 0x400C63FF EMU
0x400C4400 — 0x400C5FFF Reserved
0x400C4000 — 0x400C43FF uUSB
0x400C2000 — 0x400C3FFF DMA
0x400C1C00 — 0x400C1FFF FPUEH
0x400C0400 — 0x400C1BFF Reserved
0x400C0000 — 0x400C03FF MSC

Table 5.2. Memory System Low Energy Peripherals

Low Energy Peripherals

Address Range Peripheral
0x4008C400 — 0x400BFFFF Reserved
0x4008C000 — 0x4008C3FF LESENSE
0x4008A400 — 0x4008BFFF Reserved
0x4008A000 — 0x4008A3FF LCD
0x40088400 — 0x40089FFF Reserved
0x40088000 — 0x400883FF WDOG
0x40086C00 — 0x40087FFF Reserved
0x40086800 — 0x40086BFF PCNT2
0x40086400 — 0x400867FF PCNT1
0x40086000 — 0x400863FF PCNTO
0x40084800 — 0x40085FFF Reserved

silabs.com | Building a more connected world.

Rev. 1.1 | 45




EFM32WG Reference Manual
Memory and Bus System

Low Energy Peripherals

Address Range Peripheral
0x40084400 — 0x400847FF LEUART1
0x40084000 — 0x400843FF LEUARTO
0x40082400 — 0x40083FFF Reserved
0x40082000 — 0x400823FF LETIMERO
0x40081400 — 0x40081FFF Reserved
0x40081000 — 0x400813FF BCKRTC
0x40080400 — 0x40080FFF Reserved
0x40080000 — 0x400803FF RTC

Table 5.3. Memory System Peripherals

Peripherals

Address Range Peripheral
0x40011000 — 0x4007FFFF Reserved
0x40010C00 — 0x40010FFF TIMER3
0x40010800 — 0x40010BFF TIMER2
0x40010400 — 0x400107FF TIMER1
0x40010000 — 0x400103FF TIMERO
0x4000E800 — 0x4000FFFF Reserved
0x4000E400 — 0x4000E7FF UART1
0x4000E000 — 0x4000E3FF UARTO
0x4000CC00 — 0x4000DFFF Reserved
0x4000C800 — 0x4000CBFF USART2
0x4000C400 — 0x4000C7FF USART1
0x4000C000 — 0x4000C3FF USARTO
0x4000A800 — 0x4000BFFF Reserved
0x4000A400 — 0x4000A7FF 12C1
0x4000A000 — 0x4000A3FF 12C0
0x40008400 — 0x40009FFF Reserved
0x40008000 — 0x400083FF EBI
0x40007000 — 0x40007FFF Reserved
0x40006000 — 0x40006FFF GPIO
0x40004400 — 0x40005FFF Reserved
0x40004000 — 0x400043FF DACO
0x40002400 — 0x40003FFF Reserved
0x40002000 — 0x400023FF ADCO

silabs.com | Building a more connected world. Rev. 1.1 | 46




EFM32WG Reference Manual
Memory and Bus System

Peripherals

Address Range Peripheral
0x40001800 — 0x40001FFF Reserved
0x40001400 — 0x400017FF ACMP1
0x40001000 — 0x400013FF ACMPO
0x40000400 — 0x40000FFF Reserved
0x40000000 - 0x400003FF VCMP

5.2.3 Bus Matrix
The Bus Matrix connects the memory segments to the bus masters:

» Code—CPU instruction or data fetches from the code space

» System—CPU read and write to the SRAM, EBI and peripherals
* DMA—Access to EBI, SRAM, Flash and peripherals

+ USB DMA—Access to EBI, SRAM and Flash

5.2.3.1 Arbitration

The Bus Matrix uses a round-robin arbitration algorithm which enables high throughput and low latency while starvation of simultaneous
accesses to the same bus slave are eliminated. Round-robin does not assign a fixed priority to each bus master. The arbiter does not
insert any bus wait-states.

5.2.3.2 Access Performance

The Bus Matrix is a multi-layer energy optimized AMBA AHB compliant bus with an internal bandwidth equal to 4 times a single AHB-
bus.

The Bus Matrix accepts new transfers initiated by each master in every clock cycle without inserting any wait-states. The slaves, how-
ever, may insert wait-states depending on their internal throughput and the clock frequency.

The Cortex-M4, the DMA Controller, and the peripherals run on clocks that can be prescaled separately. When accessing a peripheral
which runs on a frequency equal to or faster than the HFCORECLK, the number of wait cycles per access, in addition to master arbitra-
tion, is given by:

N =2+N

cycles slave cycles

where Ngjave cycles iS the wait cycles introduced by the slave.

When accessing a peripheral running on a clock slower than the HFCORECLK, wait-cycles are introduced to allow the transfer to com-
plete on the peripheral clock. The number of wait cycles per access, in addition to master arbitration, is given by:

fHFCORECLK

N = (2 +N 7
HFPERCLK

cycles ~ slave cycles)

where Ngjave cycles iS the number of wait cycles introduced by the slave.
For general register access, Ngjave cycles = 1-

More details on clocks and prescaling can be found in 11. CMU - Clock Management Unit.

silabs.com | Building a more connected world. Rev. 1.1 | 47




EFM32WG Reference Manual
Memory and Bus System

5.2.4 Access to Low Energy Peripherals (Asynchronous Registers)

5.2.4.1 Introduction

The Low Energy Peripherals are capable of running when the high frequency oscillator and core system is powered off, i.e. in energy
mode EM2 and in some cases also EM3. This enables the peripherals to perform tasks while the system energy consumption is mini-
mal.

The Low Energy Peripherals are:

« Liquid Crystal Display driver - LCD

* Low Energy Timer - LETIMER

* Low Energy UART - LEUART

* Pulse Counter - PCNT

* Real Time Counter - RTC

* Watchdog - WDOG

» Low Energy Sensor Interface - LESENSE
» Backup RTC - BURTC

All Low Energy Peripherals are memory mapped, with automatic data synchronization. Because the Low Energy Peripherals are run-
ning on clocks asynchronous to the core clock, there are some constraints on how register accesses can be done, as described in the
following sections.

5.2.4.1.1 Writing

Every Low Energy Peripheral has one or more registers with data that needs to be synchronized into the Low Energy clock domain to
maintain data consistency and predictable operation. There are two different synchronization mechanisms on the Wonder Gecko; im-
mediate synchronization, and delayed synchronization. Immediate synchronization is available for the RTC, LETIMER and LESENSE,
and results in an immediate update of the target registers. Delayed synchronization is used for the other Low Energy Peripherals, and
for these peripherals, a write operation requires 3 positive edges on the clock of the Low Energy Peripheral being accessed. Registers
requiring synchronization are marked "Asynchronous" in their description header.

silabs.com | Building a more connected world. Rev. 1.1 | 48




EFM32WG Reference Manual

5.2.4.1.1.1 Delayed Synchronization

After writing data to a register which value is to be synchronized into the Low Energy Peripheral using delayed synchronization, a corre-
sponding busy flag in the <module_name>_SYNCBUSY register (e.g. LEUART_SYNCBUSY) is set. This flag is set as long as synchro-
nization is in progress and is cleared upon completion.

Note:

Subsequent writes to the same register before the corresponding busy flag is cleared is not supported. Write before the busy flag is
cleared may result in undefined behavior.

In general, the SYNCBUSY register only needs to be observed if there is a risk of multiple write access to a register (which must be
prevented). It is not required to wait until the relevant flag in the SYNCBUSY register is cleared after writing a register. E.g EM2 can be
entered immediately after writing a register.

See the following figure for a more detailed overview of the write operation.

Core Clock Domain Low Frequency Clock Domain

|
|
|
Freeze I
Core ‘Clock | : Low Frequ‘ency Clock Low Frequ‘ency Clock

> Register 0 o : | Synchronizer 0 > Register 0 Sync

> Register 1 R T Synchronizer 1 > Register 1 Sync
|
|
|

. I . .

> Register n o P Synchronizer n > Register n Sync
|
|

] Synchronization Done

Write[0:n] :
|
Set0y, Syncbusy Register 0 < Clear0 :
Set1,, Syncbusy Register 1 « Clear 1 I
|
|
|
: |
Setn ,, Syncbusy Register n < Clearn I
|
|
|
|

Figure 5.4. Write Operation to Low Energy Peripherals

5.2.4.1.1.2 Immediate Synchronization

Contrary to the peripherals with delayed synchronization, data written to peripherals with immediate synchronization, takes effect in the
peripheral immediately. They are updated immediately on the peripheral write access. If a write is set up close to a peripheral clock
edge, the write is delayed to after the clock edge. This will introduce wait-states on peripheral access. In the worst case, there can be
three wait-state cycles of the HFCORECLK_LE and an additional wait-state equivalent of up to 315 ns.

For peripherals with immediate synchronization, the SYNCBUSY registers are still present and serve two purposes: (1) commands writ-
ten to a peripheral with immediate synchronization are not executed before the first peripheral clock after the write. During this period,
the SYNCBUSY flag in the command register is set, indicating that the command has not yet been executed; (2) to maintain backwards
compatibility with the EFM32G series, SYNCBUSY registers are also present for other registers. These are however, always 0, indicat-
ing that register writes are always safe.

Note: If the application must be compatible with the EFM32G series, all Low Energy Peripherals should be accessed as if they only had
delayed synchronization, i.e. using SYNCBUSY.



EFM32WG Reference Manual
Memory and Bus System

5.2.4.1.2 Reading

When reading from Low Energy Peripherals, the data is synchronized regardless of the originating clock domain. Registers updated/
maintained by the Low Energy Peripheral are read directly from the Low Energy clock domain. Registers residing in the core clock do-
main, are read from the core clock domain. See the following figure for a more detailed overview of the read operation.

Note: Writing a register and then immediately reading back the value of the register may give the impression that the write operation is
complete. This is not necessarily the case. Please refer to the SYNCBUSY register for correct status of the write operation to the Low
Energy Peripheral.

|
Core Clock Domain | Low Frequency Clock Domain
Freeze I
Core IClock | | Low Frequlency Clock Low Frequlency Clock
el — Register 0 | o :—D- Synchronizer 0 —— Register 0 Sync —— -
Ll —— Register 1 | o —|—> Synchronizer 1 —— Register 1 Sync —— -
|
. | . .
Ll —— Register n | o J—> Synchronizer n —— Register n Sync —— -
|
|
|
- ———— HW Status Register 0 —
Read : Low Energy
Synchronizer -4—'— HW Status Register 1 - Peripheral
| } Mai —
ain
| . Function
I .
<—|— HW Status Register m -
Read Data I
|

Figure 5.5. Read Operation from Low Energy Peripherals

5.2.4.2 FREEZE Register

For Low Energy Peripherals with delayed synchronization there is a <module_name>_FREEZE register (e.g. RTC_FREEZE), contain-
ing a bit named REGFREEZE. If precise control of the synchronization process is required, this bit may be utilized. When REGFREEZE
is set, the synchronization process is halted, allowing the software to write multiple Low Energy registers before starting the synchroni-
zation process, thus providing precise control of the module update process. The synchronization process is started by clearing the
REGFREEZE bit.

Note: The FREEZE register is also present on peripherals with immediate synchronization, but has no effect.

5.2.5 Flash

The Flash retains data in any state and typically stores the application code, special user data and security information. The Flash
memory is typically programmed through the debug interface, but can also be erased and written to from software.

» Up to 256 kB of memory

» Page size of 2048 bytes (minimum erase unit)
* Minimum 20,000 erase cycles

* More than 10 years data retention at 85 °C

* Lock-bits for memory protection

* Data retention in any state

silabs.com | Building a more connected world. Rev. 1.1 | 50




EFM32WG Reference Manual
Memory and Bus System

5.2.6 SRAM

The primary task of the SRAM memory is to store application data. Additionally, it is possible to execute instructions from SRAM, and
the DMA may used to transfer data between the SRAM, Flash and peripherals.

* Up to 32 kB memory
 Bit-band access support
+ Data retention of the entire memory in EMO to EM3

silabs.com | Building a more connected world. Rev. 1.1 | 51




EFM32WG Reference Manual
Memory and Bus System

5.2.7 Device Information (DI) Page

The DI page contains calibration values, a unique identification number and other useful data. See the table below for a complete over-

view.
Table 5.4. Device Information Page Contents

DI Address Register Description

0xO0FE08020 CMU_LFRCOCTRL Register reset value.

0xOFE08028 CMU_HFRCOCTRL Register reset value.

OxOFE08030 CMU_AUXHFRCOCTRL Register reset value.

O0xOFE08040 ADCO_CAL Register reset value.

O0xOFE08048 ADCO_BIASPROG Register reset value.

0xOFE08050 DACO_CAL Register reset value.

0xOFE08058 DACO_BIASPROG Register reset value.

0xOFE08060 ACMPO_CTRL Register reset value.

OxOFE08068 ACMP1_CTRL Register reset value.

OxOFE08068 ACMP1_CTRL Register reset value.

O0xOFE08078 CMU_LCDCTRL Register reset value.

0xOFEO80AOQ DACO_OPACTRL Register reset value.

0xOFEO80A8 DACO_OPAOFFSET Register reset value.

0xOFEO080BO EMU_BUINACT Register reset value.

OxOFE080B8 EMU_BUACT Register reset value.

OxOFE080CO EMU_BUBODBUVINCAL Register reset value.

O0xOFE080C8 EMU_BUBODUNREGCAL Register reset value.

0xOFE081B0 DI_CRC [15:0]: DI data CRC-16.

0xOFE081B2 CAL_TEMP_O [7:0] Calibration temperature (°C).

0xOFE081B4 ADCO_CAL_1V25 [14:8]: Gain for 1V25 reference, [6:0]: Offset for 1V25 reference.

OxOFE081B6 ADCO_CAL_2V5 14:8]: Gain for 2V5 reference, [6:0]: Offset for 2V5 reference.

OxOFE081B8 ADCO_CAL_VDD 14:8]: Gain for VDD reference, [6:0]: Offset for VDD reference.

OxOFEO81BA ADCO_CAL_5VDIFF 14:8]: Gain for 5VDIFF reference, [6:0]: Offset for 5VDIFF refer-
ence.

OxOFE081BC ADCO_CAL_2XVvDD [14:8]: Reserved (gain for this reference cannot be calibrated),
[6:0]: Offset for 2XVDD reference.

OxOFEO081BE ADCO_TEMP_0_READ_1V25 [15:4] Temperature reading at 1V25 reference, [3:0] Reserved.

0xOFEO081C8 DACO_CAL_1V25 22:16]: Gain for 1V25 reference, [13:8]: Channel 1 offset for 1V25
reference, [5:0]: Channel 0 offset for 1V25 reference.

0xOFE081CC DACO_CAL_2V5 22:16]: Gain for 2V5 reference, [13:8]: Channel 1 offset for 2V5
reference, [5:0]: Channel 0 offset for 2V5 reference.

OxOFEO081DO0 DACO_CAL_VDD [22:16]: Reserved (gain for this reference cannot be calibrated),
[13:8]: Channel 1 offset for VDD reference, [5:0]: Channel 0 offset
for VDD reference.

O0xOFE081D4 AUXHFRCO_CALIB_BAND_1 [7:0]: Tuning for the 1.2 MHZ AUXHFRCO band.

silabs.com | Building a more connected world.

Rev. 1.1 | 52




EFM32WG Reference Manual
Memory and Bus System

DI Address Register Description

0xOFE081D5 AUXHFRCO_CALIB_BAND_7 [7:0]: Tuning for the 6.6 MHZ AUXHFRCO band.

0xOFE081D6 AUXHFRCO_CALIB_BAND_11 7:0]: Tuning for the 11 MHZ AUXHFRCO band.

0x0FE081D7 AUXHFRCO_CALIB_BAND_14 [7:0]: Tuning for the 14 MHZ AUXHFRCO band.

0x0FE081D8 AUXHFRCO_CALIB_BAND_21 [7:0]: Tuning for the 21 MHZ AUXHFRCO band.

O0xOFE081D9 AUXHFRCO_CALIB_BAND_28 [7:0]: Tuning for the 28 MHZ AUXHFRCO band.

O0xOFE081DC HFRCO_CALIB_BAND_1 [7:0]: Tuning for the 1.2 MHZ HFRCO band.

0xOFE081DD HFRCO_CALIB_BAND_7 [7:0]: Tuning for the 6.6 MHZ HFRCO band.

0xOFE081DE HFRCO_CALIB_BAND_11 [7:0]: Tuning for the 11 MHZ HFRCO band.

O0xOFEO081DF HFRCO_CALIB_BAND_14 [7:0]: Tuning for the 14 MHZ HFRCO band.

OxOFEO081E0 HFRCO_CALIB_BAND_21 [7:0]: Tuning for the 21 MHZ HFRCO band.

OxOFEO081E1 HFRCO_CALIB_BAND_28 [7:0]: Tuning for the 28 MHZ HFRCO band.

OxOFEO81E7 MEM_INFO_PAGE_SIZE [7:0] Flash page size in bytes coded as 2 * (MEM_IN-
FO_PAGE_SIZE + 10) & OxFF). le. the value OxFF = 512 bytes.

O0xOFE081F0 UNIQUE_O [31:0] Unique number.

OxOFEO081F4 UNIQUE_1 [63:32] Unique number.

OxOFEO81F8 MEM_INFO_FLASH [15:0]: Flash size, kbyte count as unsigned integer (eg. 128).

OxOFEO81FA MEM_INFO_RAM [15:0]: Ram size, kbyte count as unsigned integer (eg. 16).

OxOFEO81FC PART_NUMBER [15:0]: EFM32 part number as unsigned integer (eg. 230).

OxOFEO81FE PART_FAMILY [7:0]: EFM32 part family number (Gecko = 71, Giant Gecko = 72,
Tiny Gecko = 73, Leopard Gecko=74, Wonder Gecko=75).

OxOFEO81FF PROD_REV [7:0]: EFM32 Production ID.

silabs.com | Building a more connected world.

Rev. 1.1 | 53




EFM32WG Reference Manual
DBG - Debug Interface

6. DBG - Debug Interface

Quick Facts
What?
The DBG (Debug Interface) is used to program and
(2 3@ debug EFM32WG devices.
Why?

The Debug Interface makes it easy to reprogram
and update the system in the field, and allows de-

OO nnrn bugging with minimal I/O pin usage.

How?

The Cortex-M4 supports advanced debugging fea-
tures. EFM32WG devices only use two port pins for
debugging or programming. The internal and exter-
nal state of the system can be examined with debug
extensions supporting instruction or data access
break- and watch points.

4 Debug Data

I r e
ooy

HEEREREEEEEREREREEE

6.1 Introduction

The EFM32WG devices include hardware debug support through a 2-pin serial-wire debug (SWD) interface and an Embedded Trace
Module (ETM) for data/instruction tracing. In addition, there is also a Serial Wire Viewer pin which can be used to output profiling infor-
mation, data trace, and software generated messages.

For more technical information about the debug interface the reader is referred to:

* ARM Cortex-M4 Technical Reference Manual
* ARM CoreSight Components Technical Reference Manual
* ARM Debug Interface v5 Architecture Specification

6.2 Features

+ Flash Patch and Breakpoint (FPB) unit
» Implement breakpoints and code patches
» Data Watch point and Trace (DWT) unit
» Implement watch points, trigger resources and system profiling
* Instrumentation Trace Macrocell (ITM)
» Application-driven trace source that supports printf style debugging
+ Embedded Trace Macrocell v3.5 (ETM)
» Real time instruction and data trace information of the processor

6.3 Functional Description

There are three debug pins and four trace pins available on the device. Operation of these pins are described in the following section.

silabs.com | Building a more connected world. Rev. 1.1 | 54




EFM32WG Reference Manual
DBG - Debug Interface

6.3.1 Debug Pins
The following pins are the debug connections for the device:

« Serial Wire Clock input (SWCLK): This pin is enabled after reset and has a built-in pull down.
» Serial Wire Data Input/Output (SWDIO): This pin is enabled after reset and has a built-in pull-up.
« Serial Wire Viewer (SWV): This pin is disabled after reset.

The debug pins can be enabled and disabled through GPIO_ROUTE, see 32.3.4.1 Serial Wire Debug Port Connection. Please reme-
berer that upon disabling, debug contact with the device is lost. Also note that, because the debug pins have pull-down and pull-up
enabled by default, leaving them enabled might increase the current consumption with up to 200 pA if left connected to supply or
ground.

6.3.2 Embedded Trace Macrocell v3.5 (ETM)

The ETM makes it possible to trace both instruction and data from the processor in real time. The trace can be controlled through a set
of triggering and filtering resources. The resources include 4 address comparators, 2 data value comparators, 2 counters, a context ID
comparator and a sequencer. Before enabling the ETM, the AUXHFRCO clock needs to be enabled by setting AUXHFRCOEN in
CMU_OSCENCMD. The trace can be exported through a set of trace pins, which include:

» Trace Clock (TCLK): Functions as a sample clock for the trace. This pin is disabled after reset.
» Trace Data 0 - Trace Data 3 (TDO-TD3): The data pins provide the compressed trace stream. These pins are disabled after reset.

For information on how to configure the ETM, see the ARM Embedded Trace Macrocell Architecture Specification. The Trace Clock
and Trace Data pins can be enabled through the GPIO. For more information on how to enable the ETM Trace pins, the reader is refer-
red to 32.3.4.2 ETM Trace Ports.

6.3.3 Debug and EM2/EM3

Leaving the debugger connected when issuing a WFI or WFE to enter EM2 or EM3 will make the system enter a special EM2. This
mode differs from regular EM2 and EM3 in that the high frequency clocks are still enabled, and certain core functionality is still powered
in order to maintain debug-functionality. Because of this, the current consumption in this mode is closer to EM1 and it is therefore im-
portant to disconnect the debugger before doing current consumption measurements.

silabs.com | Building a more connected world. Rev. 1.1 | 55




EFM32WG Reference Manual
DBG - Debug Interface

6.3.4 Debug Lock and Device Erase

The debug access to the Cortex-M4 is locked by clearing the Debug Lock Word (DLW) and resetting the device, see 7.3.2 Lock Bits
(LB) Page Description.

When debug access is locked, the debug interface remains accessible but the connection to the Cortex- M4 core and the whole bus-
system is blocked as shown in Figure 6.2 Device Unlock on page 56. This mechanism is controlled by the Authentication Access Port
(AAP) as illustrated by Figure 6.1 AAP - Authentication Access Port on page 56. The AAP is only accessible from a debugger and not
from the core.

» DEVICEERASE

ERASEBUSY

DLW[3:0] == OxF

v

SerialWire Authentication
debug Access Port
interface (AAP)

Figure 6.1. AAP - Authentication Access Port

The debugger can access the AAP-registers, and only these registers just after reset, for the time of the AAP-window outlined in the
following figure. If the device is locked, access to the core and bus-system is blocked even after code execution starts, and the debug-
ger can only access the AAP-registers. If the device is not locked, the AAP is no longer accessible after code execution starts, and the
debugger can access the core and bus-system normally. The AAP window can be extended by issuing the bit pattern on SWDIO/
SWCLK as shown in Figure 6.3 AAP Expansion on page 576.3.4 Debug Lock and Device Erase. This pattern should be applied just
before reset is deasserted, and will give the debugger more time to access the AAP.

Reset

Program
execution
Locked No access AAP |
——
150 us Program

execution
|

Unlocked No access AAP >< Cortex
—_—

47 us Progrgm
exequﬂon

No access Extended AAP >< Cortex

Extended
unlocked

255 x 47 us

Figure 6.2. Device Unlock

If the device is locked, it can be unlocked by writing a valid key to the AAP_CMDKEY register and then setting the DEVICEERASE bit
of the AAP_CMD register via the debug interface. The commands are not executed before AAP_CMDKEY is invalidated, so this regis-
ter should be cleared to to start the erase operation. This operation erases the main block of flash, all lock bits are reset and debug
access through the AHB-AP is enabled. The operation takes 125 ms to complete. Note that the SRAM contents will also be deleted
during a device erase, while the UD-page is not erased.

Even if the device is not locked, the device can be erased through the AAP, using the above procedure during the AAP window. This
can be useful if the device has been programmed with code that, e.g., disables the debug interface pins on start-up, or does something
else that prevents communication with a debugger.

silabs.com | Building a more connected world. Rev. 1.1 | 56




EFM32WG Reference Manual
DBG - Debug Interface

swoo__ | [ | | L _J I L1 LJ [_

SWCLK | |
AAP expand

Figure 6.3. AAP Expansion

If the device is locked, the debugger may read the status from the AAP_STATUS register. When the ERASEBUSY bit is set low after
DEVICEERASE of the AAP_CMD register is set, the debugger may set the SYSRESETREQ bit in the AAP_CMD register. After reset,
the debugger may resume a normal debug session through the AHB-AP. If the device is not locked, the device erase starts when the
AAP window closes, so it is not possible to poll the status.

6.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 |AAP_CMD W1 Command Register

0x004 AAP_CMDKEY W1 Command Key Register
0x008 AAP_STATUS R Status Register

0xOFC |AAP_IDR R AAP lIdentification Register

silabs.com | Building a more connected world. Rev. 1.1 | 57




EFM32WG Reference Manual
DBG - Debug Interface

6.5 Register Description

6.5.1 AAP_CMD - Command Register

Offset Bit Position

0000 5|8 /RKKLRIQNTIRR LRI VT2 o0 o/ ~ov <o a~|o

Reset o|o

Access E E
oy
o
Ak
g

Name D
bio
[
23
»n |0

Bit Name Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
1 SYSRESETREQ 0 W1 System Reset Request
A system reset request is generated when set to 1. This register is write enabled from the AAP_CMDKEY register.
0 DEVICEERASE 0 W1 Erase the Flash Main Block, SRAM and Lock Bits

When set, all data and program code in the main block is erased, the SRAM is cleared and then the Lock Bit (LB) page is
erased. This also includes the Debug Lock Word (DLW), causing debug access to be enabled after the next reset. The
information block User Data page (UD) is left unchanged, but the User data page Lock Word (ULW) is erased. This register
is write enabled from the AAP_CMDKEY register.

6.5.2 AAP_CMDKEY - Command Key Register

Bit Position
0x004 SRR IQQIIQIF QR I 2 ¥tQlolo~o|lw|t|mw|n|-]|o
o
o
o
o
Reset S
o
R
o
Access ‘;
>_
i
X
Name =
04
=
Bit Name Reset Access Description
31:0 WRITEKEY 0x00000000 W1 CMD Key Register

The key value must be written to this register to write enable the AAP_CMD register. After AAP_CMD is written, this regis-
ter should be cleared to excecute the command.

Value Mode Description

0xCFACC118 WRITEEN Enable write to AAP_CMD

silabs.com | Building a more connected world. Rev. 1.1 | 58




EFM32WG Reference Manual
DBG - Debug Interface

6.5.3 AAP_STATUS - Status Register

Offset Bit Position

%008 |5 8IRXNELRIRQN TR LL T2 2 olo~owv voa o

Reset o

Access o
>
%)
@

Name 7]
2
w

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 ERASEBUSY 0 R Device Erase Command Status

This bit is set when a device erase is executing.

6.5.4 AAP_IDR - AAP Identification Register

Offset Bit Position
00FC 15 /3/% 8 K€ RIIQNS|RI2 2222220 e~ o0 on-x|o
S
o
o
Reset 8
©
>
o
Access o
Name a
Bit Name Reset Access Description
31:0 ID 0x16E60001 R AAP Identification Register

Access port identification register in compliance with the ARM ADI v5 specification (JEDEC Manufacturer ID).

silabs.com | Building a more connected world. Rev. 1.1 | 59




EFM32WG Reference Manual

7. MSC - Memory System Controller

01

01000101011011100110010101110010
01100111011110010010000001001101
01101001011000110111001001101111

00100000011100100111010101101100
01100101011100110010000001110100
01101000011001010010000001110111
01101111011100100110110001100100
00100000011011110110011000100000
01101100011011110111011100101101

01100101011011100110010101110010

01100111011110010010000001101101
01101001011000110111001001101111
01100011011011110110111001110100
01110010011011110110110001101100
01100101011100100010000001100100
01100101011100110110100101100111
01101110001000010100010101101110

Quick Facts
What?

The user can perform Flash memory read, read con-
figuration and write operations through the Memory
System Controller (MSC).

Why?

The MSC allows the application code, user data and
flash lock bits to be stored in non-volatile Flash
memory. Certain memory system functions, such as
program memory wait-states and bus faults are also
configured from the MSC peripheral register inter-
face, giving the developer the ability to dynamically
customize the memory system performance, securi-
ty level, energy consumption and error handling ca-
pabilities to the requirements at hand.

How?

The MSC integrates a low-energy Flash IP with a
charge pump, enabling minimum energy consump-
tion while eliminating the need for external program-
ming voltage to erase the memory. An easy to use
write and erase interface is supported by an internal,
fixed-frequency oscillator and autonomous flash tim-
ing and control reduces software complexity while
not using other timer resources.

Application code may dynamically scale between
high energy optimization and high code execution
performance through advanced read modes.

A highly efficient low energy instruction cache re-
duces the number of flash reads significantly, thus
saving energy. Performance is also improved when
wait states are used, since many of the wait-states
are eliminated. Built-in performance counters can be
used to measure the efficiency of the instruction
cache.

7.1 Introduction

The Memory System Controller (MSC) is the program memory unit of the EFM32WG microcontroller. The flash memory is readable and
writable from both the Cortex-M4 and DMA. The flash memory is divided into two blocks; the main block and the information block.
Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock
bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations
are supported in the energy modes EMO and EM1.



EFM32WG Reference Manual
MSC - Memory System Controller

7.2 Features

* AHB read interface
» Scalable access performance to optimize the Cortex-M4 code interface
» Zero wait-state access up to 16 MHz and one wait-state for up to 32 MHz and two wait-states for up to 48 MHz
» Advanced energy optimization functionality
» Conditional branch target prefetch suppression
+ Cortex-M4 disfolding of if-then (IT) blocks
* Instruction Cache
* DMA read support in EMO and EM1
» Command and status interface
» Flash write and erase
» Accessible from Cortex-M4 in EMO
» DMA write support in EMO and EM1
» Core clock independent Flash timing
« Internal oscillator and internal timers for precise and autonomous Flash timing
» General purpose timers are not occupied during Flash erase and write operations
» Configurable interrupt erase abort
» Improved interrupt predictability
* Memory and bus fault control
» Security features
» Lockable debug access
» Page lock bits
* SW Mass erase Lock bits
» User data lock bits
» End-of-write and end-of-erase interrupts

7.3 Functional Description

The size of the main block is device dependent. The largest size available is 256 kB (128 pages). The information block has 2048 bytes
available for user data. The information block also contains chip configuration data located in a reserved area. The main block is map-
ped to address 0x00000000 and the information block is mapped to address 0xOFEQ0000. The table below outlines how the Flash is
mapped in the memory space. All Flash memory is organized into 2048 byte pages.

Block Page Base address Write/Erase by Software readable Purpose/Name Size
Main? 0 0x00000000 | Software, debug Yes User code and data 64 kB — 256 kB
— Software, debug Yes
127 | 0x0003F800 |Software, debug Yes
Reserved |— 0x00040000 |— — Reserved for flash expansion | ~24 MB
Information | 0 0xOFEO00000 | Software, debug Yes User Data (UD) 2 kB
— OxOFE00800 |— — Reserved —
1 O0xOFE04000 | Write: Software, debug | Yes Lock Bits (LB) 2kB

Erase: Debug only

— OxOFE04800 |— — Reserved —
2 O0xOFE08000 |— Yes Device Information (DI) 2kB
— OxOFE08800 |— — Reserved —
Reserved |— 0xOFE10000 |— — Reserved for flash expansion | Rest of code space

Note:
1. Block/page erased by a device erase.

silabs.com | Building a more connected world. Rev. 1.1 | 61




EFM32WG Reference Manual
MSC - Memory System Controller

7.3.1 User Data (UD) Page Description

This is the user data page in the information block. The page can be erased and written by software. The page is erased by the ERA-
SEPAGE command of the MSC_WRITECMD register. Note that the page is not erased by a device erase operation. The device erase
operation is described in 6.3.4 Debug Lock and Device Erase.

7.3.2 Lock Bits (LB) Page Description

This page contains the following information:
» Debug Lock Word (DLW)

» User data page Lock Word (ULW)

* Mass erase Lock Word (MLW)

» Main block Page Lock Words (PLWSs)

The words in this page are organized as shown in the table below:

Table 7.1. Lock Bits Page Structure

Word Index Description

127 DLW
126 uLw
125 MLW
N PLWIN]
1 PLW[1]
0 PLW[O]

Word 127 is the debug lock word (DLW). The four LSBs of this word are the debug lock bits. If these bits are OxF, then debug access is
enabled. If the bits are not OxF, then debug access to the core is locked. See 6.3.4 Debug Lock and Device Erase for details on how to
unlock the debug access.

Word 126 is the user page lock word (ULW). Bit 0 of this word is the User Data Page lock bit. Bit 1 in this word locks the Lock Bits
Page.

Word 125 is the mass erase lock word (MLW). Bit O locks the entire flash. The mass erase lock bits will not have any effect on device
erases initiated from the Authentication Access Port (AAP) registers. The AAP is described in more detail in 6.3.4 Debug Lock and
Device Erase.

There are 32 page lock bits per page lock word (PLW). Bit O refers to the first page and bit 31 refers to the last page within a PLW.
Thus, PLWI[0] contains lock bits for page 0-31 in the main block. Similarly, PLW[1] contains lock bits for page 32-63 and so on. A page
is locked when the bit is 0. A locked page cannot be erased or written.

The lock bits can be reset by a device erase operation initiated from the Authentication Access Port (AAP) registers. The AAP is descri-
bed in more detail in 6.3.4 Debug Lock and Device Erase. Note that the AAP is only accessible from the debug interface, and cannot be
accessed from the Cortex-M4 core.

7.3.3 Device Information (DI) Page
This read-only page holds the calibration data for the oscillator and other analog peripherals from the production test as well as a
unique device ID. The page is further described in 5.2.5 Flash.

7.3.4 Post-Reset Behavior

Calibration values are automatically written to registers by the MSC before application code startup. The values are also available to
read from the DI page for later reference by software. Other information such as the device ID and production date is also stored in the
DI page and is readable from software.

silabs.com | Building a more connected world. Rev. 1.1 | 62




EFM32WG Reference Manual

7.3.4.1 One Wait-State Access

After reset, the HFCORECLK is normally 14 MHz from the HFRCO and the MODE field of the MSC_READCTRL register is set to WS1
(one wait-state). The reset value must be WS1 as an uncalibrated HFRCO may produce a frequency higher than 16 MHz. Software
must not select a zero wait-state mode unless the clock is guaranteed to be 16 MHz or below, otherwise the resulting behavior is unde-
fined. If a HFCORECLK frequency above 16 MHz is to be set by software, the MODE field of the MSC_READCTRL register must be
set to WS1 or WS1SCBTP before the core clock is switched to the higher frequency clock source.

When changing to a lower frequency, the MODE field of the MSC_READCTRL register can be set to WSO or WSOSCBTP, but only
after the frequency transition is completed. If the HFRCO is used, wait until the oscillator is stable on the new frequency. Otherwise, the
behavior is unpredictable.

To run at a frequency higher than 32 MHz, WS2 or WS2SCBTP must be selected to insert two wait-states for every flash access.

7.3.4.2 Zero Wait-State Access

At 16 MHz and below, read operations from flash may be performed without any wait-states. Zero wait-state access greatly improves
code execution performance at frequencies from 16 MHz and below. By default, the Cortex-M4 uses speculative prefetching and If-
Then block folding to maximize code execution performance at the cost of additional flash accesses and energy consumption.

7.3.4.3 Operation Above 32 MHz
To run at frequencies higher than 32 MHz, MODE in MSC_READCTRL must be set to WS2 or WS2SCBTP.

7.3.4.4 Suppressed Conditional Branch Target Prefetch

MSC offers a special instruction fetch mode which optimizes energy consumption by cancelling Cortex- M4 conditional branch target
prefetches. Normally, the Cortex-M4 core prefetches both the next sequential instruction and the instruction at the branch target ad-
dress when a conditional branch instruction reaches the pipeline decode stage. This prefetch scheme improves performance while one
extra instruction is fetched from memory at each conditional branch, regardless of whether the branch is taken or not. To optimize for
low energy, the MSC can be configured to cancel these speculative branch target prefetches. With this configuration, energy consump-
tion is more optimal, as the branch target instruction fetch is delayed until the branch condition is evaluated.

The performance penalty with this mode enabled is source code dependent, but is normally less than 1% for core frequencies from 16
MHz and below. To enable the mode at frequencies from 16 MHz and below write WSOSCBTP to the MODE field of the
MSC_READCTRL register. For frequencies above 16 MHz, use the WS1SCBTP mode, and for frequencies above 32 MHz, use the
WS2SCBTP mode. An increased performance penalty per clock cycle must be expected compared to WSOSCBTP mode. The perform-
ance penalty in WS1SCBTP/WS2SCBTP mode depends greatly on the density and organization of conditional branch instructions in
the code.

7.3.4.5 Cortex-M4 If-Then Block Folding

The Cortex-M4 offers a mechanism known as if-then block folding. This is a form of speculative prefetching where small if-then blocks
are collapsed in the prefetch buffer if the condition evaluates to false. The instructions in the block then appear to execute in zero cy-
cles. With this scheme, performance is optimized at the cost of higher energy consumption as the processor fetches more instructions
from memory than it actually executes. To disable the mode, write a 1 to the DISFOLD bit in the NVIC Auxiliary Control Register; see
the Cortex-M4 Technical Reference Manual for details. Normally, it is expected that this feature is most efficient at core frequencies
above 16 MHz. Folding is enabled by default.



EFM32WG Reference Manual

7.3.4.6 Instruction Cache

The MSC includes an instruction cache. The instruction cache for the internal flash memory is enabled by default, but can be disabled
by setting IFCDIS in MSC_READCTRL. When enabled, the instruction cache typically reduces the number of flash reads significantly,
thus saving energy. In most cases a cache hit-rate of more than 70 % is achievable. When a 32-bit instruction fetch hits in the cache
the data is returned to the processor in one clock cycle. Thus, performance is also improved when wait-states are used (i.e. running at
frequencies above 16 MHz).

The instruction cache is connected directly to the Cortex-M4 and functions as a memory access filter between the processor and the
memory system, as illustrated in the following figure. The cache consists of an access filter, lookup logic, a 128x32 SRAM (512 bytes)
and two performance counters. The access filter checks that the address for the access is of an instruction in the code space (instruc-
tions in RAM outside the code space are not cached). If the address matches, the cache lookup logic and SRAM is enabled. Otherwise,
the cache is bypassed and the access is forwarded to the memory system. The cache is then updated when the memory access com-
pletes. The access filter also disables cache updates for interrupt context accesses if caching in interrupt context is disabled. The per-
formance counters, when enabled, keep track of the number of cache hits and misses. The cache consists of 16 8-word cachelines
organized as 4 sets with 4 ways. The cachelines are filled up continuously one word at a time as the individual words are requested by
the processor. Thus, not all words of a cacheline might be valid at a given time.

Instruction Cache

Cache
ICODE Access Look-up Logic ICODE
AHB-Lite Bus " AHB-Lite Bus
Filter -t
128x32
SRAM IDCODE
Cortex IDCODE AHB-Lite Bus
Performance Counters MUX
< DCODE -
AHB-Lite Bus

Figure 7.1. Instruction Cache

By default, the instruction cache is automatically invalidated when the contents of the flash is changed (i.e. written or erased). In many
cases, however, the application only makes changes to data in the flash, not code. In this case, the automatic invalidate feature can be
disabled by setting AIDIS in MSC_READCTRL. The cache can (independent of the AIDIS setting) be manually invalidated by writing 1
to INVCACHE in MSC_CMD.

In general it is highly recommended to keep the cache enabled all the time. However, for some sections of code with very low cache hit-
rate more energy-efficient execution can be achieved by disabling the cache temporarily. To measure the hit-rate of a code-section, the
built-in performance counters can be used. Before the section, start the performance counters by writing 1 to STARTPC in MSC_CMD.
This starts the performance counters, counting from 0. At the end of the section, stop the performance counters by writing 1 to
STOPPC in MSC_CMD. The number of cache hits and cache misses for that section can then be read from MSC_CACHEHITS and
MSC_CACHEMISSES respectively. The total number of 32-bit instruction fetches will be MSC_CACHEHITS + MSC_CACHEMISSES.
Thus, the cache hit-ratio can be calculated as MSC_CACHEHITS / (MSC_CACHEHITS + MSC_CACHEMISSES). When MSC_CA-
CHEHITS overflows the CHOF interrupt flag is set. When MSC_CACHEMISSES overflows the CMOF interrupt flag is set. These flags
must be cleared explicitly by software. The range of the performance counters can thus be extended by increasing a counter in the
MSC interrupt routine. The performance counters only count when a cache lookup is performed. If the lookup fails, MSC_CACHEMISS-
ES is increased. If the lookup is successful, MSC_CACHEHITS is increased. For example, a cache lookup is not performed if the cache
is disabled or the code is executed from RAM outside the code space. When caching of vector fetches and instructions in interrupt
routines is disabled (ICCDIS in MSC_READCTRL is set), the performance counters do not count when these types of fetches occur
(i.e. while in interrupt context).

By default, interrupt vector fetches and instructions in interrupt routines are also cached. Some applications may get better cache uti-
lization by not caching instructions in interrupt context. This is done by setting ICCDIS in MSC_READCTRL. You should only set this bit
based on the results from a cache hit ratio measurement. In general, it is recommended to keep the ICCDIS bit cleared. Note that look-
ups in the cache are still performed, regardless of the ICCDIS setting - but instructions are not cached when cache misses occur inside
the interrupt routine. So, for example, if a cached function is called from the interrupt routine, the instructions for that function will be
taken from the cache.

The cache content is not retained in EM2, EM3 and EM4. The cache is therefore invalidated regardless of the setting of AIDIS in
MSC_READCTRL when entering these energy modes. Applications that switch frequently between EMO and EM2/3 and execute the
very same non-looping code almost every time will most likely benefit from putting this code in RAM. The interrupt vectors can also be
put in RAM to reduce current consumption even further.



EFM32WG Reference Manual

The cache also supports caching of instruction fetches from the external bus interface (EBI) when accessing the EBI through code
space. By default, this is enabled, but it can be disabled by setting EBICDIS in MSC_READCTRL.

7.3.5 Erase and Write Operations

The AUXHFRCO is used for timing during flash write and erase operations. To achieve correct timing, the MSC_TIMEBASE register
has to be configured according to the settings in CMU_AUXHFRCOCTRL. BASE in MSC_TIMEBASE defines how many AUXCLK cy-
cles - 1 there is in 1 us or 5 us, depending on the configuration of PERIOD. To ensure that timing of flash write and erase operations is
within the specification of the flash, the value written to BASE should give at least a 10% margin with respect to the period, i.e. for the 1
us PERIOD, the number of cycles should at least span 1.1 us, and for the 5 us period they should span at least 5.5 us. For the 1 MHz
band, PERIOD in MSC_TIMEBASE should be set to 5US, while it should be set to 1US for all other AUXHFRCO bands.

Both page erase and write operations require that the address is written into the MSC_ADDRB register. For erase operations, the ad-
dress may be any within the page to be erased. Load the address by writing 1 to the LADDRIM bit in the MSC_WRITECMD register.
The LADDRIM bit only has to be written once when loading the first address. After each word is written the internal address register
ADDR will be incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the loaded address is outside
the flash and the LOCKED bit of the MSC_STATUS register is set if the page addressed is locked. Any attempts to command erase of
or write to the page are ignored if INVADDR or the LOCKED bits of the MSC_STATUS register are set. To abort an ongoing erase, set
the ERASEABORT bit in the MSC_WRITECMD register.

When a word is written to the MSC_WDATA register, the WDATAREADY bit of the MSC_STATUS register is cleared. When this status
bit is set, software or DMA may write the next word.

A single word write is commanded by setting the WRITEONCE bit of the MSC_WRITECMD register. The operation is complete when
the BUSY bit of the MSC_STATUS register is cleared and control of the flash is handed back to the AHB interface, allowing application
code to resume execution.

For a DMA write the software must write the first word to the MSC_WDATA register and then set the WRITETRIG bit of the
MSC_WRITECMD register. DMA triggers when the WDATAREADY bit of the MSC_STATUS register is set.

It is possible to write words twice between each erase by keeping at 1 the bits that are not to be changed. Let us take as an example
writing two 16 bit values, OXAAAA and 0x5555. To safely write them in the same flash word this method can be used:

+ Write OXFFFFAAAA (word in flash becomes OxFFFFAAAA)
» Write 0x5555FFFF (word in flash becomes 0x5555AAAA)

Note: During a write or erase, flash read accesses will be stalled, effectively halting code execution from flash. Code execution contin-
ues upon write/erase completion. Code residing in RAM may be executed during a write/erase operation.

Note: The MSC_WDATA and MSC_ADDRSB registers are not retained when entering EM2 or lower energy modes.

7.3.5.1 Mass Erase

A mass erase can be initiated from software using ERASEMAINO in MSC_WRITECMD. This command will start a mass erase of the
entire flash. Prior to initiating a mass erase, MSC_MASSLOCK must be unlocked by writing 0x631A to it. After a mass erase has been
started, this register can be locked again to prevent runaway code from accidentally triggering a mass erase.

The regular flash page lock bits will not prevent a mass erase. To prevent software from initiating mass erases, use the mass erase
lock bits in the mass erase lock word (MLW).



EFM32WG Reference Manual
MSC - Memory System Controller

7.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 MSC_CTRL RwW Memory System Control Register
0x004 MSC_READCTRL RwW Read Control Register

0x008 |MSC_WRITECTRL RW Write Control Register

0x00C |MSC_WRITECMD WA1 Write Command Register

0x010 MSC_ADDRB RW Page Erase/Write Address Buffer
0x018 MSC_WDATA RwW Write Data Register

0x01C | MSC_STATUS R Status Register

0x02C |MSC_IF Interrupt Flag Register

0x030 MSC_IFS WA1 Interrupt Flag Set Register
0x034 MSC_IFC (R)W1 Interrupt Flag Clear Register
0x038 MSC_IEN RW Interrupt Enable Register

0x03C |MSC_LOCK RwW Configuration Lock Register
0x040 MSC_CMD WA1 Command Register

0x044 MSC_CACHEHITS Cache Hits Performance Counter
0x048 MSC_CACHEMISSES Cache Misses Performance Counter
0x050 MSC_TIMEBASE RwW Flash Write and Erase Timebase
0x054 MSC_MASSLOCK RW Mass Erase Lock Register

silabs.com | Building a more connected world.

Rev. 1.1 | 66




EFM32WG Reference Manual
MSC - Memory System Controller

7.5 Register Description

7.5.1 MSC_CTRL - Memory System Control Register

Offset Bit Position

0000 5|8 /RKKLRIQNTIRR LRI VT2 o0 o/ ~ov <o a~|o

Reset -

Access E
|_
—
)

Name E
%)
)
m

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 BUSFAULT 1 RW Bus Fault Response Enable

When this bit is set, the memory system generates bus error response.

Value Mode Description

0 GENERATE A bus fault is generated on access to unmapped code and system
space.

1 IGNORE Accesses to unmapped address space is ignored.

silabs.com | Building a more connected world.

Rev. 1.1 | 67




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.2 MSC_READCTRL - Read Control Register

Offset Bit Position
0004 158 IRIRNILRIQY TR T2 T2 N2 0 (w/~oo/ v oo
Reset % ©|o|o|o o g
Access E 5 E 5 = E
>
O]
L
<
Name i Zlo o »
Q= @ L
% Scg2a 2
) < @ Qe |o ()
) w9 <L =
Bit Name Reset Access Description
31:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 BUSSTRATEGY 0x0 RW Strategy for bus matrix
Specify which master has low latency to bus matrix.
Value Mode Description
0 CPU
1 DMA
2 DMAEM1
3 NONE
15:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
7 RAMCEN 0 RW RAM Cache Enable
Enable instruction caching for RAM in code-space.
6 EBICDIS 0 RW External Bus Interface Cache Disable
Disable instruction cache for external bus interface.
5 ICCDIS 0 RW Interrupt Context Cache Disable
Set this bit to automatically disable caching of vector fetches and instruction fetches in interrupt context. Cache lookup will
still be performed in interrupt context. When set, the performance counters will not count when these types of fetches occur.
4 AIDIS 0 RW Automatic Invalidate Disable
When this bit is set the cache is not automatically invalidated when a write or page erase is performed.
3 IFCDIS 0 RW Internal Flash Cache Disable
Disable instruction cache for internal flash memory.
2:0 MODE 0x1 RwW Read Mode

If software wants to set a core clock frequency above 16 MHz, this register must be set to WS1 or WS1SCBTP before the
core clock is switched to the higher frequency. When changing to a lower frequency, this register can be set to WSO or
WSO0SCBTP after the frequency transition has been completed. After reset, the core clock is 14 MHz from the HFRCO but
the MODE field of MSC_READCTRL register is set to WS1. This is because the HFRCO may produce a frequency above
16 MHz before it is calibrated. If the HFRCO is used as clock source, wait until the oscillator is stable on the new frequency
to avoid unpredictable behavior.

silabs.com | Building a more connected world. Rev. 1.1 | 68




EFM32WG Reference Manual
MSC - Memory System Controller

Bit Name Reset Access Description

Value Mode Description

0 WSO Zero wait-states inserted in fetch or read transfers.

1 WSH1 One wait-state inserted for each fetch or read transfer. This mode is re-
quired for a core frequency above 16 MHz.

2 WSO0SCBTP Zero wait-states inserted with the Suppressed Conditional Branch Tar-
get Prefetch (SCBTP) function enabled. SCBTP saves energy by de-
laying the Cortex' conditional branch target prefetches until the condi-
tional branch instruction is in the execute stage. When the instruction
reaches this stage, the evaluation of the branch condition is completed
and the core does not perform a speculative prefetch of both the
branch target address and the next sequential address. With the
SCBTP function enabled, one instruction fetch is saved for each
branch not taken, with a negligible performance penalty.

3 WS1SCBTP One wait-state access with SCBTP enabled.

4 WS2 Two wait-states inserted for each fetch or read transfer. This mode is
required for a core frequency above 32 MHz.

5 WS2SCBTP Two wait-state access with SCBTP enabled.

7.5.3 MSC_WRITECTRL - Write Control Register

Bit Position

0x008 |5 /8IR RN &LRIQNTIRI22= L T2 2 olo~lowv v oa o
Reset olo
Access E 5
|_
o
O
0|
m
Name 2
x>
w
gl
X =
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1 IRQERASEABORT 0 RW Abort Page Erase on Interrupt
When this bit is set to 1, any Cortex interrupt aborts any current page erase operation.
0 WREN 0 RW Enable Write/Erase Controller

When this bit is set, the MSC write and erase functionality is enabled.

silabs.com | Building a more connected world.

Rev. 1.1 | 69




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.4 MSC_WRITECMD - Write Command Register

Offset Bit Position
0x00C |5 8/ XN &LRIQYNTR22TLL T2 2olon~owv von o
Reset o o o|lo|o|o|o|o
Access = = SHEHBEE
< =
= S 1% L w
< £ ololola|@
0l Z2 z|< s
Name < = <|F|O|d|la |2
e LUl Wiy | olwlw|x
< 2] DIE|E|IF|9Q O
= & rleigE 2
&) | w2 | /= w3
Bit Name Reset Access Description
31:13 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
12 CLEARWDATA 0 W1 Clear WDATA state
Will set WDATAREADY and DMA request. Should only be used when no write is active.
11:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
8 ERASEMAINO 0 W1 Mass erase region 0
Initiate mass erase of region 0. For devices supporting read-while-write, this is the lower half of the flash. For other devices
it is the entire flash. Before use MSC_MASSLOCK must be unlocked. To completely prevent access from software, clear bit
0 in the mass erase lock-word (MLW).
7:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 ERASEABORT 0 W1 Abort erase sequence
Writing to this bit will abort an ongoing erase sequence.
4 WRITETRIG 0 W1 Word Write Sequence Trigger
Functions like MSC_CMD_WRITEONCE, but will set MSC_STATUS_WORDTIMEOUT if no new data is written to
MSC_WDATA within the 30 us timeout.
3 WRITEONCE 0 W1 Word Write-Once Trigger
Start write of the first word written to MSC_WDATA, then add 4 to ADDR and write the next word if available within a 30 ps
timeout. When ADDR is incremented past the page boundary, ADDR is set to the base of the page.
2 WRITEEND 0 W1 End Write Mode
Write 1 to end write mode when using the WRITETRIG command.
1 ERASEPAGE 0 W1 Erase Page
Erase any user defined page selected by the MSC_ADDRB register. The WREN bit in the MSC_WRITECTRL register must
be set in order to use this command.
0 LADDRIM 0 W1 Load MSC_ADDRSB into ADDR

Load the internal write address register ADDR from the MSC_ADDRSB register. The internal address register ADDR is in-
cremented automatically by 4 after each word is written. When ADDR is incremented past the page boundary, ADDR is set
to the base of the page.

silabs.com | Building a more connected world. Rev.1.1 | 70




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.5 MSC_ADDRB - Page Erase/Write Address Buffer

Offset Bit Position
0010 5|88 NQILI QI TR 22 S22 20w r~owx oo~ o
o
o
o
o
Reset S
o
(=)
X
o
Access E
&
Name a
(]
<
Bit Name Reset Access Description
31:0 ADDRB 0x00000000 RW Page Erase or Write Address Buffer

This register holds the page address for the erase or write operation. This register is loaded into the internal MSC_ADDR
register when the LADDRIM field in MSC_WRITECMD is set. The MSC_ADDR register is not readable. This register is not
retained when entering EM2 or lower energy modes.

7.5.6 MSC_WDATA - Write Data Register

Offset Bit Position
x018 |15 3 IQIQRNQQIQIVNIQRNS T eI 2|¥t|Q|lololm|o/b|lt|m|a|~]|0o

o

o

o

o
Reset S

o

o

X

o
Access 5

>
Name S

=
Bit Name Reset Access Description
31:0 WDATA 0x00000000 RW Write Data

The data to be written to the address in MSC_ADDR. This register must be written when the WDATAREADY bit of
MSC_STATUS is set. This register is not retained when entering EM2 or lower energy modes.

silabs.com | Building a more connected world. Rev. 1.1 | 71




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.7 MSC_STATUS - Status Register

Offset Bit Position
x01C |5 /8/RXIN LR IQNTRZ2T L L T2 2olon~owvvon o
Reset oo |+~
Access r| r| x| x| o
[a]
w5
o|x|o|Q
z oW g
Name z |2 2 @lx A
Z |l '5 < |2 |5
Slalg B2
74 < < 0@
d w2 €2 m
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6 PCRUNNING 0 R Performance Counters Running
This bit is set while the performance counters are running. When one performance counter reaches the maximum value,
this bit is cleared.
5 ERASEABORTED 0 R The Current Flash Erase Operation Aborted
When set, the current erase operation was aborted by interrupt.
4 WORDTIMEOUT 0 R Flash Write Word Timeout
When this bit is set, MSC_WDATA was not written within the timeout. The flash write operation timed out and access to the
flash is returned to the AHB interface. This bit is cleared when the ERASEPAGE, WRITETRIG or WRITEONCE commands
in MSC_WRITECMD are triggered.
3 WDATAREADY 1 R WDATA Write Ready
When this bit is set, the content of MSC_WDATA is read by MSC Flash Write Controller and the register may be updated
with the next 32-bit word to be written to flash. This bit is cleared when writing to MSC_WDATA.
2 INVADDR 0 R Invalid Write Address or Erase Page
Set when software attempts to load an invalid (unmapped) address into ADDR.
1 LOCKED 0 R Access Locked
When set, the last erase or write is aborted due to erase/write access constraints.
0 BUSY 0 R Erase/Write Busy

When set, an erase or write operation is in progress and new commands are ignored.

silabs.com | Building a more connected world. Rev. 1.1 | 72




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.8 MSC_IF - Interrupt Flag Register

Offset Bit Position
0026 5|88 NQIRI QI TR 22T LT 220w ~ow<oa - o
Reset olololo
Access r| x| x| o
L
Name "g" é E g
O|0 |2 |u
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3 CMOF 0 R Cache Misses Overflow Interrupt Flag
Set when MSC_CACHEMISSES overflows.
2 CHOF 0 R Cache Hits Overflow Interrupt Flag
Set when MSC_CACHEHITS overflows.
1 WRITE 0 R Write Done Interrupt Read Flag
Set when a write is done.
0 ERASE 0 R Erase Done Interrupt Read Flag

Set when erase is done.

7.5.9 MSC_IFS - Interrupt Flag Set Register

Bit Position
0x030 |5 S IQIQNQQIQNIQRNS T e 2|¥tQ|lololm|o|b|lt|m|a|~|0O
Reset o|o|o|o
Access = x|z
L
Name "g" é E g
O|0 |2 |u
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3 CMOF 0 W1 Cache Misses Overflow Interrupt Set
Set the CMOF flag and generate interrupt.
2 CHOF 0 W1 Cache Hits Overflow Interrupt Set
Set the CHOF flag and generate interrupt.
1 WRITE 0 W1 Write Done Interrupt Set
Set the write done bit and generate interrupt.
0 ERASE 0 W1 Erase Done Interrupt Set

Set the erase done bit and generate interrupt.

silabs.com | Building a more connected world.

Rev. 1.1 | 73




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.10 MSC_IFC - Interrupt Flag Clear Register

Offset Bit Position
0034 53R ENIQRIRNTR 22 TL2 T2 T 20 w~oow oo
Reset olololo
Access i%: :n% l.% l.%
L
Name é (';5 E_—:J g
O|0 |2 W
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3 CMOF 0 (R)wW1 Cache Misses Overflow Interrupt Clear
Clear the CMOF interrupt flag.
2 CHOF 0 (R)wW1 Cache Hits Overflow Interrupt Clear
Clear the CHOF interrupt flag.
1 WRITE 0 (R)\W1  Write Done Interrupt Clear
Clear the write done bit.
0 ERASE 0 (R)W1 Erase Done Interrupt Clear

Clear the erase done bit.

7.5.11 MSC_IEN - Interrupt Enable Register

Bit Position
038 |53 RRNSQRIRYIR2RTeLI2Y 20w~ on v oa-o
Reset o|lo|lo|o
Access E 5 E E
L
Name LCEIS é E g
O|0 = |u
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3 CMOF 0 RW Cache Misses Overflow Interrupt Enable
Enable the cache misses performance counter overflow interrupt.
2 CHOF 0 RW Cache Hits Overflow Interrupt Enable
Enable the cache hits performance counter overflow interrupt.
1 WRITE 0 RW Write Done Interrupt Enable
Enable the write done interrupt.
0 ERASE 0 RW Erase Done Interrupt Enable

Enable the erase done interrupt.

silabs.com | Building a more connected world.

Rev. 1.1 | 74




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.12 MSC_LOCK - Configuration Lock Register

Offset Bit Position
0x03C |15 181X RQIQII QNIRRT e¥t|Qloo|~|lo|jv|t|m|a|-]|o
o
o
Reset =
x
o
Access 5
>
Y
Name 1
(6]
o
-
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 LOCKKEY 0x0000 RW Configuration Lock

Write any other value than the unlock code to lock access to MSC_CTRL, MSC_READCTRL, MSC_WRITECTRL and
MSC_TIMEBASE. Write the unlock code to enable access. When reading the register, bit 0 is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 MSC registers are unlocked.
LOCKED 1 MSC registers are locked.
Write Operation

LOCK 0 Lock MSC registers.
UNLOCK 0x1B71 Unlock MSC registers.

silabs.com | Building a more connected world.

Rev.1.1 | 75




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.13 MSC_CMD - Command Register

Offset Bit Position
0040 158 IRIRNILRIQY RS2 T2 N2 0 (w/~o|o/ v oo
Reset o|o|o
Access =2z
L
qEE
Name o 'n_: S
o< |9
e e
nln|Z
Bit Name Reset Access Description
31:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
2 STOPPC 0 W1 Stop Performance Counters
Use this command bit to stop the performance counters.
1 STARTPC 0 W1 Start Performance Counters
Use this command bit to start the performance counters. The performance counters always start counting from 0.
0 INVCACHE 0 W1 Invalidate Instruction Cache

Use this register to invalidate the instruction cache.

7.5.14 MSC_CACHEHITS - Cache Hits Performance Counter

Offset Bit Position
004 158 RIRKNIQRIRITR2RELRILYT 20 0~ ob v oo o
o
3
Reset S
o
X
o
Access x
)
=
i
Name T
O
<
O
Bit Name Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
19:0 CACHEHITS 0x00000 R Cache hits since last performance counter start command.

Use to measure cache performance for a particular code section.

silabs.com | Building a more connected world.

Rev. 1.1 | 76




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.15 MSC_CACHEMISSES - Cache Misses Performance Counter

Offset Bit Position
x048 |5 IRIRIRNILRIRQYTIRIZI2T LRI Y T2 oo~ ob v o~ o
o
3
Reset S
o
X
o
Access e
%)
|
%)
)
Name =
I
O
<
O
Bit Name Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
19:0 CACHEMISSES 0x00000 R Cache misses since last performance counter start command.

Use to measure cache performance for a particular code section.

7.5.16 MSC_TIMEBASE - Flash Write and Erase Timebase

Bit Position
0x050 SRR IQQIIQIF QR I 2 ¥tQlo|lo~o|w|t|m|n|~]|o
o
Reset o =
o
Access E E
8
Name o 0
l <
o M
Bit Name Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
16 PERIOD 0 RW Sets the timebase period
Decides whether TIMEBASE specifies the number of AUX cycles in 1 us or 5 us. 5 us should only be used with 1 MHz
AUXHFRCO band.
Value Mode Description
0 1US TIMEBASE period is 1 us.
1 5US TIMEBASE period is 5 us.
15:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5:0 BASE 0x10 RW Timebase used by MSC to time flash writes and erases

Should be set to the number of full AUX clock cycles in the period given by MSC_TIMEBASE_PERIOD. l.e. 1.1 us or 5.5.
us with PERIOD cleared or set, respectively. The resetvalue of the timebase matches a 14 MHz AUXHFRCO, which is the

default frequency of the AUXHFRCO.

Rev. 1.1 | 77

silabs.com | Building a more connected world.




EFM32WG Reference Manual
MSC - Memory System Controller

7.5.17 MSC_MASSLOCK - Mass Erase Lock Register

Offset Bit Position
0x054 2 QXL QI Q]I I e|¥If@lolo~lov|t m|la|-]|o
)
Reset =
x
o
Access 5
>
Y
Name 1
(6]
o
-
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 LOCKKEY 0x0001 RW Mass Erase Lock

Write any other value than the unlock code to lock access the the ERASEMAINO and ERASEMAIN1 commands. Write the
unlock code 631A to enable access. When reading the register, bit 0 is set when the lock is enabled. Locked by default.

Mode Value Description

Read Operation

UNLOCKED 0 Mass erase unlocked.
LOCKED 1 Mass erase locked.
Write Operation

LOCK 0 Lock mass erase.
UNLOCK 0x631A Unlock mass erase.

silabs.com | Building a more connected world.

Rev.1.1 | 78




EFM32WG Reference Manual
DMA - DMA Controller

8. DMA - DMA Controller

controller

8.1 Introduction

External Bus
Interface

Peripherals

Quick Facts
What?

The DMA controller can move data without CPU in-
tervention, effectively reducing the energy consump-
tion for a data transfer.

Why?

The DMA can perform data transfers more energy
efficiently than the CPU and allows autonomous op-
eration in low energy modes. The LEUART can for
instance provide full UART communication in EM2,
consuming only a few pyA by using the DMA to move
data between the LEUART and RAM.

How?

The DMA controller has multiple highly configurable,
prioritized DMA channels. Advanced transfer modes
such as ping-pong and scatter-gather make it possi-
ble to tailor the controller to the specific needs of an
application.

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing
the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes for example when moving
data from the USART to RAM or from the External Bus Interface (EBI) to the DAC. The DMA controller uses the PL230 uDMA controller

licensed from ARM.

Note: ARM PL230 homepage [ http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html ].

Each of the PL230s channels on the EFM32 can be connected to any of the EFM32 peripherals.

silabs.com | Building a more connected world.

Rev. 1.1 | 79



http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html

EFM32WG Reference Manual
DMA - DMA Controller

8.2 Features

The DMA controller is accessible as a memory mapped peripheral
Possible data transfers include

* RAM/EBI/Flash to peripheral

* RAM/EBI to Flash

» Peripheral to RAM/EBI

* RAM/EBI/Flash to RAM/EBI

The DMA controller has 12 independent channels

Each channel has one (primary) or two (primary and alternate) descriptors
The configuration for each channel includes

» Transfer mode

* Priority

» Word-count

» Word-size (8, 16, 32 bit)
The transfer modes include

+ Basic (using the primary or alternate DMA descriptor)

* Ping-pong (switching between the primary or alternate DMA descriptors, for continuous data flow to/from peripherals)
» Scatter-gather (using the primary descriptor to configure the alternate descriptor)
Each channel has a programmable transfer length

Channels 0 and 1 support looped transfers

Channel 0 supports 2D copy
A DMA channel can be triggered by any of several sources:

» Communication modules (USART, UART, LEUART)

» Timers (TIMER)

* Analog modules (DAC, ACMP, ADC)

» External Bus Interface (EBI)

» Software

Programmable mapping between channel number and peripherals - any DMA channel can be triggered by any of the available sour-
ces

Interrupts upon transfer completion

Data transfer to/from LEUART in EM2 is supported by the DMA, providing extremely low energy consumption while performing
UART communications

silabs.com | Building a more connected world. Rev. 1.1 | 80




EFM32WG Reference Manual
DMA - DMA Controller

8.3 Block Diagram

An overview of the DMA and the modules it interacts with is shown in the following figure.

Interrupts
APB block AHB block
Configuration APB . DMA data
control memory AHB-Lite transfer
maboed master
PP interface
registers
Configuration
Perioh | Error
eriphera
Channel
DMA Core
select Channel
done

Peripheral

Figure 8.1. DMA Block Diagram

The DMA Controller consists of four main parts:

» An APB block allowing software to configure the DMA controller

» An AHB block allowing the DMA to read and write the DMA descriptors and the source and destination data for the DMA transfers
» A DMA control block controlling the operation of the DMA, including request/acknowledge signals for the connected peripherals

» A channel select block routing the right peripheral request to each DMA channel

silabs.com | Building a more connected world. Rev. 1.1 | 81




EFM32WG Reference Manual

8.4 Functional Description

The DMA Controller is highly flexible. It is capable of transferring data between peripherals and memory without involvement from the
processor core. This can be used to increase system performance by off-loading the processor from copying large amounts of data or
avoiding frequent interrupts to service peripherals needing more data or having available data. It can also be used to reduce the system
energy consumption by making the DMA work autonomously with the LEUART for data transfer in EM2 without having to wake up the
processor core from sleep.

The DMA Controller contains 12 independent channels. Each of these channels can be connected to any of the available peripheral
trigger sources by writing to the configuration registers, see 8.4.1 Channel Select Configuration. In addition, each channel can be trig-
gered by software (for large memory transfers or for debugging purposes).

What the DMA Controller should do (when one of its channels is triggered) is configured through channel descriptors residing in system
memory. Before enabling a channel, the software must therefore take care to write this configuration to memory. When a channel is
triggered, the DMA Controller will first read the channel descriptor from system memory, and then it will proceed to perform the memory
transfers as specified by the descriptor. The descriptor contains the memory address to read from, the memory address to write to, the
number of bytes to be transferred, etc. The channel descriptor is described in detail in 8.4.3 Channel Control Data Structure.

In addition to the basic transfer mode, the DMA Controller also supports two advanced transfer modes; ping-pong and scatter-gather.
Ping-pong transfers are ideally suited for streaming data for high-speed peripheral communication as the DMA will be ready to retrieve
the next incoming data bytes immediately while the processor core is still processing the previous ones (and similarly for outgoing com-
munication). Scatter-gather involves executing a series of tasks from memory and allows sophisticated schemes to be implemented by
software.

Using different priority levels for the channels and setting the number of bytes after which the DMA Controller re-arbitrates, it is possible
to ensure that timing-critical transfers are serviced on time.

8.4.1 Channel Select Configuration
The channel select block allows selecting which peripheral's request lines (dma_req, dma_sreq) to connect to each DMA channel.

This configuration is done by software through the control registers DMA_CHO_CTRL through DMA_ CH11_CTRL, with SOURCESEL
and SIGSEL components. SOURCESEL selects which peripheral to listen to and SIGSEL picks which output signals to use from the
selected peripheral.

All peripherals are connected to dma_req. When this signal is triggered, the DMA performs a number of transfers as specified by the

channel descriptor (2R). The USARTs are additionally connected to the dma_sreq line. When only dma_sreq is asserted but not
dma_req, then the DMA will perform exactly one transfer only (given that dma_sreq is enabled by software).



EFM32WG Reference Manual
DMA - DMA Controller

8.4.2 DMA Control

8.4.2.1 DMA Arbitration Rate

You can configure when the controller arbitrates during a DMA transfer. This enables you to reduce the latency to service a higher
priority channel.

The controller provides four bits that configure how many AHB bus transfers occur before it re-arbitrates. These bits are known as the
R_power bits because the value you enter, R, is raised to the power of two and this determines the arbitration rate. For example, if R =

4 then the arbitration rate is 24, that is, the controller arbitrates every 16 DMA transfers.

The following table lists the arbitration rates.

Table 8.1. AHB Bus Transfer Arbitration Interval

R_power Arbitrate After x DMA Transfers

b0000 x=1
b0001 Xx=2
b0010 x=4
b0011 x=8
b0100 x=16
b0101 x =32
b0110 X =64
b0111 x =128
b1000 x = 256
b1001 x=512
b1010 - b1111 x =1024

Note: You must take care not to assign a low-priority channel with a large R_power because this prevents the controller from servicing
high-priority requests, until it re-arbitrates.

The number of dma transfers N that need to be done is specified by the user. When N > 2R and is not an integer multiple of 2R then the

controller always performs sequences of 2R transfers until N < 2R remain to be transferred. The controller performs the remaining N
transfers at the end of the DMA cycle.

You store the value of the R_power bits in the channel control data structure. See 8.4.3.3 Control Data Configuration for more informa-
tion about the location of the R_power bits in the data structure.

silabs.com | Building a more connected world. Rev. 1.1 | 83




EFM32WG Reference Manual
DMA - DMA Controller

8.4.2.2 Priority
When the controller arbitrates, it determines the next channel to service by using the following information:

« the channel number
« the priority level, default or high, that is assigned to the channel.

You can configure each channel to use either the default priority level or a high priority level by setting the DMA_CHPRIS register.

Channel number zero has the highest priority and as the channel number increases, the priority of a channel decreases. The following
table lists the DMA channel priority levels in descending order of priority.

Table 8.2. DMA Channel Priority

Channel Number Priority Level Setting Descending Order of Channel Priority

0 High —

1 High —

High —
High —

High —

High —

High —

High —

High _
High _

© | o | N OO | WO DN

N
o

High _

=N
—

High —

o

Default _

N

Default —

Default —

Default —

Default —

Default —

Default _

Default —

Default —

© | o | N OO | WO DN

Default —

-
o

Default —

11 Default Lowest-priority DMA channel

After a DMA transfer completes, the controller polls all the DMA channels that are available. The following figure shows the process it
uses to determine which DMA transfer to perform next.

silabs.com | Building a more connected world. Rev. 1.1 | 84




EFM32WG Reference Manual
DMA - DMA Controller

( Start polling )

Is there NO
a channel request ?

YES

A 4

Are any
channel requests

NO

using a high priority-
level ?

YES

A\ 4

Select channel that has the
lowest channel number and
is set to high priority-level

Select channel that has the
lowest channel number

l

)

( Start DMA transfer )

Figure 8.2. Polling Flowchart

silabs.com | Building a more connected world.

Rev.1.1 | 85




EFM32WG Reference Manual
DMA - DMA Controller

8.4.2.3 DMA Cycle Types

The cycle_ctrl bits control how the controller performs a DMA cycle. You can set the cycle_ctrl bits as the following table lists.

Table 8.3. DMA Cycle Types

cycle_ctrl Description

b000 Channel control data structure is invalid

b001 Basic DMA transfer

b010 Auto-request

b011 Ping-pong

b100 Memory scatter-gather using the primary data structure
b101 Memory scatter-gather using the alternate data structure
b110 Peripheral scatter-gather using the primary data structure
b111 Peripheral scatter-gather using the alternate data structure

Note: The cycle_ctrl bits are located in the channel_cfg memory location as described in 8.4.3.3 Control Data Configuration.

For all cycle types, the controller arbitrates after 2R DMA transfers. If you set a low-priority channel with a large 2R value then it pre-
vents all other channels from performing a DMA transfer, until the low-priority DMA transfer completes. Therefore, you must take care
when setting the R_power, that you do not significantly increase the latency for high-priority channels.

8.4.2.3.1 Invalid

After the controller completes a DMA cycle it sets the cycle type to invalid, to prevent it from repeating the same DMA cycle.

8.4.2.3.2 Basic

In this mode, you configure the controller to use either the primary or the alternate data structure. After you enable the channel C and
the controller receives a request for this channel, then the flow for this DMA cycle is as follows:

1. The controller performs 2R transfers. If the number of transfers remaining becomes zero, then the flow continues at step 3.
2. The controller arbitrates:

« if a higher-priority channel is requesting service then the controller services that channel

« if the peripheral or software signals a request to the controller, then it continues at step 1.

3. The controller sets dma_done[C] HIGH for one HFCORECLK cycle. This indicates to the host processor that the DMA cycle is
complete.

8.4.2.3.3 Auto-Request

When the controller operates in this mode, it is only necessary for it to receive a single request to enable it to complete the entire DMA
cycle. This enables a large data transfer to occur, without significantly increasing the latency for servicing higher priority requests, or
requiring multiple requests from the processor or peripheral.

You can configure the controller to use either the primary or the alternate data structure. After you enable the channel C and the con-
troller receives a request for this channel, then the flow for this DMA cycle is as follows:

1. The controller performs 2R transfers for channel C. If the number of transfers remaining is zero the flow continues at step 3.
2. The controller arbitrates. When channel C has the highest priority then the DMA cycle continues at step 1.

3. The controller sets dma_done[C] HIGH for one HFCORECLK cycle. This indicates to the host processor that the DMA cycle is
complete.

silabs.com | Building a more connected world. Rev. 1.1 | 86




EFM32WG Reference Manual
DMA - DMA Controller

8.4.2.3.4 Ping-Pong

In ping-pong mode, the controller performs a DMA cycle using one of the data structures (primary or alternate) and it then performs a
DMA cycle using the other data structure. The controller continues to switch from primary to alternate to primary... until it reads a data
structure that is invalid, or until the host processor disables the channel.

Figure 8.3 Ping-Pong Example on page 87 shows an example of a ping-pong DMA transaction.

Task A: Primary, cycle_ctrl = b011, 2R =4, N =6
Task A

Request —

Req uest —» |-

Task B: Alternate, cycle_ctrl =b011,2R =4, N = 12\'

- dma_done[C]

Request —> e
Request e
Request | . 5 000000000000000000030
dma_done[C]
Task C: Primary, cycle_ctrl =b011,28 =2, N=2 v/
Task C
Request —> s dma_done[C]
Task D: Alternate, cycle_ctrl =b011,2R =4, N=5 \'
Request —> [Eeli
Request | . 5 000000000000000000030 _‘_l_dma_done[C]

Task E: Primary, cycle_ctrl =b011, 2R =4, N=7 v/

Request —> ileaid=

Req uest —» |-

End: Alternate, cycle_ctrl = b000

Figure 8.3. Ping-Pong Example

. dma_done[C]

In Figure 8.3 Ping-Pong Example on page 87 :

silabs.com | Building a more connected world. Rev. 1.1 | 87




EFM32WG Reference Manual
DMA - DMA Controller

Task A 1. The host processor configures the primary data structure for task A.

2. The host processor configures the alternate data structure for task B. This enables the controller to immediately
switch to task B after task A completes, provided that a higher priority channel does not require servicing.

3. The controller receives a request and performs four DMA transfers.

4. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel
has the highest priority.

5. The controller performs the remaining two DMA transfers.

6. The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the arbitration process.

After task A completes, the host processor can configure the primary data structure for task C. This enables the controller to immediate-
ly switch to task C after task B completes, provided that a higher priority channel does not require servicing.

After the controller receives a new request for the channel and it has the highest priority then task B commences:

TaskB 7. The controller performs four DMA transfers.

8. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel
has the highest priority.

9. The controller performs four DMA transfers.

10. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel
has the highest priority.

11. The controller performs the remaining four DMA transfers.

12. The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the arbitration process.

After task B completes, the host processor can configure the alternate data structure for task D.

After the controller receives a new request for the channel and it has the highest priority then task C commences:

Task C 13. The controller performs two DMA transfers.

14. The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the arbitration process.

After task C completes, the host processor can configure the primary data structure for task E.

After the controller receives a new request for the channel and it has the highest priority then task D commences:

Task D 15. The controller performs four DMA transfers.

16. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel
has the highest priority.

17 The controller performs the remaining DMA transfer.

18. The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the arbitration process.

silabs.com | Building a more connected world. Rev. 1.1 | 88




EFM32WG Reference Manual
DMA - DMA Controller

After the controller receives a new request for the channel and it has the highest priority then task E commences:

Task E  19. The controller performs four DMA transfers.
20. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel
has the highest priority.
21. The controller performs the remaining three DMA transfers.
22. The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the arbitration process.

If the controller receives a new request for the channel and it has the highest priority then it attempts to start the next task. However,
because the host processor has not configured the alternate data structure, and on completion of task D the controller set the cycle_ctrl
bits to b000, then the ping-pong DMA transaction completes.

Note: You can also terminate the ping-pong DMA cycle in Figure 8.3 Ping-Pong Example on page 87, if you configure task E to be a
basic DMA cycle by setting the cycle_ctrl field to 3'b001.

silabs.com | Building a more connected world. Rev. 1.1 | 89




EFM32WG Reference Manual
DMA - DMA Controller

8.4.2.3.5 Memory Scatter-Gather

In memory scatter-gather mode the controller receives an initial request and then performs four DMA transfers using the primary data
structure. After this transfer completes, it starts a DMA cycle using the alternate data structure. After this cycle completes, the controller
performs another four DMA transfers using the primary data structure. The controller continues to switch from primary to alternate to
primary... until either:

« the host processor configures the alternate data structure for a basic cycle
« it reads an invalid data structure.

Note: After the controller completes the N primary transfers it invalidates the primary data structure by setting the cycle_ctrl field to
b000.

The controller only asserts dma_done[C] when the scatter-gather transaction completes using an autorequest cycle.

In scatter-gather mode, the controller uses the primary data structure to program the alternate data structure. The following table lists
the fields of the channel_cfg memory location for the primary data structure, that you must program with constant values and those that
can be user defined.

Table 8.4. channel_cfg for a Primary Data Structure, in Memory Scatter-Gather Mode

Bit Field Value Description

Constant-Value Fields

[31:30] dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[3] next_useburst 0 For a memory scatter-gather DMA cycle, this bit must be set to zero
[2:0] cycle_ctrl b100 Configures the controller to perform a memory scatter-gather DMA cycle

User Defined Values

[23:21] dst_prot_ctrl — Configures the state of HPROT when the controller writes the destination data

[20:18] src_prot_ctrl — Configures the state of HPROT when the controller reads the source data

[13:4] n_minus_1 N1 Configures the controller to perform N DMA transfers, where N is a multiple of
four

Note:

1. Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

See 8.4.3.3 Control Data Configuration for more information.

Figure 8.4 Memory Scatter-Gather Example on page 91 shows a memory scatter-gather example.

silabs.com | Building a more connected world.

Rev. 1.1 | 90




EFM32WG Reference Manual
DMA - DMA Controller

Initialization: 1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b100, 2R =4, N = 16.
2. Write the primary source data to memory, using the structure shown in the following table.
src_data_end_ptr |dst_data_end_ptr [channel_cfg Unused
Data for Task A |0xOA000000 0xO0AE00000 cycle_ctrl =b101,2R=4,N=3 OXXXXXXXXX
Data for Task B |0x0B000000 0xO0BE00000 cycle_ctrl=b101,28R=2,N=8 OXXXXXXXXX
Data for Task C  |0x0C000000 0xO0CEO00000 cycle_ctrl =b101,2R=8,N=5 OXXXXXXXXX
Data for Task D  |0x0D000000 0xODEO00000 cycle_ctrl =b010,2R =4, N=4 OXXXXXXXXX
Memory scatter-gather transaction:
Primary Alternate
( ) ( )
Copy from A in
Request —» memory, to Alternate
— Auto Task A
request™ }N =3, 2R=
Auto ___ 4
Copy from B in “request
memory, to Alternate
— Auto Task B
request™

Auto request —»

Auto request —»
Auto request —»

Auto ___
“request

Copy from C in
memory, to Alternate

Auto
request ™

Task C

_

Auto ___
“request

Copy from D in
memory, to Alternate

— Auto — Task D
reques }N =4 2R=

4 dma_done[C]

Figure 8.4. Memory Scatter-Gather Example

In Figure 8.4 Memory Scatter-Gather Example on page 91:

silabs.com | Building a more connected world.

Rev. 1.1 | 91




EFM32WG Reference Manual
DMA - DMA Controller

Initialization 1.

3.

The host processor configures the primary data structure to operate in memory scatter-gather mode by set-
ting cycle_ctrl to b100. Because a data structure for a single channel consists of four words then you must

set 2R to 4. In this example, there are four tasks and therefore N is set to 16.

The host processor writes the data structure for tasks A, B, C, and D to the memory locations that the pri-
mary src_data_end_ptr specifies.

The host processor enables the channel.

The memory scatter-gather transaction commences when the controller receives a request on dma_req[ ] or a manual request from the
host processor. The transaction continues as follows:

Primary, copy A 1.

Task A 3.

Primary, copy B 4.

Task B 6.

Primary, copy C 7.

Task C 9.

Primary, copy D 10.
11.

12.
Task D 13.
14.

After receiving a request, the controller performs four DMA transfers. These transfers write the alternate
data structure for task A.

The controller generates an auto-request for the channel and then arbitrates.

The controller performs task A. After it completes the task, it generates an auto-request for the channel and
then arbitrates.

The controller performs four DMA transfers. These transfers write the alternate data structure for task B.
The controller generates an auto-request for the channel and then arbitrates.

The controller performs task B. After it completes the task, it generates an auto-request for the channel and
then arbitrates.

The controller performs four DMA transfers. These transfers write the alternate data structure for task C.
The controller generates an auto-request for the channel and then arbitrates.

The controller performs task C. After it completes the task, it generates an auto-request for the channel
and then arbitrates.

The controller performs four DMA transfers. These transfers write the alternate data structure for task D.

The controller sets the cycle_ctrl bits of the primary data structure to b000, to indicate that this data struc-
ture is now invalid.

The controller generates an auto-request for the channel and then arbitrates.
The controller performs task D using an auto-request cycle.

The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the arbitration process.

silabs.com | Building a more connected world. Rev. 1.1 | 92




EFM32WG Reference Manual
DMA - DMA Controller

8.4.2.3.6 Peripheral Scatter-Gather

In peripheral scatter-gather mode the controller receives an initial request from a peripheral and then it performs four DMA transfers
using the primary data structure. It then immediately starts a DMA cycle using the alternate data structure, without re-arbitrating.

Note: These are the only circumstances, where the controller does not enter the arbitration process after completing a transfer using
the primary data structure.

After this cycle completes, the controller re-arbitrates and if the controller receives a request from the peripheral that has the highest
priority then it performs another four DMA transfers using the primary data structure. It then immediately starts a DMA cycle using the
alternate data structure, without rearbitrating. The controller continues to switch from primary to alternate to primary... until either:

+ the host processor configures the alternate data structure for a basic cycle
* it reads an invalid data structure

Note: After the controller completes the N primary transfers it invalidates the primary data structure by setting the cycle_ctrl field to
b000.

The controller asserts dma_done[C] when the scatter-gather transaction completes using a basic cycle.

In scatter-gather mode, the controller uses the primary data structure to program the alternate data structure. The following table lists
the fields of the channel_cfg memory location for the primary data structure, that you must program with constant values and those that
can be user defined.

Table 8.5. channel_cfg for a Primary Data Structure, in Peripheral Scatter-Gather Mode

Bit Field Value Description

Constant-Value Fields

[31:30] dst_inc b10 Configures the controller to use word increments for the address

[29:28] dst_size b10 Configures the controller to use word transfers

[27:26] src_inc b10 Configures the controller to use word increments for the address

[25:24] src_size b10 Configures the controller to use word transfers

[17:14] R_power b0010 Configures the controller to perform four DMA transfers

[2:0] cycle_ctrl b110 Configures the controller to perform a peripheral scatter-gather DMA cycle

User Defined Values

[23:21] dst_prot_ctrl — Configures the state of HPROT when the controller writes the destination data

[20:18] src_prot_ctrl — Configures the state of HPROT when the controller reads the source data

[13:4] n_minus_1 N1 Configures the controller to perform N DMA transfers, where N is a multiple of
four

[3] next_useburst — When set to 1, the controller sets the chnl_useburst_set [C] bit to 1 after the

alternate transfer completes

Note:

1. Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times
that you must configure the alternate data structure.

See 8.4.3.3 Control Data Configuration for more information.

Figure 8.5 Peripheral Scatter-Gather Example on page 94 shows a peripheral scatter-gather example.

silabs.com | Building a more connected world. Rev. 1.1 | 93




EFM32WG Reference Manual
DMA - DMA Controller

Initialization: 1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b110, 2R =4, N = 16.
2. Write the primary source data in memory, using the structure shown in the following table.

src_data_end_ptr |dst_data_end_ptr |channel_cfg Unused
Data for Task A |0x0A000000 0xO0AE00000 cycle_ctrl=b111,2R =4, N=3 OXXXXXXXXX
Data for Task B |{0x0B000000 0x0BE00000 cycle_ctrl =b111,2R=2, N=8 OXXXXXXXXX
Data for Task C  {0x0C000000 0x0CEQ00000 cycle_ctrl=b111,2R =8, N=5 OXXXXXXXXX
Data for Task D  {0x0D000000 0xODE00000 cycle_ctrl =b001,2R =4, N=4 OXXXXXXXXX

Peripheral scatter-gather transaction:
Primary Alternate

( ) ( For all primary to alternate transitions, the
Copy from A in controller does not enter the arbitration

)
memory, to Alternate process and immediately performs the
Request —» DMA transfer that the alternate channel
control data structure specifies.
—

Task A
REr
< Request—
Copy from B in
memory, to Alternate
—
Task B

Request [N | 505000000000000008059999000000000
Request [ | 5 05000000000000008050999000000000 N = 8, 2R = 2
Request [N | 505000000000000008050999000000000

< Request—
Copy from C in
memory, to Alternate
—
Task C
N=52R=8
< Request—
Copy from D in
memory, to Alternate
—
Task D

_ R =
} N=4,2"=4 dma_done[C]

Figure 8.5. Peripheral Scatter-Gather Example

In Figure 8.5 Peripheral Scatter-Gather Example on page 94 :

silabs.com | Building a more connected world. Rev. 1.1 | 94




EFM32WG Reference Manual

Initialization 1. The host processor configures the primary data structure to operate in peripheral scatter-gather mode by
setting cycle_ctrl to b110. Because a data structure for a single channel consists of four words then you

must set 2R to 4. In this example, there are four tasks and therefore N is set to 16.

2. The host processor writes the data structure for tasks A, B, C, and D to the memory locations that the pri-
mary src_data_end_ptr specifies.

3. The host processor enables the channel.

The peripheral scatter-gather transaction commences when the controller receives a request on dma_req[ ]. The transaction continues
as follows:

Primary, copy A 1. After receiving a request, the controller performs four DMA transfers. These transfers write the alternate
data structure for task A.

Task A 2. The controller performs task A.

3. After the controller completes the task it enters the arbitration process.
After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy B 4. The controller performs four DMA transfers. These transfers write the alternate data structure for task B.

Task B 5. The controller performs task B. To enable the controller to complete the task, the peripheral must issue a
further three requests.

6. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy C 7. The controller performs four DMA transfers. These transfers write the alternate data structure for task C.
Task C 8. The controller performs task C.
9. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy D 10. The controller performs four DMA transfers. These transfers write the alternate data structure for task D.

11. The controller sets the cycle_ctrl bits of the primary data structure to b00O, to indicate that this data struc-
ture is now invalid.

Task D 12. The controller performs task D using a basic cycle.

13. The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the arbitration process.

8.4.2.4 Error Signaling
If the controller detects an ERROR response on the AHB-Lite master interface, it:

« disables the channel that corresponds to the ERROR
» sets dma_err HIGH.

After the host processor detects that dma_err is HIGH, it must check which channel was active when the ERROR occurred. It can do
this by:

1.Reading the DMA_CHENS register to create a list of disabled channels. When a channel asserts dma_done[ ] then the controller
disables the channel. The program running on the host processor must always keep a record of which channels have recently as-
serted their dma_done[ ] outputs.

2.1t must compare the disabled channels list from step 1, with the record of the channels that have recently set their dma_done[ ]
outputs. The channel with no record of dma_done[C] being set is the channel that the ERROR occurred on.



EFM32WG Reference Manual
DMA - DMA Controller

8.4.3 Channel Control Data Structure
You must provide an area of system memory to contain the channel control data structure. This system memory must:

 provide a contiguous area of system memory that the controller and host processor can access
* have a base address that is an integer multiple of the total size of the channel control data structure.

Figure 8.6 Memory Map for 12 Channels, Including the Alternate Data Structure on page 96 shows the memory that the controller
requires for the channel control data structure, when all 12 channels and the optional alternate data structure are in use.

Alternate Data Structure Primary Data Structure
0x1CO0 - 0x0CO0
Alternate_Ch_11 Primary_Ch_11
0x1B0 - 0x0BO
Alternate_Ch_10 Primary_Ch_10
0x1A0 : 0x0A0
Alternate_Ch_9 Primary_Ch_9
0x190 - 0x090
Alternate_Ch_8 Primary_Ch_8
0x180 : 0x080
Alternate_Ch_7 Primary_Ch_7
0x170 - 0x070
Alternate_Ch_6 Primary_Ch_6
0x160 - 0x060
Alternate_Ch_5 Primary_Ch_5
0x150 : 0x050
Alternate_Ch_4 Primary_Ch_4
0x140 - 0x040
Alternate_Ch_3 Primary_Ch_3
0x130 - 0x030 0x00C
Alternate_Ch_2 Primary_Ch_2 Control
0x120 : 0x020 — - 0x008
Alternate_Ch_1 Primary_Ch_1 Destination End Pointer
0x110 - 0x010 - 0x004
Alternate_Ch_0 Primary_Ch_0 Source End Pointer

0x100 0x000 0x000

Figure 8.6. Memory Map for 12 Channels, Including the Alternate Data Structure

This structure in Figure 8.6 Memory Map for 12 Channels, Including the Alternate Data Structure on page 96 uses 384 bytes of system
memory. The controller uses the lower 8 address bits to enable it to access all of the elements in the structure and therefore the base
address must be at OxXXXXXX00.

You can configure the base address for the primary data structure by writing the appropriate value in the DMA_CTRLBASE register.

You do not need to set aside the full 384 bytes if all dma channels are not used or if all alternate descriptors are not used. If, for exam-
ple, only 4 channels are used and they only need the primary descriptors, then only 64 bytes need to be set aside.

The following table lists the address bits that the controller uses when it accesses the elements of the channel control data structure.

Table 8.6. Address Bit Settings for the Channel Control Data Structure

Address Bits

(8]

A C[3] C[2] C[1] C[0] 0x0, 0x4, or 0x8
Where:
A Selects one of the channel control data structures:
A=0 Selects the primary data structure.
A=1 Selects the alternate data structure.
C[3:0] Selects the DMA channel.

silabs.com | Building a more connected world. Rev. 1.1 | 96




EFM32WG Reference Manual
DMA - DMA Controller

Address[3:0] Selects one of the control elements:
0x0 Selects the source data end pointer.
Ox4 Selects the destination data end pointer.
0x8 Selects the control data configuration.
0xC The controller does not access this address location. If required, you can enable the host

processor to use this memory location as system memory.

Note: It is not necessary for you to calculate the base address of the alternate data structure because the DMA_ALTCTRLBASE regis-

ter provides this information.

Figure 8.7 Detailed Memory Map for the 12 channels, Including the Alternate Data Structure on page 98 shows a detailed memory

map of the descriptor structure.

silabs.com | Building a more connected world.

Rev.1.1 | 97




EFM32WG Reference Manual
DMA - DMA Controller

Alternate for
channel 11

Alternate for
channel 1

Alternate for
channel 0

Primary for
channel 11

Primary for
channel 1

Primary for
channel 0

Unused

Destination End Pointer

Source End Pointer

Unused
Control
Destination End Pointer
Source End Pointer
Control
Destination End Pointer
Source End Pointer
Control
Destination End Pointer

Source End Pointer

Unused
Control
Destination End Pointer
Source End Pointer

Control

Destination End Pointer

Source End Pointer

0x1BC
0x1B8
0x1B4
0x1B0O

0x11C
0x118
0x114
0x110
0x10C
0x108
0x104
0x100
0x0BC
0x0B8
0x0B4
0x0B0O

0x01C
0x018
0x014
0x010
0x00C
0x008
0x004
0x000

—

Alternate
Data
Structure

Primary
Data
Structure

Figure 8.7. Detailed Memory Map for the 12 channels, Including the Alternate Data Structure

The controller uses the system memory to enable it to access two pointers and the control information that it requires for each channel.
The following subsections will describe these 32-bit memory locations and how the controller calculates the DMA transfer address.

silabs.com | Building a more connected world.

Rev. 1.1 | 98




EFM32WG Reference Manual
DMA - DMA Controller

8.4.3.1 Source Data End Pointer

The src_data_end_ptr memory location contains a pointer to the end address of the source data. The following table lists the bit assign-
ments for this memory location.

Table 8.7. src_data_end_ptr Bit Assignments

Description

[31:0] src_data_end_ptr Pointer to the end address of the source data

Before the controller can perform a DMA transfer, you must program this memory location with the end address of the source data. The
controller reads this memory location when it starts a 2R DMA transfer.

Note: The controller does not write to this memory location.

8.4.3.2 Destination Data End Pointer

The dst_data_end_ptr memory location contains a pointer to the end address of the destination data. The following table lists the bit
assignments for this memory location.

Table 8.8. dst_data_end_ptr Bit Assignments

Description

[31:0] dst_data_end_ptr Pointer to the end address of the destination data

Before the controller can perform a DMA transfer, you must program this memory location with the end address of the destination data.
The controller reads this memory location when it starts a 2R DMA transfer.

Note: The controller does not write to this memory location.

silabs.com | Building a more connected world. Rev. 1.1 | 99




EFM32WG Reference Manual
DMA - DMA Controller

8.4.3.3 Control Data Configuration

For each DMA transfer, the channel_cfg memory location provides the control information for the controller. Figure 8.8 channel_cfg Bit
Assignments on page 100 shows the bit assignments for this memory location.

313029282726252423 2120 1817 1413 4 3 2 0

R_power n_minus_1

L src_prot_ctrl L cycle_ctrl
dst_prot_ctrl next_useburst

dst_inc src_inc
dst_size src_size
Figure 8.8. channel_cfg Bit Assignments
Table 8.9. channel_cfg Bit Assignments
Bit Name Description
[31:30] dst_inc Destination address increment.
Source data width = | b00 = byte.
byte
b01 = halfword.
b10 = word.
b11 = no increment. Address remains set to the value that the
dst_data_end_ptr memory location contains.
Source data width = | b00 = reserved.
halfword
b01 = halfword.
b10 = word.
b11 = no increment. Address remains set to the value that the
dst_data_end_ptr memory location contains.
Source data width = | b00 = reserved.
word
b01 = reserved.
b10 = word.
b11 = no increment. Address remains set to the value that the
dst_data_end_ptr memory location contains.
[29:28] dst_size Destination data size.
Note: You must set dst_size to contain the same value that src_size contains.

silabs.com | Building a more connected world. Rev. 1.1 | 100




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Description

[27:26] src_inc Set the bits to control the source address increment. The address increment depends on
the source data width as follows:

Source data width = | b00 = byte.
byte

b01 = halfword.

b10 = word.

b11 = no increment. Address remains set to the value that the
src_data_end_ptr memory location contains.

Source data width = | b00 = reserved.
halfword

b01 = halfword.

b10 = word.

b11 = no increment. Address remains set to the value that the
src_data_end_ptr memory location contains.

Source data width = | b00 = reserved.

word b01 = reserved.
b10 = word.
b11 = no increment. Address remains set to the value that the
src_data_end_ptr memory location contains.
[25:24] src_size Set the bits to match the size of the source data:
b00 = byte
b01 = halfword
b10 = word
b11 = reserved.
[23:21] dst_prot_ctrl Set the bits to control the state of HPROT when the controller writes the destination data.
Bit [23] This bit has no effect on the DMA.
Bit [22] This bit has no effect on the DMA.
Bit [21] Controls the state of HPROT as follows:
0 = HPROT is LOW and the access is non-privileged.
1 =HPROT is HIGH and the access is privileged.
[20:18] src_prot_ctrl Set the bits to control the state of HPROT when the controller reads the source data.
Bit [20] This bit has no effect on the DMA.
Bit [19] This bit has no effect on the DMA.
Bit [18] Controls the state of HPROT as follows:

0 = HPROT is LOW and the access is non-privileged.

1 =HPROT is HIGH and the access is privileged.

silabs.com | Building a more connected world. Rev. 1.1 | 101




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Description
[17:14] R_power Set these bits to control how many DMA transfers can occur before the controller re-arbi-
trates. The possible arbitration rate settings are:
b0000 Arbitrates after each DMA transfer.
b0001 Arbitrates after 2 DMA transfers.
b0010 Arbitrates after 4 DMA transfers.
b0011 Arbitrates after 8 DMA transfers.
b0100 Arbitrates after 16 DMA transfers.
b0101 Arbitrates after 32 DMA transfers.
b0110 Arbitrates after 64 DMA transfers.
b0111 Arbitrates after 128 DMA transfers.
b1000 Arbitrates after 256 DMA transfers.
b1001 Arbitrates after 512 DMA transfers.
b1010 - b1111 Arbitrates after 1024 DMA transfers. This means that no arbitra-
tion occurs during the DMA transfer because the maximum trans-
fer size is 1024.

[13:4] n_minus_1 Prior to the DMA cycle commencing, these bits represent the total number of DMA trans-
fers that the DMA cycle contains. You must set these bits according to the size of DMA
cycle that you require.

The 10-bit value indicates the number of DMA transfers, minus one. The possible values
are:

b000000000 = 1 DMA transfer.

b000000001 = 2 DMA transfers.
b000000010 = 3 DMA transfers.
b000000011 = 4 DMA transfers.
b000000100 = 5 DMA transfers.

b111111111 = 1024 DMA transfers.

The controller updates this field immediately prior to it entering the arbitration process.
This enables the controller to store the number of outstanding DMA transfers that are
necessary to complete the DMA cycle.

silabs.com | Building a more connected world. Rev. 1.1 | 102




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Description
[3] next_useburst Controls if the chnl_useburst_set [C] bit is set to a 1, when the controller is performing a
peripheral scatter-gather and is completing a DMA cycle that uses the alternate data
structure.
Note: Immediately prior to completion of the DMA cycle that the alternate data structure
specifies, the controller sets the chnl_useburst_set [C] bit to 0 if the number of remaining
transfers is less than 2R. The setting of the next_useburst bit controls if the controller
performs an additional modification of the chnl_useburst_set [C] bit.
In peripheral scatter-gather DMA cycle then after the DMA cycle that uses the alternate
data structure completes, either:
0 = the controller does not change the value of the chnl_useburst_set [C] bit. If the
chnl_useburst_set [C] bit is 0 then for all the remaining DMA cycles in the peripheral
scattergather transaction, the controller responds to requests on dma_req[ ] and
dma_sreq[ ], when it performs a DMA cycle that uses an alternate data structure.
1 = the controller sets the chnl_useburst_set [C] bit to a 1. Therefore, for the remaining
DMA cycles in the peripheral scatter-gather transaction, the controller only responds to
requests on dma_req[ ], when it performs a DMA cycle that uses an alternate data struc-
ture.
[2:0] cycle_ctrl The operating mode of the DMA cycle. The modes are:
b000 Stop. Indicates that the data structure is invalid.
b001 Basic. The controller must receive a new request, prior to it enter-
ing the arbitration process, to enable the DMA cycle to complete.
b010 Auto-request. The controller automatically inserts a request for the
appropriate channel during the arbitration process. This means
that the initial request is sufficient to enable the DMA cycle to
complete.
b011 Ping-pong. The controller performs a DMA cycle using one of the
data structures. After the DMA cycle completes, it performs a
DMA cycle using the other data structure. After the DMA cycle
completes and provided that the host processor has updated the
original data structure, it performs a DMA cycle using the original
data structure. The controller continues to perform DMA cycles
until it either reads an invalid data structure or the host processor
changes the cycle_ctrl bits to b001 or b010. See 8.4.2.3.4 Ping-
Pong.
b100 Memory scatter/gather. See 8.4.2.3.5 Memory Scatter-Gather.
When the controller operates in memory scatter-gather mode, you
must only use this value in the primary data structure.
b101 Memory scatter/gather. See 8.4.2.3.5 Memory Scatter-Gather.
When the controller operates in memory scatter-gather mode, you
must only use this value in the alternate data structure.
b110 Peripheral scatter/gather. See 8.4.2.3.6 Peripheral Scatter-Gath-
er.
When the controller operates in peripheral scatter-gather mode,
you must only use this value in the primary data structure.
b111 Peripheral scatter/gather. See 8.4.2.3.6 Peripheral Scatter-Gath-
er.
When the controller operates in peripheral scatter-gather mode,
you must only use this value in the alternate data structure.

silabs.com | Building a more connected world. Rev. 1.1 | 103




EFM32WG Reference Manual
DMA - DMA Controller

At the start of a DMA cycle, or 2R DMA transfer, the controller fetches the channel_cfg from system memory. After it performs 2R, or N,
transfers it stores the updated channel_cfg in system memory.

The controller does not support a dst_size value that is different to the src_size value. If it detects a mismatch in these values, it uses
the src_size value for source and destination and when it next updates the n_minus_1 field, it also sets the dst_size field to the same as
the src_size field.

After the controller completes the N transfers it sets the cycle_ctrl field to b000, to indicate that the channel_cfg data is invalid. This
prevents it from repeating the same DMA transfer.

silabs.com | Building a more connected world. Rev. 1.1 | 104




EFM32WG Reference Manual
DMA - DMA Controller

8.4.3.4 Address Calculation

To calculate the source address of a DMA ftransfer, the controller performs a left shift operation on the n_minus_1 value by a shift
amount that src_inc specifies, and then subtracts the resulting value from the source data end pointer. Similarly, to calculate the desti-
nation address of a DMA transfer, it performs a left shift operation on the n_minus_1 value by a shift amount that dst_inc specifies, and
then subtracts the resulting value from the destination end pointer.

Depending on the value of src_inc and dst_inc, the source address and destination address can be calculated using the equations:

Pointer Values Equation

src_inc = b00 and dst_inc = b00 source address = src_data_end_ptr - n_minus_1

destination address = dst_data_end_ptr - n_minus_1

src_inc = b01 and dst_inc = b01 source address = src_data_end_ptr - (n_minus_1 << 1)

destination address = dst_data_end_ptr - (n_minus_1 << 1)

src_inc = b10 and dst_inc = b10 source address = src_data_end_ptr - (n_minus_1 << 2)

destination address = dst_data_end_ptr - (n_minus_1 << 2)

src_inc =b11 and dst_inc = b11 source address = src_data_end_ptr

destination address = dst_data_end_ptr

The following table lists the destination addresses for a DMA cycle of six words.

Table 8.10. DMA Cycle of Six Words Using a Word Increment

Initial values of channel_cfg, prior to the DMA cycle

src_size = b10, dst_inc = b10, n_minus_1 = b101, cycle_ctrl = 1

End Pointer Count Difference’ Address
0x2AC 5 0x14 0x298
0x2AC 4 0x10 0x29C
DMA transfers 0x2AC 3 0xC 0x2A0
0x2AC 2 0x8 0x2A4
0x2AC 1 0x4 0x2A8
0x2AC 0 0x0 0x2AC

Final values of channel_cfg, after the DMA cycle

src_size = b10, dst_inc = b10, n_minus_1 =0, cycle_ctrl =0

Note:
1. This value is the result of count being shifted left by the value of dst_inc.

The following table lists the destination addresses for a DMA transfer of 12 bytes using a halfword increment.

Table 8.11. DMA Cycle of 12 Bytes Using a Halfword Increment

Initial values of channel_cfg, prior to the DMA cycle

src_size = b00, dst_inc = b01, n_minus_1 = b1011, cycle_ctrl =1, R_power = b11

silabs.com | Building a more connected world. Rev. 1.1 | 105




EFM32WG Reference Manual
DMA - DMA Controller

End Pointer Count Difference’ Address
Ox5E7 11 0x16 0x5D1
Ox5E7 10 0x14 0x5D3
Ox5E7 9 0x12 0x5D5
DMA transfers Ox5E7 8 0x10 0x5D7
Ox5E7 7 OxE 0x5D9
Ox5E7 6 0xC 0x5DB
Ox5E7 5 OxA 0x5DD
Ox5E7 4 0x8 0x5DF

Values of channel_cfg after 2R DMA transfers

src_size = b00, dst_inc = b01, n_minus_1 = b011, cycle_ctrl =1, R_power = b11

End Pointer Count Difference Address
Ox5E7 3 0x6 O0x5E1
DMA transfers Ox5E7 2 0x4 Ox5E3
Ox5E7 1 0x2 Ox5E5
Ox5E7 0 0x0 Ox5E7

Final values of channel_cfg, after the DMA cycle

src_size = b00, dst_inc = b01, n_minus_1 =0, cycle_ctrl =0 2 R_power = b11

Note:
1. This value is the result of count being shifted left by the value of dst_inc.
2. After the controller completes the DMA cycle, it invalidates the channel_cfg memory location by clearing the cycle_ctrl field.

8.4.4 Looped Transfers

A regular DMA channel is done when it has performed the number of transfers given by the channel descriptor. If an application wants
a continuous flow of data, one option is to use ping-pong mode, alternating between two descriptors and having software update one
descriptor while the other is being used. Another way is to use looped transfers.

For DMA channels 0 and 1, looping can be enabled by setting EN in DMA_LOOPO and DMA_LOOP1 respectively. A looping DMA
channel will on completion set the respective DONE interrupt flag, but then reload n_minus_1 in the channel descriptor with the loop
width defined by WIDTH in DMA_LOOPXx and continue transmitting data.

The total length of the transfer is given by the original value of n_minus_1 in the channel descriptor and WIDTH in DMA_LOOPXx times
the number of loops taken. The loop feature can for instance be used to implement a ring buffer, contiguously overwriting old data when
new data is available. To end the loop clear EN in DMA_LOOPXx. The channel will then complete the last loop before stopping.

silabs.com | Building a more connected world. Rev. 1.1 | 106




EFM32WG Reference Manual
DMA - DMA Controller

8.4.5 2D Copy

In addition to looped transfers, DMA channel 0 has the ability to do rectangle transfers, or 2D copy. For an application working with
graphics, this would mean the ability to copy a rectangle of a given width and height from one picture to another. The DMA also has the
ability to copy from linear data to a rectangle, and from a rectangle to linear data.

To set up rectangle copy for DMA channel 0, configure WIDTH in DMA_LOOPO to one less than the rectangle width, and HEIGHT in
DMA_RECTO to one less than the rectangle height. Then set SRCSTRIDE in DMA_RECTO to the outer rectangle width of the source,
and DSTSTRIDE in DMA_RECTO to the outer rectangle width of the destination rectangle. Finally, the channel descriptor for channel 0
has to be configured. The source and destination end pointers should be set to the last element of the first line of the source data and
destination data respectively. The number of elements to be transferred, n_minus_1 should be set equal to WIDTH in DMA_LOOPO.
The parameters are visualized in Figure 8.9 2D Copy on page 107.

Source buffer Destination buffer

Destination
WIDTH SourFiend WIDTH d point
. pointer «— end pointer

h

1H9I3H
1HSI3H

\///V

SRCSTRIDE DSTSTRIDE

Figure 8.9. 2D Copy

When doing a rectangle copy, the source and destination address of the channel descriptor will be incremented line for line as the DMA
works its way through the rectangle. The operation is done when the number of lines specified by HEIGHT in DMA_RECTO has been
copied. The source and destination addresses in the channel descriptor will then point at the last element of the source and destination
rectangles.

On completion, the DONE interrupt flag of channel 0 is set. Looping is not supported for rectangle copy.

In some cases, e.g. when performing graphics operations, it is desirable to create a list of copy operations and have them executed
automatically. This can be done using 2D copy together with the scatter gather mode of the DMA controller. Set DESCRECT in
DMA_CTRL to override SCRSTRIDE and HEIGHT in DMA_RECTO and WIDTH in DMA_LOOPO by the values in the user part of the
DMA descriptor as shown in the following table. In this way every copy command in the list can specify these parameters individually.

Table 8.12. User Data Assignments When DESCRECT is Set

Bit Field Description

[30:20] SRCSTRIDE Stride in source buffer

[19:10] HEIGHT Height - 1 of data to be copied
[9:0] WIDTH Width - 1 of data to be copied

With regular 2D copy, the DMA descriptor will be updated as the copy operation proceeds. To be able to reuse 2D copy scatter gather
list without rewriting source and destination end addresses, set PRDU in DMA_CTRL. This will prevent the address in the descriptor
from being updated. In this case RDSCHO in DMA_RDS must be set and all other bits in DMA_RDS must be cleared. The bits in
DMA_RDS make individual DMA channels remember the source and destination end pointers while active, speeding up their transfers.

8.4.6 Interaction with the EMU

The DMA interacts with the Energy Management Unit (EMU) to allow transfers from , e.g., the LEUART to occur in EM2. The EMU can
wake up the DMA sufficiently long to allow data transfers to occur. See section "DMA Support" in the LEUART documentation.

silabs.com | Building a more connected world. Rev. 1.1 | 107




EFM32WG Reference Manual
DMA - DMA Controller

8.4.7 Interrupts

The PL230 dma_done[n:0] signals (one for each channel) as well as the dma_err signal, are available as interrupts to the Cortex-M4
core. They are combined into one interrupt vector, DMA_INT. If the interrupt for the DMA is enabled in the ARM Cortex-M4 core, an
interrupt will be made if one or more of the interrupt flags in DMA_IF and their corresponding bits in DMA_IEN are set.

8.4.8 Examples

A basic example of how to program the DMA for transferring 42 bytes from the USART1 to memory location 0x20003420. Assumes that
the channel 0 is currently disabled, and that the DMA_ALTCTRLBASE register has already been configured.

1. Configure the channel select for using USART1 with DMA channel 0
a. Write SOURCESEL=0b001101 and SIGSEL=XX to DMA_CHCTRLO
2. Configure the primary channel descriptor for DMA channel 0
a. Write XX (read address of USART1) to src_data_end_ptr
b. Write 0x20003420 + 40 to dst_data_end_ptrc
c. Write these values to channel_cfg for channel 0:
i.dst_inc=b01 (destination halfword address increment)
ii. dst_size=b01 (halfword transfer size)
iii. src_inc=b11 (no address increment for source)
iv. src_size=01 (halfword transfer size)
v.dst_prot_ctrI=000 (no cache/buffer/privilege)
vi.src_prot_ctrl=000 (no cache/buffer/privilege)
vii. R_power=b0000 (arbitrate after each DMA transfer)
viii. n_minus_1=d20 (transfer 21 halfwords)
ix. next_useburst=b0 (not applicable)
x.cycle_ctrl=b001 (basic operating mode)
3. Enable the DMA
a. Write EN=1 to DMA_CONFIG
4. Disable the single requests for channel O (i.e., do not react to data available, wait for buffer full)
a. Write DMA_CHUSEBURSTS|0]=1
5. Enable buffer-full requests for channel 0
a. Write DMA_CHREQMASKC[0]=1
6. Use the primary data structure for channel 0
a. Write DMA_CHALTCIO0]=1
7.Enable channel 0
a. Write DMA_CHENSJ0]=1

silabs.com | Building a more connected world. Rev. 1.1 | 108




EFM32WG Reference Manual
DMA - DMA Controller

8.5 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 DMA_STATUS R DMA Status Registers

0x004 DMA_CONFIG w DMA Configuration Register

0x008 DMA_CTRLBASE RW Channel Control Data Base Pointer Register

0x00C |DMA_ALTCTRLBASE Channel Alternate Control Data Base Pointer Register

0x010 DMA_CHWAITSTATUS Channel Wait on Request Status Register

0x014 DMA_CHSWREQ WA1 Channel Software Request Register

0x018 DMA_CHUSEBURSTS RW1H Channel Useburst Set Register

0x01C |DMA_CHUSEBURSTC W1 Channel Useburst Clear Register

0x020 DMA_CHREQMASKS RWA1 Channel Request Mask Set Register

0x024 DMA_CHREQMASKC W1 Channel Request Mask Clear Register

0x028 DMA_CHENS RWA1 Channel Enable Set Register

0x02C |DMA_CHENC WA1 Channel Enable Clear Register

0x030 DMA_CHALTS RWA1 Channel Alternate Set Register

0x034 DMA_CHALTC W1 Channel Alternate Clear Register

0x038 DMA_CHPRIS RWA1 Channel Priority Set Register

0x03C |DMA_CHPRIC WA1 Channel Priority Clear Register

0x04C |DMA_ERRORC RW Bus Error Clear Register

O0xE10 |DMA_CHREQSTATUS Channel Request Status

OxE18 DMA_CHSREQSTATUS Channel Single Request Status

0x1000 |DMA_IF Interrupt Flag Register

0x1004 |DMA_IFS WA1 Interrupt Flag Set Register

0x1008 |DMA_IFC (R)W1 Interrupt Flag Clear Register

0x100C |DMA_IEN RW Interrupt Enable register

0x1010 |DMA_CTRL RW DMA Control Register

0x1014 |DMA_RDS RwW DMA Retain Descriptor State

0x1020 |DMA_LOOPO RWH Channel 0 Loop Register

0x1024 |DMA_LOOP1 RwW Channel 1 Loop Register

0x1060 |DMA_RECTO RWH Channel 0 Rectangle Register

0x1100 |DMA_CHO_CTRL RwW Channel Control Register
DMA_CHx_CTRL RwW Channel Control Register

0x112C |DMA_CH11_CTRL RW Channel Control Register

silabs.com | Building a more connected world.

Rev. 1.1 | 109




EFM32WG Reference Manual
DMA - DMA Controller

8.6 Register Description

8.6.1 DMA_STATUS - DMA Status Registers

Offset Bit Position
0000 5|8 /R/RNIQIKLI RN TR 2SI L T2 20w ~oo< oo~ o
Reset § g o
Access x x x
Name § E
5 b &
Bit Name Reset Access Description
31:21 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
20:16 CHNUM 0x0B R Channel Number
Number of available DMA channels minus one.
15:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
74 STATE 0x0 R Control Current State
State can be one of the following. Higher values (11-15) are undefined.
Value Mode Description
0 IDLE Idle
1 RDCHCTRLDATA Reading channel controller data
2 RDSRCENDPTR Reading source data end pointer
3 RDDSTENDPTR Reading destination data end pointer
4 RDSRCDATA Reading source data
5 WRDSTDATA Writing destination data
6 WAITREQCLR Waiting for DMA request to clear
7 WRCHCTRLDATA Writing channel controller data
8 STALLED Stalled
9 DONE Done
10 PERSCATTRANS Peripheral scatter-gather transition
3:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
0 EN 0 R DMA Enable Status

When this bit is 1, the DMA is enabled.

silabs.com | Building a more connected world.

Rev.1.1 | 110




EFM32WG Reference Manual
DMA - DMA Controller

8.6.2 DMA_CONFIG - DMA Configuration Register

Offset Bit Position
X004 |5 I2IRIRNLRIRQYTRIZI2T R I Y 20w~ v o~ o
Reset o o
Access = =
|_
@)
Name g
I zZ
O L
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 CHPROT 0 w Channel Protection Control
Control whether accesses done by the DMA controller are privileged or not. When CHPROT = 1 then HPROT is HIGH and
the access is privileged. When CHPROT = 0 then HPROT is LOW and the access is non-privileged.
4:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
0 EN 0 w Enable DMA

Set this bit to enable the DMA controller.

8.6.3 DMA_CTRLBASE - Channel Control Data Base Pointer Register

Offset Bit Position
0x008 |5 3 IQIQNQQIQINIQR T eI 2|¥tQ|lololm|o|b|lt|m|a|~|0O

o

o

o

o
Reset S

o

o

x

o
Access 5

L

)

<
Name o

14

|_

O
Bit Name Reset Access Description
31:0 CTRLBASE 0x00000000 RW Channel Control Data Base Pointer

The base pointer for a location in system memory that holds the channel control data structure. This register must be writ-
ten to point to a location in system memory with the channel control data structure before the DMA can be used. Note that
ctrl_base_ptr[8:0] must be 0.

silabs.com | Building a more connected world. Rev. 1.1 | 111




EFM32WG Reference Manual
DMA - DMA Controller

8.6.4 DMA_ALTCTRLBASE - Channel Alternate Control Data Base Pointer Register

Offset Bit Position
X00C |5/8/28NSILIFIQN TR TCLT2 N2 glo~ow <t oo

o

o

S
Reset S

o

o

X

o
Access x

L

)

<

@
Name o

|_

O

|_

-

<
Bit Name Reset Access Description
31:0 ALTCTRLBASE 0x00000100 R Channel Alternate Control Data Base Pointer

The base address of the alternate data structure. This register will read as DMA_CTRLBASE + 0x100.

silabs.com | Building a more connected world. Rev. 1.1 | 112




EFM32WG Reference Manual
DMA - DMA Controller

8.6.5 DMA_CHWAITSTATUS - Channel Wait on Request Status Register

Offset Bit Position
0010 5|88 NQILI QI TR 22 S22 20w r~owx oo~ o
Reset S (U D I I I R D
Access ¥ x| r|rv|o e o o oe|x|x
%%wwmwwwwwwm
HAREREEEREEEE
AHRHRRREEREE
SEHHEHHHEHEHE
555555555585\
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11WAITSTATUS 1 R Channel 11 Wait on Request Status
Status for wait on request for channel 11.
10 CH10WAITSTATUS 1 R Channel 10 Wait on Request Status
Status for wait on request for channel 10.
9 CHOWAITSTATUS 1 R Channel 9 Wait on Request Status
Status for wait on request for channel 9.
8 CHBWAITSTATUS 1 R Channel 8 Wait on Request Status
Status for wait on request for channel 8.
7 CH7WAITSTATUS 1 R Channel 7 Wait on Request Status
Status for wait on request for channel 7.
6 CH6WAITSTATUS 1 R Channel 6 Wait on Request Status
Status for wait on request for channel 6.
5 CH5WAITSTATUS 1 R Channel 5 Wait on Request Status
Status for wait on request for channel 5.
4 CH4WAITSTATUS 1 R Channel 4 Wait on Request Status
Status for wait on request for channel 4.
3 CH3WAITSTATUS 1 R Channel 3 Wait on Request Status
Status for wait on request for channel 3.
2 CH2WAITSTATUS 1 R Channel 2 Wait on Request Status
Status for wait on request for channel 2.
1 CH1WAITSTATUS 1 R Channel 1 Wait on Request Status
Status for wait on request for channel 1.
0 CHOWAITSTATUS 1 R Channel 0 Wait on Request Status

Status for wait on request for channel 0.

silabs.com | Building a more connected world. Rev. 1.1 | 113




EFM32WG Reference Manual
DMA - DMA Controller

8.6.6 DMA_CHSWREQ - Channel Software Request Register

Offset Bit Position
X014 15 18R QN QI QFI Q22T |e e LI¥IT I |o|lo|~|o|w|t|m|wn|-]|0o
Reset o|lo|lo|o|lo|o|o|o|o|o|o|o
Access =zz22/2/2/22/2/2/22
28 clolaglalaalalalaa
sz PR LR LY
5555553855558
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11SWREQ 0 W1 Channel 11 Software Request
Write 1 to this bit to generate a DMA request for this channel.
10 CH10SWREQ 0 W1 Channel 10 Software Request
Write 1 to this bit to generate a DMA request for this channel.
9 CH9SWREQ 0 W1 Channel 9 Software Request
Write 1 to this bit to generate a DMA request for this channel.
8 CH8SWREQ 0 W1 Channel 8 Software Request
Write 1 to this bit to generate a DMA request for this channel.
7 CH7SWREQ 0 W1 Channel 7 Software Request
Write 1 to this bit to generate a DMA request for this channel.
6 CH6SWREQ 0 W1 Channel 6 Software Request
Write 1 to this bit to generate a DMA request for this channel.
5 CH5SWREQ 0 W1 Channel 5 Software Request
Write 1 to this bit to generate a DMA request for this channel.
4 CH4SWREQ 0 W1 Channel 4 Software Request
Write 1 to this bit to generate a DMA request for this channel.
3 CH3SWREQ 0 W1 Channel 3 Software Request
Write 1 to this bit to generate a DMA request for this channel.
2 CH2SWREQ 0 W1 Channel 2 Software Request
Write 1 to this bit to generate a DMA request for this channel.
1 CH1SWREQ 0 W1 Channel 1 Software Request
Write 1 to this bit to generate a DMA request for this channel.
0 CHOSWREQ 0 W1 Channel 0 Software Request

Write 1 to this bit to generate a DMA request for this channel.

silabs.com | Building a more connected world.

Rev.1.1 | 114




EFM32WG Reference Manual
DMA - DMA Controller

8.6.7 DMA_CHUSEBURSTS - Channel Useburst Set Register

Offset Bit Position
0018 5|88 NIQIRI RN TIR 2T L T2 20w ~oo<oa - o
Reset o|lo|o|o|o|o|lo|lo|o|lo|o|o
I T|T|T|T|/T|T|T|T|T|T|T
Access z222/122/2/2/2/2 222
¥ | ||| | ¥ || x| x|
P2 o oo ol o ol olovloln
0wl nlElEElEE|EIE|E|EE
il nnnnl n o n vy
5|5 | Y| fF|X |0 x|
o m22|2/2/2[|2|2/2|2|2
Name W | 0O 0O on oo oo oo
oW W uuw W u w|w w
== R R A A R R R B B )
—oD2ID2ID2I2|2ID2|2|D2D|D
— (T O[O N O W | T M| AN | — | O
I IT|ZT|Z|T/T|ZT|ZT|T|T ||
[ORICRIGCRICHICRICHRICRICHNECRICREORES)
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11USEBURSTS O RW1H  Channel 11 Useburst Set
See description for channel 0.
10 CH10USEBURSTS 0 RW1H  Channel 10 Useburst Set
See description for channel 0.
9 CH9USEBURSTS 0 RW1H  Channel 9 Useburst Set
See description for channel 0.
8 CHBUSEBURSTS 0 RW1H  Channel 8 Useburst Set
See description for channel 0.
7 CH7USEBURSTS 0 RW1H  Channel 7 Useburst Set
See description for channel 0.
6 CHBUSEBURSTS 0 RW1H  Channel 6 Useburst Set
See description for channel 0.
5 CH5USEBURSTS 0 RW1H  Channel 5 Useburst Set
See description for channel 0.
4 CH4USEBURSTS 0 RW1H  Channel 4 Useburst Set
See description for channel 0.
3 CH3USEBURSTS 0 RW1H  Channel 3 Useburst Set
See description for channel 0.
2 CH2USEBURSTS 0 RW1H  Channel 2 Useburst Set
See description for channel 0.
1 CH1USEBURSTS 0 RW1H  Channel 1 Useburst Set

See description for channel 0.

silabs.com | Building a more connected world.

Rev.1.1 | 115




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Reset Access Description
0 CHOUSEBURSTS 0 RW1H  Channel 0 Useburst Set

Write to 1 to enable the useburst setting for this channel. Reading returns the useburst status. After the penultimate 2*R
transfer completes, if the number of remaining transfers, N, is less than 2*R then the controller resets the chnl_use-
burst_set bit to 0. This enables you to complete the remaining transfers using dma_req[] or dma_sreq[]. In peripheral scat-
ter-gather mode, if the next_useburst bit is set in channel_cfg then the controller sets the chnl_useburst_set[C] bit to a 1,
when it completes the DMA cycle that uses the alternate data structure.

Value Mode Description
0 SINGLEANDBURST Channel responds to both single and burst requests
1 BURSTONLY Channel responds to burst requests only

silabs.com | Building a more connected world. Rev. 1.1 | 116




EFM32WG Reference Manual
DMA - DMA Controller

8.6.8 DMA_CHUSEBURSTC - Channel Useburst Clear Register

Offset Bit Position
x01C |5 /8/RXIN LR IQNTRZ2T L L T2 2olon~owvvon o
Reset o|lo|o|o|o|o|lo|lo|o|lo|o|o
Access zlzz/z/z/2/2/2 /22 22
l(—)QI—JOIC—JOOOOOOOO
nlnlElonlElEE|EIEIE|FE|FE
Xl ol o nlnnn nlnln
S5 |5 || |¥ | ¥ || X ||
D222 22|2/2[D2|D
Name W W |0|W| M0 moomnonmom
Ol n|W|p W W W W w|w|wiwWw
DIDN D0 N[V D DO N D D
oD@ |D2/2[(2/D2|2|/2|D2|>D
- O OIN O W | S MM AN |- O
I T T I T IT|T|T|T|T|T|T
[CRNCRIGREGCRECRICRICRICRICRIGRIGRNG]
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11USEBURSTC 0 W1 Channel 11 Useburst Clear
Write to 1 to disable useburst setting for this channel.
10 CH10USEBURSTC 0 W1 Channel 10 Useburst Clear
Write to 1 to disable useburst setting for this channel.
9 CHOUSEBURSTC 0 W1 Channel 9 Useburst Clear
Write to 1 to disable useburst setting for this channel.
8 CHO8USEBURSTC 0 W1 Channel 8 Useburst Clear
Write to 1 to disable useburst setting for this channel.
7 CH7USEBURSTC 0 WA1 Channel 7 Useburst Clear
Write to 1 to disable useburst setting for this channel.
6 CHBUSEBURSTC 0 W1 Channel 6 Useburst Clear
Write to 1 to disable useburst setting for this channel.
5 CH5USEBURSTC 0 W1 Channel 5 Useburst Clear
Write to 1 to disable useburst setting for this channel.
4 CH4USEBURSTC 0 W1 Channel 4 Useburst Clear
Write to 1 to disable useburst setting for this channel.
3 CH3USEBURSTC 0 W1 Channel 3 Useburst Clear
Write to 1 to disable useburst setting for this channel.
2 CH2USEBURSTC 0 W1 Channel 2 Useburst Clear
Write to 1 to disable useburst setting for this channel.
1 CH1USEBURSTC 0 W1 Channel 1 Useburst Clear
Write to 1 to disable useburst setting for this channel.
0 CHOUSEBURSTC 0 WA1 Channel 0 Useburst Clear

Write to 1 to disable useburst setting for this channel.

silabs.com | Building a more connected world.

Rev.1.1 | 117




EFM32WG Reference Manual
DMA - DMA Controller

8.6.9 DMA_CHREQMASKS - Channel Request Mask Set Register

Offset Bit Position
%020 |58 RIXNLRIQY TR T2 T2 N2 0/w/~oov v o ~|o
Reset o|lo|o|o|o|o|lo|lo|o|lo|o|o
Access A A A A
¥ KXo oo
2IClonlanlnanlvnanananvnn
0w Nn|IX|IX¥X | ¥|IX¥X| X |¥| X |X| Y| X
< |(<| NNV 0 NN N0 0
s s | |L|L gL (<L
Name clolzzzz=Zz===z ==
w w|CG|C|C|C|C|C T C|T|C
Flo W Wl W Wd|w|w|w|w
- |0l | K| | K|K| K| K X K
T - D [O N O W | S MVMIAN |- O
I T T I T IT|ZT|T|T|T|T|IT
[CRNCRIGREGREGRICRICRICRICRIGREGRNG]
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11REQMASKS 0 RWA1 Channel 11 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
10 CH10REQMASKS 0 RW1 Channel 10 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
9 CH9REQMASKS 0 RW1 Channel 9 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
8 CH8REQMASKS 0 RW1 Channel 8 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
7 CH7REQMASKS 0 RWA1 Channel 7 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
6 CHBREQMASKS 0 RW1 Channel 6 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
5 CH5REQMASKS 0 RW1 Channel 5 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
4 CH4REQMASKS 0 RWA1 Channel 4 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
3 CH3REQMASKS 0 RWA1 Channel 3 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
2 CH2REQMASKS 0 RW1 Channel 2 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
1 CH1REQMASKS 0 RW1 Channel 1 Request Mask Set
Write to 1 to disable peripheral requests for this channel.
0 CHOREQMASKS 0 RWA1 Channel 0 Request Mask Set

Write to 1 to disable peripheral requests for this channel.

silabs.com | Building a more connected world. Rev. 1.1 | 118




EFM32WG Reference Manual
DMA - DMA Controller

8.6.10 DMA_CHREQMASKC - Channel Request Mask Clear Register

Offset Bit Position
%024 158 IRIXNILRIQY TR T2 T2 N |20 (w/~oo/ v o« ~|o
Reset o|lo|o|o|o|o|lo|lo|o|lo|o|o
Access zzz2|2 222|222
ngooooooooo
| M|X|X¥X|X¥ | X ¥ | X ¥ X ¥ X
| <N NN 00 on 0 n n
S s <L <L <L | <<
Name cglglzz=z=zz =222z =2
ww|G|C|C|C|C|C T C|T|C
¢l W W W W|Ww | W|Ww|Ww|w w
- |0 | || K ||| [ XX X X X
— (=[O N O W T MOMAN | — | O
I T T T T IT|T|T|T ||| T
[CRNCRIGCRECRICRICHICRICRICRICGRIGRNG]
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11REQMASKC 0 W1 Channel 11 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
10 CH10REQMASKC 0 W1 Channel 10 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
9 CHO9REQMASKC 0 W1 Channel 9 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
8 CH8REQMASKC 0 W1 Channel 8 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
7 CH7REQMASKC 0 W1 Channel 7 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
6 CH6REQMASKC 0 W1 Channel 6 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
5 CH5REQMASKC 0 W1 Channel 5 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
4 CH4REQMASKC 0 W1 Channel 4 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
3 CH3REQMASKC 0 W1 Channel 3 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
2 CH2REQMASKC 0 W1 Channel 2 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
1 CH1REQMASKC 0 W1 Channel 1 Request Mask Clear
Write to 1 to enable peripheral requests for this channel.
0 CHOREQMASKC 0 W1 Channel 0 Request Mask Clear

Write to 1 to enable peripheral requests for this channel.

silabs.com | Building a more connected world.

Rev.1.1 | 119




EFM32WG Reference Manual
DMA - DMA Controller

8.6.11 DMA_CHENS - Channel Enable Set Register

Offset Bit Position
%028 5|38 KNSRI RIS 22NeL T2 20w ~ow< o - o
Reset o|lo|lo|o|lo|o|o|o|o|o|o|o
2I2inlanlvvnlvonaoaan
vame a1
5555553855558
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11ENS 0 RWA1 Channel 11 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
10 CH10ENS 0 RW1 Channel 10 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
9 CHOENS 0 RW1 Channel 9 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
8 CHBENS 0 RW1 Channel 8 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
7 CH7ENS 0 RW1 Channel 7 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
6 CHBENS 0 RW1 Channel 6 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
5 CH5ENS 0 RW1 Channel 5 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
4 CH4ENS 0 RWA1 Channel 4 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
3 CH3ENS 0 RW1 Channel 3 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
2 CH2ENS 0 RW1 Channel 2 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
1 CH1ENS 0 RW1 Channel 1 Enable Set
Write to 1 to enable this channel. Reading returns the enable status of the channel.
0 CHOENS 0 RW1 Channel 0 Enable Set

Write to 1 to enable this channel.

Reading returns the enable status of the channel.

silabs.com | Building a more connected world.

Rev.1.1 | 120




EFM32WG Reference Manual
DMA - DMA Controller

8.6.12 DMA_CHENC - Channel Enable Clear Register

Offset Bit Position
0026 5|88 NQIRI QI TR 22T LT 220w ~ow<oa - o
Reset o|lo|lo|o|lo|o|o|o|o|o|o|o
Access =zz22/2/2/22/2/2/22
(z)%oooooooooo
ame i
55555853835 585535 8
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11ENC 0 W1 Channel 11 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
10 CH10ENC 0 W1 Channel 10 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
9 CH9ENC 0 W1 Channel 9 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
8 CHBENC 0 W1 Channel 8 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
7 CH7ENC 0 W1 Channel 7 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
6 CHBENC 0 W1 Channel 6 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
5 CH5ENC 0 W1 Channel 5 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
4 CH4ENC 0 WA1 Channel 4 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
3 CH3ENC 0 W1 Channel 3 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
2 CH2ENC 0 W1 Channel 2 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
1 CH1ENC 0 WA1 Channel 1 Enable Clear
Write to 1 to disable this channel. See also description for channel 0.
0 CHOENC 0 W1 Channel 0 Enable Clear

Write to 1 to disable this channel. Note that the controller disables a channel, by setting the appropriate bit, when either it
completes the DMA cycle, or it reads a channel_cfg memory location which has cycle_ctrl = b000, or an ERROR occurs on
the AHB-Lite bus. A read from this field returns the value of CHOENS from the DMA_CHENS register.

silabs.com | Building a more connected world.

Rev. 1.1 | 121




EFM32WG Reference Manual
DMA - DMA Controller

8.6.13 DMA_CHALTS - Channel Alternate Set Register

Offset

Bit Position

0030 5|88 NIQILI RN TR 2 E|eL T2 20w ~ow< oo~ o
Reset o|lo|lo|o|lo|o|o|o|o|o|o|o
Access HHHHBEHEHBHEE
PIR2low wlnvnvnvnono oo
Name 2222222222232
T - 0N O IV ST VAN - O
5555553858555 8
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11ALTS 0 RW1 Channel 11 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
10 CH10ALTS 0 RWA1 Channel 10 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
9 CHOALTS 0 RWA1 Channel 9 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
8 CHS8ALTS 0 RW1 Channel 8 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
7 CH7ALTS 0 RW1 Channel 7 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
6 CH6ALTS 0 RWA1 Channel 6 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
5 CH5ALTS 0 RWA1 Channel 5 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
4 CH4ALTS 0 RW1 Channel 4 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
3 CH3ALTS 0 RWA1 Channel 3 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
2 CH2ALTS 0 RWA1 Channel 2 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
1 CH1ALTS 0 RW1 Channel 1 Alternate Structure Set
Write to 1 to select the alternate structure for this channel.
0 CHOALTS 0 RW1 Channel 0 Alternate Structure Set

Write to 1 to select the alternate structure for this channel.

silabs.com | Building a more connected world.

Rev.1.1 | 122




EFM32WG Reference Manual
DMA - DMA Controller

8.6.14 DMA_CHALTC - Channel Alternate Clear Register

Offset Bit Position
0034 |58 /R/QNIQILI RN TR 22T L T2 20w ~ow< oo~ o
Reset o|lo|lo|o|lo|o|o|o|o|o|o|o
Access =zz22/2/2/22/2/2/22
PlRlololololololololo|o
Name 282222222223
T - 0N O I T MIAN - O
5555555555 |5|8
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11ALTC 0 W1 Channel 11 Alternate Clear
Write to 1 to select the primary structure for this channel.
10 CH10ALTC 0 WA1 Channel 10 Alternate Clear
Write to 1 to select the primary structure for this channel.
9 CH9ALTC 0 W1 Channel 9 Alternate Clear
Write to 1 to select the primary structure for this channel.
8 CHSALTC 0 W1 Channel 8 Alternate Clear
Write to 1 to select the primary structure for this channel.
7 CH7ALTC 0 W1 Channel 7 Alternate Clear
Write to 1 to select the primary structure for this channel.
6 CHBALTC 0 WA1 Channel 6 Alternate Clear
Write to 1 to select the primary structure for this channel.
5 CH5ALTC 0 W1 Channel 5 Alternate Clear
Write to 1 to select the primary structure for this channel.
4 CH4ALTC 0 W1 Channel 4 Alternate Clear
Write to 1 to select the primary structure for this channel.
3 CH3ALTC 0 W1 Channel 3 Alternate Clear
Write to 1 to select the primary structure for this channel.
2 CH2ALTC 0 W1 Channel 2 Alternate Clear
Write to 1 to select the primary structure for this channel.
1 CH1ALTC 0 W1 Channel 1 Alternate Clear
Write to 1 to select the primary structure for this channel.
0 CHOALTC 0 W1 Channel 0 Alternate Clear

Write to 1 to select the primary structure for this channel.

silabs.com | Building a more connected world.

Rev.1.1 | 123




EFM32WG Reference Manual
DMA - DMA Controller

8.6.15 DMA_CHPRIS - Channel Priority Set Register

Offset Bit Position
0038 53R QKNSR IRISTR 22 T2 T2 T 20 w~oowon|o
Reset o|lo|lo|o|lo|o|o|o|o|o|o|o
zz 2o aaaagaao
55555853835 585535 8
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11PRIS 0 RWA1 Channel 11 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
10 CH10PRIS 0 RWA1 Channel 10 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
9 CH9PRIS 0 RWA1 Channel 9 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
8 CH8PRIS 0 RW1 Channel 8 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
7 CH7PRIS 0 RWA1 Channel 7 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
6 CH6PRIS 0 RWA1 Channel 6 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
5 CH5PRIS 0 RW1 Channel 5 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
4 CH4PRIS 0 RWA1 Channel 4 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
3 CH3PRIS 0 RWA1 Channel 3 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
2 CH2PRIS 0 RWA1 Channel 2 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
1 CH1PRIS 0 RWA1 Channel 1 High Priority Set
Write to 1 to obtain high priority for this channel. Reading returns the channel priority status.
0 CHOPRIS 0 RWA1 Channel 0 High Priority Set

Write to 1 to obtain high priority for this channel.

Reading returns the channel priority status.

silabs.com | Building a more connected world.

Rev.1.1 | 124




EFM32WG Reference Manual
DMA - DMA Controller

8.6.16 DMA_CHPRIC - Channel Priority Clear Register

Offset Bit Position
03¢ 53R ENIQRIRYSTR 222 T2 T 20 o~oow oo
Reset o|lo|lo|o|lo|o|o|o|o|o|o|o
Access =zz22/2/2/22/2/2/22
ARSI E e
5555553855558
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11PRIC 0 W1 Channel 11 High Priority Clear
Write to 1 to clear high priority for this channel.
10 CH10PRIC 0 W1 Channel 10 High Priority Clear
Write to 1 to clear high priority for this channel.
9 CH9PRIC 0 W1 Channel 9 High Priority Clear
Write to 1 to clear high priority for this channel.
8 CH8PRIC 0 W1 Channel 8 High Priority Clear
Write to 1 to clear high priority for this channel.
7 CH7PRIC 0 W1 Channel 7 High Priority Clear
Write to 1 to clear high priority for this channel.
6 CH6PRIC 0 W1 Channel 6 High Priority Clear
Write to 1 to clear high priority for this channel.
5 CH5PRIC 0 W1 Channel 5 High Priority Clear
Write to 1 to clear high priority for this channel.
4 CH4PRIC 0 W1 Channel 4 High Priority Clear
Write to 1 to clear high priority for this channel.
3 CH3PRIC 0 WA1 Channel 3 High Priority Clear
Write to 1 to clear high priority for this channel.
2 CH2PRIC 0 W1 Channel 2 High Priority Clear
Write to 1 to clear high priority for this channel.
1 CH1PRIC 0 W1 Channel 1 High Priority Clear
Write to 1 to clear high priority for this channel.
0 CHOPRIC 0 W1 Channel 0 High Priority Clear

Write to 1 to clear high priority for this channel.

silabs.com | Building a more connected world.

Rev.1.1 | 125




EFM32WG Reference Manual
DMA - DMA Controller

8.6.17 DMA_ERRORC - Bus Error Clear Register

Offset Bit Position

X04C |5 /8/28INISILIFIQINTIR2RNCLT 2 N2 glo~ow <o o

Reset o

Access 5
O
5

Name o
o
w

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 ERRORC 0 RW Bus Error Clear

This bit is set high if an AHB bus error has occurred. Writing a 1 to this bit will clear the bit. If the error is deasserted at the
same time as an error occurs on the bus, the error condition takes precedence and ERRORC remains asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 126




EFM32WG Reference Manual
DMA - DMA Controller

8.6.18 DMA_CHREQSTATUS - Channel Request Status

Offset Bit Position
xE10 |5 8IRTJCQIQVNIK22Eg2Fe ¥ TR0 w|~lojw|v o a0
Reset o|lo|o|o|o|o|lo|lo|o|lo|o|o
Access ¥ x| r|rv|o e o o oe|x|x
%%wwwwwwwwmm
AHEEREEEEEEE
EIE Ll < << <<
nln EEEEEEIE[E|[E|
Name Il n v n v n v v
ww|CG|C|C|C|C|C T C|T|C
¢l W W W W|W|W|Ww|Ww|w w
- |0 | || K ||| [ XX X X X
T T 0N O IV ST MVIAN - O
I T T T IT|T|ZT|T || I
[CRNCRICRECRICRICHICRICRICRIGRIGRNG]
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11REQSTATUS O R Channel 11 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
10 CH10REQSTATUS O R Channel 10 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
9 CHOREQSTATUS 0 R Channel 9 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
8 CH8BREQSTATUS 0 R Channel 8 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
7 CH7REQSTATUS 0 R Channel 7 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
6 CH6REQSTATUS 0 R Channel 6 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
5 CH5REQSTATUS 0 R Channel 5 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
4 CH4REQSTATUS 0 R Channel 4 Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.
3 CH3REQSTATUS 0 R Channel 3 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

silabs.com | Building a more connected world. Rev. 1.1 | 127




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Reset Access Description
2 CH2REQSTATUS 0 R Channel 2 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

1 CH1REQSTATUS 0 R Channel 1 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

0 CHOREQSTATUS 0 R Channel 0 Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using 2R DMA transfers.

silabs.com | Building a more connected world. Rev. 1.1 | 128




EFM32WG Reference Manual
DMA - DMA Controller

8.6.19 DMA_CHSREQSTATUS - Channel Single Request Status

Offset Bit Position
OE8 1S I8IRIQXQQIQPIR 22T g2 ¥ C|8lo|o ~|ojw|v o|a|-|o
Reset o|lo|o|o|o|o|lo|lo|o|lo|o|o
Access ¥ x| r|rv|o e o o oe|x|x
%%mmwwwwwwmm
SEHEEEEEEEEE
SIE Ll << < <<
0| 0= EEEEEEE|EE
N Sl n v n n (v n
ame mw|im|G|c|d|3|3 |3 |3 |3 |3 |3
Y |W|W|Ww W W|w| W w|w|w
0n n X ¥ KK | e
<~ (O N N VNN NDNDNNIO N
T - 0N O IV ST MVIAN - O
LI IZI|Z|Z|ZT/Z|Z|Z|X|T ||
[CRNGRICREGCRICRICRICRICRICRIGREGRNG]
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11SREQSTATUS 0 R Channel 11 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
10 CH10SREQSTATUS 0 R Channel 10 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
9 CHI9SREQSTATUS O R Channel 9 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
8 CH8SREQSTATUS 0 R Channel 8 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
7 CH7SREQSTATUS 0 R Channel 7 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
6 CH6SREQSTATUS O R Channel 6 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
5 CH5SREQSTATUS 0 R Channel 5 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
4 CH4SREQSTATUS 0 R Channel 4 Single Request Status
When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.
3 CH3SREQSTATUS 0 R Channel 3 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

silabs.com | Building a more connected world.

Rev.1.1 | 129




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Reset Access Description
2 CH2SREQSTATUS 0 R Channel 2 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

1 CH1SREQSTATUS 0 R Channel 1 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

0 CHOSREQSTATUS O R Channel 0 Single Request Status

When this bit is 1, it indicates that the peripheral connected as the input to this DMA channel is requesting the controller to
service the DMA channel. The controller services the request by performing the DMA cycle using single DMA transfers.

silabs.com | Building a more connected world. Rev. 1.1 | 130




EFM32WG Reference Manual
DMA - DMA Controller

8.6.20 DMA_IF - Interrupt Flag Register

Offset Bit Position

0x1000 |58 R IXJNCQIQ VI K22Eg2F@2 ¥t Qo w|~|lojw|v o a0

Reset o|lo|o|o|o|o|lo|lo|o|lo|o|o

Access |y ¥ | rr (x| ¥ ¥ x| x| x| o

%%mmmmmmmmmm
ololzlz|z|lz|lz|\z\z|2|2 2

Name 2888888888181~
hd — = |||~ |O W XN | =D
[ I T T T T ZT|T|ZT|T|T|T| T
L [CRNGRICRECRICRICRICRICRICRIGREGRNG]

Bit Name Reset Access Description

31 ERR 0 R DMA Error Interrupt Flag
This flag is set when an error has occurred on the AHB bus.

30:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.

11 CH11DONE 0 R DMA Channel 11 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

10 CH10DONE 0 R DMA Channel 10 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

9 CH9DONE 0 R DMA Channel 9 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

8 CH8DONE 0 R DMA Channel 8 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

7 CH7DONE 0 R DMA Channel 7 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

6 CH6DONE 0 R DMA Channel 6 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

5 CH5DONE 0 R DMA Channel 5 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

4 CH4DONE 0 R DMA Channel 4 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

3 CH3DONE 0 R DMA Channel 3 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

silabs.com | Building a more connected world. Rev. 1.1 | 131




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Reset Access Description

2 CH2DONE 0 R DMA Channel 2 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

1 CH1DONE 0 R DMA Channel 1 Complete Interrupt Flag
Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

0 CHODONE 0 R DMA Channel 0 Complete Interrupt Flag

Set when the DMA channel has completed its transfer. If the channel is disabled, the flag is set when there is a request for
the channel.

silabs.com | Building a more connected world. Rev. 1.1 | 132




EFM32WG Reference Manual
DMA - DMA Controller

8.6.21 DMAL_IFS - Interrupt Flag Set Register

Offset Bit Position
0x1004 |58 IQIRKNQQIIQ ] IR 2T eI 2 ¥ tQ|lojo|~lo|lw|¢|m|a|- o
Reset | o o|lo|lo|o|lo|o|o|o|o|o|o|o
Access | = =zz22/2/2/22/2/2/22
ZZyyeyyyyyyy
Name 988888888888
2 I 22 T2EEE TR
(i} [CRNCRIGREGCRECRICRICRICRICRIGREGRNG]
Bit Name Reset Access Description
31 ERR 0 W1 DMA Error Interrupt Flag Set
Set to 1 to set DMA error interrupt flag.
30:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11DONE 0 W1 DMA Channel 11 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
10 CH10DONE 0 W1 DMA Channel 10 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
9 CH9DONE 0 W1 DMA Channel 9 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
8 CH8DONE 0 W1 DMA Channel 8 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
7 CH7DONE 0 W1 DMA Channel 7 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
6 CH6DONE 0 W1 DMA Channel 6 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
5 CH5DONE 0 W1 DMA Channel 5 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
4 CH4DONE 0 W1 DMA Channel 4 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
3 CH3DONE 0 W1 DMA Channel 3 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
2 CH2DONE 0 W1 DMA Channel 2 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
1 CH1DONE 0 W1 DMA Channel 1 Complete Interrupt Flag Set
Write to 1 to set the corresponding DMA channel complete interrupt flag.
0 CHODONE 0 W1 DMA Channel 0 Complete Interrupt Flag Set

Write to 1 to set the corresponding DMA channel complete interrupt flag.

silabs.com | Building a more connected world.

Rev. 1.1 | 133




EFM32WG Reference Manual

DMA - DMA Controller

8.6.22 DMA_IFC - Interrupt Flag Clear Register

Offset Bit Position
0x1008 |5 |8 IQIRKNQQIIQ Y] IR 2T eI 2 ¥ tQ|lojo|~lo|lw|¢|m|a|- o
Reset | o o|lo|lo|o|lo|o|o|o|o|o|o|o
Access,% ééééé%éééégé
< Clririe e xieree e
HAEBEBEBEBEEE
Name 81855888/28588588
% T E2EERE SRR
L [CRNCRICREGRICRICHICRICRICRICRIGRNG]
Bit Name Reset Access Description
31 ERR 0 (R)W1 DMA Error Interrupt Flag Clear
Set to 1 to clear DMA error interrupt flag. Note that if an error happened, the Bus Error Clear Register must be used to clear
the DMA.
30:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11DONE 0 (R)W1 DMA Channel 11 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
10 CH10DONE 0 (R)W1 DMA Channel 10 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
9 CHODONE 0 (R)W1 DMA Channel 9 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
8 CH8DONE 0 (R)W1 DMA Channel 8 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
7 CH7DONE 0 (R)W1 DMA Channel 7 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
6 CH6DONE 0 (R)W1 DMA Channel 6 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
5 CH5DONE 0 (R)W1 DMA Channel 5 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
4 CH4DONE 0 (R)wW1 DMA Channel 4 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
3 CH3DONE 0 (R)W1 DMA Channel 3 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
2 CH2DONE 0 (R)W1 DMA Channel 2 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
1 CH1DONE 0 (R)w1 DMA Channel 1 Complete Interrupt Flag Clear
Write to 1 to clear the corresponding DMA channel complete interrupt flag.
0 CHODONE 0 (R)W1 DMA Channel 0 Complete Interrupt Flag Clear

Write to 1 to clear the corresponding DMA channel complete interrupt flag.

silabs.com | Building a more connected world.

Rev.1.1 | 134




EFM32WG Reference Manual
DMA - DMA Controller

8.6.23 DMA_IEN - Interrupt Enable register

Offset Bit Position
0x100C |5 8/ RIN QR IQNTRI22T L T2 2 olon~owv von o
Reset |5 o|lo|o|o|o|o|lo|lo|o|lo|o|o
Access |7 AEEEHBEEEEHE
W | w
ZlzZz/wW|w W w|w W|Ww|w/w w
ololz|lz|lz|lz|lz|lz|\lz|\lz2|\ 2|2
Name AlAlO/0O0O|/0O|O0O|O0O|O0|O|O |0
~|jolojlaloajlala|lalalalo
[he T - |||~ |O W F[|®OIN |- O
[ I T T I TT|T|T|T|T|T |
] [ORICRICRICHICRICRICRICNECRICREGREG)
Bit Name Reset Access Description
31 ERR 0 RwW DMA Error Interrupt Flag Enable
Set this bit to enable interrupt on AHB bus error.
30:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11DONE 0 RW DMA Channel 11 Complete Interrupt Enable
Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.
10 CH10DONE 0 RW DMA Channel 10 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

9 CHODONE 0 RwW DMA Channel 9 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

8 CH8DONE 0 RW DMA Channel 8 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

7 CH7DONE 0 RW DMA Channel 7 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

6 CHEDONE 0 RwW DMA Channel 6 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

5 CH5DONE 0 RW DMA Channel 5 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

4 CH4DONE 0 RW DMA Channel 4 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

3 CH3DONE 0 RW DMA Channel 3 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

2 CH2DONE 0 RW DMA Channel 2 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

1 CH1DONE 0 RW DMA Channel 1 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

0 CHODONE 0 RW DMA Channel 0 Complete Interrupt Enable

Write to 1 to enable complete interrupt on this DMA channel. Clear to disable the interrupt.

silabs.com | Building a more connected world.

Rev. 1.1 | 135




EFM32WG Reference Manual
DMA - DMA Controller

8.6.24 DMA_CTRL - DMA Control Register

Offset Bit Position
0x1010 |58/ RN QR IQN RS2 L T2 2 o0lon~owvvon o
Reset o|o
Access 5 5
|_
O
w
Name - %
Qln
o | W
o Qa
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1 PRDU 0 RW Prevent Rect Descriptor Update
Allows the reuse of a rect descriptor. When active CHO and no others can have RDS set
0 DESCRECT 0 RW Descriptor Specifies Rectangle

Word 4 (user data) in dma descriptor specifies WIDTH, HEIGHT and SRCSTRIDE for rectangle copies. WIDTH is given by
bits 9:0, HEIGHT is given by bits 19:10, and SRCSTRIDE is given by bits 30:20

silabs.com | Building a more connected world. Rev. 1.1 | 136




EFM32WG Reference Manual
DMA - DMA Controller

8.6.25 DMA_RDS - DMA Retain Descriptor State

Offset Bit Position
x1014 |15 I8 IRXJNCQIQVNIK22E2Fe ¥R o w|~lojw|v o a0
Reset o|lo|o|o|o|o|lo|lo|o|lo|o|o
Access AEEEHBEEEEHE
T lolo|rlolw s |olal-|o
I T T I T IT|T|ZT|T|T|T| T
Name OO0 |I0|I0I0|0|0|0]|0 |0 |0
NDNDDID DD DD D D|D|D
alialiaBialaliaRiaRyallaRialialia)
r | |r| | || | K| K| K o
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 RDSCH11 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
10 RDSCH10 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
9 RDSCH9 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
8 RDSCH8 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
7 RDSCH7 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
6 RDSCH6 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
5 RDSCH5 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
4 RDSCH4 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
3 RDSCH3 0 RW Retain Descriptor State
Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous
2 RDSCH2 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous

silabs.com | Building a more connected world. Rev. 1.1 | 137




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Reset Access Description
1 RDSCH1 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous

0 RDSCHO 0 RW Retain Descriptor State

Speed up execution of consecutive DMA requests from the same channel by not reading descriptor at the start of every
arbitration cycle if the next channel is the same as the previous

8.6.26 DMA_LOOPO - Channel 0 Loop Register

Bit Position
0x1020 5|2 /R/R N|QILIT QN TR 22E|eLT2Y 20w ~oo <o~ o
3
Reset o S
X
o
I
Access E E
T
Name > ]
w =
Bit Name Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
16 EN 0 RW DMA Channel 0 Loop Enable
Loop enable for channel 0
15:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
9:0 WIDTH 0x000 RWH Loop Width

Reload value for N_MINUS_1 when loop is enabled

silabs.com | Building a more connected world. Rev. 1.1 | 138




EFM32WG Reference Manual
DMA - DMA Controller

8.6.27 DMA_LOOP1 - Channel 1 Loop Register

Offset Bit Position
x1024 |5 I1QRRKNLR IR TR IRV T2 0 o/~ov/ <o a o
3
Reset = <
X
o
Access E E
|:|_:
Name - [a)
i =
Bit Name Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
16 EN 0 RwW DMA Channel 1 Loop Enable
Loop enable for channel 1
15:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
9:0 WIDTH 0x000 RW DMA Channel 1 Loop Width

Reload value for N_MINUS_1 when loop is enabled

8.6.28 DMA_RECTO - Channel 0 Rectangle Register

Bit Position
0x1060 |5 1SR LQI QN QQI2T eI ¥ Qoo ~oiw| t|ol(al~|o
3 3 3
Reset S S S
x X x
o o o
T T
Access 5 = =
o i'd
]
a 0
4 o
Name 5 s T
= Q o
(9] X w
] %) T
Bit Name Reset Access Description
31:21 DSTSTRIDE 0x000 RW DMA Channel 0 Destination Stride
Space between start of lines in destination rectangle
20:10 SRCSTRIDE 0x000 RWH DMA Channel 0 Source Stride
Space between start of lines in source rectangle
9:0 HEIGHT 0x000 RWH DMA Channel 0 Rectangle Height

Number of lines when doing rectangle copy. Set to the number of lines - 1.

silabs.com | Building a more connected world. Rev. 1.1 | 139




EFM32WG Reference Manual
DMA - DMA Controller

8.6.29 DMA_CHx_CTRL - Channel Control Register

Offset Bit Position
x1100 |5 18 IR QN QIQQVIIQ]R2 2T T2V Qo w|~|o|lv|t|o|la|-|o
Reset § g
Access E E
d
0
Name < o
5 &
0] %)
Bit Name Reset Access Description
31:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
21:16 SOURCESEL 0x00 RW Source Select
Select input source to DMA channel.
Value Mode Description
0b000000 NONE No source selected
0b001000 ADCO Analog to Digital Converter 0
0b001010 DACO Digital to Analog Converter 0
0b001100 USARTO Universal Synchronous/Asynchronous Receiver/Transmitter O
0b001101 USART1 Universal Synchronous/Asynchronous Receiver/Transmitter 1
0b001110 USART2 Universal Synchronous/Asynchronous Receiver/Transmitter 2
0b010000 LEUARTO Low Energy UART 0
0b010001 LEUART1 Low Energy UART 1
0b010100 12C0 12C0
0b010101 12C1 12C 1
0b011000 TIMERO Timer 0
0b011001 TIMER1 Timer 1
0b011010 TIMER2 Timer 2
0b011011 TIMER3 Timer 3
0b101100 UARTO Universal Asynchronous Receiver/Transmitter O
0b101101 UART1 Universal Asynchronous Receiver/Transmitter 1
0b110000 MSC
0b110001 AES Advanced Encryption Standard Accelerator
0b110010 LESENSE Low Energy Sensor Interface
0b110011 EBI External Bus Interface
15:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.

silabs.com | Building a more connected world. Rev. 1.1 | 140




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Reset Access Description
3:0 SIGSEL 0x0 RW Signal Select
Select input signal to DMA channel.

Value Mode Description

SOURCESEL = 0b000000 (NONE)

Obxxxx OFF Channel input selection is turned off

SOURCESEL = 0b001000 (ADCO)

0b0000 ADCOSINGLE ADCOSINGLE

0b0001 ADCOSCAN ADCOSCAN

SOURCESEL = 0b001010 (DACO)

0b0000 DACOCHO DACOCHO

0b0001 DACOCH1 DACOCH1

SOURCESEL = 0b001100 (USARTO)

0b0000 USARTORXDATAV USARTORXDATAV REQ/SREQ

0b0001 USARTOTXBL USARTOTXBL REQ/SREQ

0b0010 USARTOTXEMPTY USARTOTXEMPTY

SOURCESEL = 0b001101 (USART1)

0b0000 USART1RXDATAV USART1RXDATAV REQ/SREQ

0b0001 USART1TXBL USART1TXBL REQ/SREQ

0b0010 USART1TXEMPTY USART1TXEMPTY

0b0011 USART1RXDATAV- USART1RXDATAVRIGHT REQ/SREQ
RIGHT

0b0100 USART1TXBLRIGHT = USART1TXBLRIGHT REQ/SREQ

SOURCESEL = 0b001110 (USART2)

0b0000 USART2RXDATAV USART2RXDATAV REQ/SREQ

0b0001 USART2TXBL USART2TXBL REQ/SREQ

0b0010 USART2TXEMPTY USART2TXEMPTY

0b0011 USART2RXDATAV- USART2RXDATAVRIGHT REQ/SREQ
RIGHT

0b0100 USART2TXBLRIGHT = USART2TXBLRIGHT REQ/SREQ

SOURCESEL = 0b010000 (LEUARTO)

0b0000 LEUARTORXDATAV LEUARTORXDATAV

0b0001 LEUARTOTXBL LEUARTOTXBL

0b0010 LEUARTOTXEMPTY LEUARTOTXEMPTY

SOURCESEL = 0b010001 (LEUART1)

0b0000 LEUART1RXDATAV LEUART1RXDATAV

0b0001 LEUART1TXBL LEUART1TXBL

0b0010 LEUART1TXEMPTY LEUART1TXEMPTY

SOURCESEL = 0b010100 (12C0)

silabs.com | Building a more connected world. Rev. 1.1 | 141




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Reset Access Description
0b0000 I2CORXDATAV I2CORXDATAV
0b0001 12COTXBL 12COTXBL

SOURCESEL = 0b010101 (12C1)

0b0000 I2C1RXDATAV [2C1RXDATAV
0b0001 I2C1TXBL [2C1TXBL
SOURCESEL = 00011000 (TIMERO)

0b0000 TIMEROUFOF TIMEROUFOF
0b0001 TIMEROCCO TIMEROCCO
0b0010 TIMEROCCH1 TIMEROCCH1
0b0011 TIMEROCC2 TIMEROCC2
SOURCESEL = 0b011001 (TIMERT1)

0b0000 TIMER1UFOF TIMER1UFOF
0b0001 TIMER1CCO TIMER1CCO
0b0010 TIMER1CC1 TIMER1CCA1
0b0011 TIMER1CC2 TIMER1CC2
SOURCESEL = 0b011010 (TIMER2)

0b0000 TIMER2UFOF TIMER2UFOF
0b0001 TIMER2CCO TIMER2CCO
0b0010 TIMER2CC1 TIMER2CC1
0b0011 TIMER2CC2 TIMER2CC2
SOURCESEL =0b011011 (TIMERS3)

0b0000 TIMER3UFOF TIMER3UFOF
0b0001 TIMER3CCO TIMER3CCO
0b0010 TIMER3CC1 TIMER3CCH1
0b0011 TIMER3CC2 TIMER3CC2
SOURCESEL = 0b101100 (UARTO)

0b0000 UARTORXDATAV UARTORXDATAV REQ/SREQ
0b0001 UARTOTXBL UARTOTXBL REQ/SREQ
0b0010 UARTOTXEMPTY UARTOTXEMPTY

SOURCESEL =0b101101 (UART1)

0b0000 UART1RXDATAV UART1RXDATAV REQ/SREQ
0b0001 UART1TXBL UART1TXBL REQ/SREQ
0b0010 UART1TXEMPTY UART1TXEMPTY

SOURCESEL = 0b110000 (MSC)

0b0000 MSCWDATA MSCWDATA
SOURCESEL = 0b110001 (AES)
0b0000 AESDATAWR AESDATAWR

silabs.com | Building a more connected world. Rev. 1.1 | 142




EFM32WG Reference Manual
DMA - DMA Controller

Bit Name Reset Access Description
0b0001 AESXORDATAWR AESXORDATAWR
0b0010 AESDATARD AESDATARD
0b0011 AESKEYWR AESKEYWR
SOURCESEL = 0b110010 (LESENSE)
0b0000 LESENSEBUFDATAV  LESENSEBUFDATAV REQ/SREQ
SOURCESEL = 0b110011 (EBI)
0b0000 EBIPXLOEMPTY EBIPXLOEMPTY
0b0001 EBIPXL1EMPTY EBIPXL1EMPTY
0b0010 EBIPXLFULL EBIPXLFULL
0b0011 EBIDDEMPTY EBIDDEMPTY

silabs.com | Building a more connected world. Rev. 1.1 | 143




EFM32WG Reference Manual
RMU - Reset Management Unit

9. RMU - Reset Management Unit

18

RESETn

|z|—

POWERON >

BROWNOUT

»
Reset Management Unit
LOCKUP >

9.1 Introduction

The RMU is responsible for handling the reset functionality of the EFM32WG.

9.2 Features

* Reset sources
* Power-on Reset (POR)
» Brown-out Detection (BOD) on the following power domains:
* Regulated domain
* Unregulated domain
» Analog Power Domain 0 (AVDDO)
» Analog Power Domain 1 (AVDD1)
* RESETN pin reset
» Watchdog reset
+ EM4 wakeup reset from pin
* EM4 wakeup reset from Backup RTC interrupt
* Wakeup from Backup Mode
» Software triggered reset (SYSRESETREQ)
» Core LOCKUP condition
+ EM4 Detection
» A software readable register indicates the cause of the last reset

silabs.com | Building a more connected world.

Quick Facts
What?

The RMU ensures correct reset operation. It is re-
sponsible for connecting the different reset sources
to the reset lines of the EFM32WG.

Why?

A correct reset sequence is needed to ensure safe
and synchronous startup of the EFM32WG. In the
case of error situations such as power supply glitch-
es or software crash, the RMU provides proper reset
and startup of the EFM32WG.

How?

The Power-on Reset and Brown-out Detector of the
EFM32WG provides power line monitoring with ex-
ceptionally low power consumption. The cause of
the reset may be read from a register, thus providing
software with information about the cause of the re-
set.

Rev. 1.1 | 144




EFM32WG Reference Manual
RMU - Reset Management Unit

9.3 Functional Description

The RMU monitors each of the reset sources of the EFM32WG. If one or more reset sources go active, the RMU applies reset to the
EFM32WG. When the reset sources go inactive the EFM32WG starts up. At startup the EFM32WG loads the stack pointer and pro-
gram entry point from memory, and starts execution.

As seen in the figure below, the Power-on Reset, Brown-out Detectors, Watchdog timeout, and RESETn pin all reset the whole system
including the Debug Interface. A Core Lockup condition or a System reset request from software resets the whole system except the
Debug Interface.

Whenever a reset source is active, the corresponding bit in the RMU_RSTCAUSE register is set. At startup the program code may
investigate this register in order to determine the cause of the reset. The register must be cleared by software.

Reset Management Unit

D1 Por] POWERON
Vop BROWNOUT_UNREGnN [ .

VDD_REGULATED BROWNOUT_REGn

BOD

PORESETn

AVDDO BROWNOUT_AVDDO

BOD

Debug
Interface

AVDD1 BROWNOUT_AVDD1

RESETn

X

BOD

EM4 wakeup
Backup mode exit
WDOG
em4
Backup mode RMU_RSTCAUSE
RCCLR SYSRESETn Perioheral
eripnherails
LOCKUP . | Edge-to-pulse .
9 filter

LOCKUPRDIS

SYSREQRST

Figure 9.1. RMU Reset Input Sources and Connections

silabs.com | Building a more connected world. Rev. 1.1 | 145




EFM32WG Reference Manual
RMU - Reset Management Unit

9.3.1 RMU_RSTCAUSE Register

The RMU_RSTCAUSE register indicates the reason for the last reset. The register should be cleared after the value has been read at
startup. Otherwise, the register may indicate multiple causes for the reset at next startup.

The following procedure must be done to clear RMU_RSTCAUSE:

1. Write a 1 to RCCLR in RMU_CMD.
2. Write a 1 to bit 0 in EMU_AUXCTRL.
3. Write a 0 to bit 0 in EMU_AUXCTRL.

RMU_RSTCAUSE should be interpreted according to the table below. X bits are don't care. Notice that it is possible to have multiple
reset causes. For example, an external reset and a watchdog reset may happen simultaneously.

Table 9.1. RMU Reset Cause Register Interpretation

Register Value Cause

ObXXXX XXXX XXXX XXX1 A Power-on Reset has been performed. X bits are don't care.
ObXXXX XXXX 0XXX XX10 A Brown-out has been detected on the unregulated power.
ObXXXX XXXX XXX0 0100 A Brown-out has been detected on the regulated power.

ObXXXX XXXX XXXX 1X00

An external reset has been applied.

ObXXXX XXXX XXX1 XX00

A watchdog reset has occurred.

ObXXXX X000 0010 0000

A lockup reset has occurred.

ObXXXX X000 01X0 0000

A system request reset has occurred.

ObXXXX X000 1XX0 0XXO0

The system has woken up from EM4.

ObXXXX X001 1XX0 0XX0

The system has woken up from EM4 on an EM4 wakeup reset re-
quest from pin.

ObXXXX X01X XXX0 0000 A Brown-out has been detected on Analog Power Domain 0
(AVDDO).
ObXXXX X10X XXX0 0000 A Brown-out has been detected on Analog Power Domain 1

(AVDD1).

ObXXXX 1XXX XXXX 0XX0

A Brown-out has been detected by the Backup BOD on
VDD_DREG.

ObXXX1 XXXX XXXX 0XX0

A Brown-out has been detected by the Backup BOD on BU_VIN.

ObXX1X XXXX XXXX 0XX0 A Brown-out has been detected by the Backup BOD on unregula-
ted power

0bX1XX XXXX XXXX 0XX0 A Brown-out has been detected by the Backup BOD on regulated
power.

0b1TXXX XXXX XXXX XXX0 The system has been in Backup mode.

Note: When exiting EM4 with external reset, both the BODREGRST and BODUNREGRST in RSTCAUSE might be set (i.e., are inva-

lid).

silabs.com | Building a more connected world.

Rev.1.1 | 146




EFM32WG Reference Manual
RMU - Reset Management Unit

9.3.2 Power-On Reset (POR)

The POR ensures that the EFM32WG does not start up before the supply voltage Vpp has reached the threshold voltage VPORthr (see
Device Datasheet Electrical Characteristics for details). Before the threshold voltage is reached, the EFM32WG is kept in reset state.
The operation of the POR is illustrated in the figure below with the active low POWERONR reset signal. The reason for the “unknown”
region is that the corresponding supply voltage is too low for any reliable operation.

\

A

VoD

VPORthr

POWERONN M

time

Figure 9.2. RMU Power-on Reset Operation

9.3.3 Brown-Out Detector Reset (BOD)

The EFM32WG has 4 brownout detectors, one for the unregulated 3.0 V power, one for the regulated internal power, one for Analog
Power Domain 0 (AVDDO), and one for Analog Power Domain 1 (AVDD1). The BODs are constantly monitoring the voltages. Whenev-
er the unregulated or regulated power drops below the VBODthr value (see Electrical Characteristics for details), or if the AVDDO or
AVDD1 drops below the voltage at the decouple pin (DEC), the corresponding active low BROWNOUTN line is held low. The BODs
also include hysteresis, which prevents instability in the corresponding BROWNOUTN line when the supply is crossing the VBODthr
limit or the AVDD bods drops below decouple pin (DEC). The operation of the BOD is illustrated in the figure below. The “unknown”
regions are handled by the POR module.

Vg

9 -
VBODthr /- | VBODhyst \ :

Lk N | vBODhyst

VDD ‘_/

\4

BROWNOUTN

time

Figure 9.3. RMU Brown-out Detector Operation

9.3.4 RESETn Pin Reset

Forcing the RESETn pin low generates a reset of the EFM32WG. The RESETn pin includes an on-chip pull-up resistor, and can there-
fore be left unconnected if no external reset source is needed. Also connected to the RESETn line is a filter which prevents glitches
from resetting the EFM32WG.

silabs.com | Building a more connected world. Rev. 1.1 | 147




EFM32WG Reference Manual
RMU - Reset Management Unit

9.3.5 Watchdog Reset

The Watchdog circuit is a timer which (when enabled) must be cleared by software regularly. If software does not clear it, a Watchdog
reset is activated. This functionality provides recovery from a software stalemate. Refer to the Watchdog section for specifications and
description.

9.3.6 Lockup Reset

A Cortex-M4 lockup is the result of the core being locked up because of an unrecoverable exception following the activation of the pro-
cessor’s built-in system state protection hardware.

For more information about the Cortex-M4 lockup conditions, see the ARMv7-M Architecture Reference Manual. The Lockup reset does
not reset the Debug Interface. Set the LOCKUPRDIS bit in the RMU_CTRL register in order to disable this reset source.

9.3.7 System Reset Request

Software may initiate a reset (e.qg. if it finds itself in a non-recoverable state). By asserting the SYSRESETREQ in the Application Inter-
rupt and Reset Control Register (write 0OxO5FA 0004), a reset is issued. The SYSRESETREQ does not reset the Debug Interface.

9.3.8 EM4 Reset

Whenever EM4 is entered, the EM4RST bit is set. This bit enables the user to identify that the device has been in EM4. Upon wake-up
this bit should be cleared by software.

9.3.9 EM4 Wakeup Reset

Whenever the system is woken up from EM4 on a pin wake-up request, the EM4WURST bit is set. This bit enables the user to identify
that the device was woken up from EM4 using a pin wake-up request. Upon wake-up this bit should be cleared by software.

9.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 RMU_CTRL RW Control Register
0x004 RMU_RSTCAUSE R Reset Cause Register
0x008 RMU_CMD Wi1 Command Register

silabs.com | Building a more connected world. Rev. 1.1 | 148




EFM32WG Reference Manual
RMU - Reset Management Unit

9.5 Register Description

9.5.1 RMU_CTRL - Control Register

Offset Bit Position
0000 5|8 /RKKLRIQNTIRR LRI VT2 o0 o/ ~ov <o a~|o
Reset - lo
Access E E
)
@)
Z |
Name "|'_J %
0nx
% O
a9
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1 BURSTEN 1 RW Backup domain reset enable
This bit has to be cleared before accessing the registers in the BURTC.
0 LOCKUPRDIS 0 RW Lockup Reset Disable

Set this bit to disable the LOCKUP signal (from the Cortex) from resetting the device.

silabs.com | Building a more connected world. Rev. 1.1 | 149




EFM32WG Reference Manual
RMU - Reset Management Unit

9.5.2 RMU_RSTCAUSE - Reset Cause Register

Offset Bit Position
0x004 15 18IR QX RIQIQI QNIRRT 2¥t|Qloo|~|lojv|t|m|a|-]|o
Reset o o o
Access x| ¥ x| x|« | x| o\ o\ | e
O
ol | &
= wiZa [T 4
Name X w(Z S5 alaolal® ¥ b o | W
Wi | Dm >0 0% ~|0la|pg|~|0|x
Qo> |>|2 ¢ W/ Siglo W Z=
Q0|00 0 L |Z |3 ¥ | (X5 x X229
S mmomomoQQ|¥ X n|0O | Ol
S22 /2|2|0/0/=|=/>|0|2@/%|0|0 |0
D Do oo o aluuon a2 daoald
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15 BUMODERST 0 R Backup mode reset
Set if the system has been in Backup mode. Must be cleared by software. Please see 10.3.4 Backup Power Domain for
details on how to interpret this bit.
14 BUBODREG 0 R Backup Brown Out Detector Regulated Domain
Set if the Backup BOD sensing on regulated power triggers. Must be cleared by software. Please see 10.3.4.2 Brown Out
Detectors for details on how to interpret this bit.
13 BUBODUNREG 0 R Backup Brown Out Detector Unregulated Domain
Set if the Backup BOD sensing on unregulated power triggers. Must be cleared by software. Please see 10.3.4.2 Brown
Out Detectors for details on how to interpret this bit.
12 BUBODBUVIN 0 R Backup Brown Out Detector, BU_VIN
Set if the Backup BOD sensing on BU_VIN triggers. Must be cleared by software. Please see 10.3.4.2 Brown Out Detectors
for details on how to interpret this bit.
11 BUBODVDDDREG 0 R Backup Brown Out Detector, VDD_DREG
Set if the Backup BOD sensing on VDDD_REG triggers. Must be cleared by software. Please see 10.3.4.2 Brown Out De-
tectors for details on how to interpret this bit.
10 BODAVDD1 0 R AVDD1 Bod Reset
Set if analog power domain 1 brown out detector reset has been performed. Must be cleared by software. Please see Table
9.1 RMU Reset Cause Register Interpretation on page 146 for details on how to interpret this bit.
9 BODAVDDO 0 R AVDDO Bod Reset
Set if analog power domain 0 brown out detector reset has been performed. Must be cleared by software. Please see Table
9.1 RMU Reset Cause Register Interpretation on page 146 for details on how to interpret this bit.
8 EM4WURST 0 R EM4 Wake-up Reset
Set if the system has been woken up from EM4 from a reset request from pin. Must be cleared by software. Please see
Table 9.1 RMU Reset Cause Register Interpretation on page 146 for details on how to interpret this bit.
7 EM4RST 0 R EM4 Reset
Set if the system has been in EM4. Must be cleared by software. Please see Table 9.1 RMU Reset Cause Register Inter-
pretation on page 146 for details on how to interpret this bit.
6 SYSREQRST 0 R System Request Reset

Set if a system request reset has been performed. Must be cleared by software. Please see Table 9.1 RMU Reset Cause
Register Interpretation on page 146 for details on how to interpret this bit.

silabs.com | Building a more connected world. Rev. 1.1 | 150




EFM32WG Reference Manual
RMU - Reset Management Unit

Bit Name Reset Access Description
5 LOCKUPRST 0 R LOCKUP Reset

Set if a LOCKUP reset has been requested. Must be cleared by software. Please see Table 9.1 RMU Reset Cause Regis-
ter Interpretation on page 146 for details on how to interpret this bit.

4 WDOGRST 0 R Watchdog Reset

Set if a watchdog reset has been performed. Must be cleared by software. Please see Table 9.1 RMU Reset Cause Regis-
ter Interpretation on page 146 for details on how to interpret this bit.

3 EXTRST 0 R External Pin Reset

Set if an external pin reset has been performed. Must be cleared by software. Please see Table 9.1 RMU Reset Cause
Register Interpretation on page 146 for details on how to interpret this bit.

2 BODREGRST 0 R Brown Out Detector Regulated Domain Reset

Set if a regulated domain brown out detector reset has been performed. Must be cleared by software. Please see Table
9.1 RMU Reset Cause Register Interpretation on page 146 for details on how to interpret this bit.

1 BODUNREGRST 0 R Brown Out Detector Unregulated Domain Reset

Set if a unregulated domain brown out detector reset has been performed. Must be cleared by software. Please see Table
9.1 RMU Reset Cause Register Interpretation on page 146 for details on how to interpret this bit.

0 PORST 0 R Power On Reset

Set if a power on reset has been performed. Must be cleared by software. Please see Table 9.1 RMU Reset Cause Regis-
ter Interpretation on page 146 for details on how to interpret this bit.

9.5.3 RMU_CMD - Command Register

Offset Bit Position

0008 |5|8/Q8KELRIQYN RS2 LRI N2 oo/ ~ov v o a~|o

Reset o

Access g
o

Name d
O
x

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 RCCLR 0 W1 Reset Cause Clear

Set this bit to clear the LOCKUPRST and SYSREQRST bits in the RMU_RSTCAUSE register. Use the HRCCLR bit in the
EMU_AUXCTRL register to clear the remaining bits.

silabs.com | Building a more connected world. Rev. 1.1 | 151




EFM32WG Reference Manual
EMU - Energy Management Unit

10. EMU - Energy Management Unit

Quick Facts
What?

The EMU (Energy Management Unit) handles the
different low energy modes in the EFM32WG micro-
controllers.

Why?

0 23@

The need for performance and peripheral functions
varies over time in most applications. By efficiently
scaling the available resources in real-time to match
the demands of the application, the energy con-
sumption can be kept at a minimum.

How?

With a broad selection of energy modes, a high
number of low-energy peripherals available even in
EM2, and short wakeup time (2 ys from EM2 and
EMB), applications can dynamically minimize energy
consumption during program execution.

10.1 Introduction

The Energy Management Unit (EMU) manages all the low energy modes (EM) in EFM32WG microcontrollers. Each energy mode man-
ages if the CPU and the various peripherals are available. The energy modes range from EMO to EM4, where EMO, also called run
mode, enables the CPU and all peripherals. The lowest recoverable energy mode, EM3, disables the CPU and most peripherals while
maintaining wake-up and RAM functionality. EM4 disables everything except the POR, pin reset and optionally Backup RTC, 512 byte
data retention, GPIO state retention, and EM4 reset wakeup request.

The various energy modes differ in:

» Energy consumption

+ CPU activity

» Reaction time

* Wake-up triggers
 Active peripherals

+ Available clock sources

Low energy modes EM1 to EM4 are enabled through the application software. In EM1-EM3, a range of wake-up triggers return the
microcontroller back to EMO. EM4 can only return to EMO by power on reset, external pin reset, EM4 GPIO wakeup request, or Backup
RTC interrupt.

10.2 Features

» Energy Mode control from software
* Flexible wakeup from low energy modes
* Low wakeup time

silabs.com | Building a more connected world. Rev. 1.1 | 152




EFM32WG Reference Manual
EMU - Energy Management Unit

10.3 Functional Description

The Energy Management Unit (EMU) is responsible for managing the wide range of energy modes available in EFM32WG. An over-
view of the EMU module is shown in the following figure.

Peripheral bus

Control and Energy Management

status registers State Machine

Y Y Y Y Y Y

Voltage .
Corex || roumor | Qe R Nemoy | enn
system y y y

Figure 10.1. EMU Overview

The EMU is available as a peripheral on the peripheral bus. The energy management state machine is triggered from the Cortex-M4
and controls the internal voltage regulators, oscillators, memories and interrupt systems in the low energy modes. Events from the inter-
rupt or reset systems can in turn cause the energy management state machine to return to its active state. This is further described in

the following sections.

Rev. 1.1 | 153

silabs.com | Building a more connected world.




EFM32WG Reference Manual

10.3.1 Energy Modes

There are five main energy modes available in EFM32WG, called Energy Mode 0 (EMO) through Energy Mode 4 (EM4). EMO, also
called the active mode, is the energy mode in which any peripheral function can be enabled and the Cortex-M4 core is executing in-
structions. EM1 through EM4, also called low energy modes, provide a selection of reduced peripheral functionality that also lead to
reduced energy consumption, as described below.

The following figure shows the transitions between different energy modes. After reset the EMU will always start in EMO. A transition
from EMO to another energy mode is always initiated by software. EMO is the highest activity mode, in which all functionality is availa-
ble. EMO is therefore also the mode with highest energy consumption.

The low energy modes EM1 through EM4 result in less functionality being available, and therefore also reduced energy consumption.
The Cortex-M4 is not executing instructions in any low energy mode. Each low energy mode provides different energy consumptions
associated with it, for example because a different set of peripherals are enabled or because these peripherals are configured different-

ly.
A transition from EMO to a low energy mode can only be triggered by software.

A transition from EM1 — EM3 to EMO can be triggered by an enabled interrupt or event. In addition, a chip reset will return the device to
EMO. A transition from EM4 can be triggered by a pin reset, poweron reset, EM4 GPIO wakeup, or Backup RTC interrupt.

Active
mode
C
2 g
o
e £
® S5
3 2
pe}
(O] o 8
© s >
Low energy =] r o
4 (O]
modes = 3 c
- o [}
% ) ge
c S |8
—

) = >
©
£ o o)
© n'd

£

o)

7))

pin reset,
power-on reset,
EM4 wakeup,
BURTC interrupt

Figure 10.2. EMU Energy Mode Transitions

No direct transitions between EM1, EM2 or EM3 are available, as can also be seen from the previous figure. Instead, a wakeup will
transition back to EMO, in which software can enter any other low energy mode. An overview of the supported energy modes and the
functionality available in each mode is shown in the following table. Most peripheral functionality indicated as "On" in a particular energy
mode can also be turned off from software in order to save further energy.



EFM32WG Reference Manual

EMU - Energy Management Unit

Table 10.1. EMU Energy Mode Overview

Wakeup time to EMO - - 2 us 2 us 160 ps
MCU clock tree On - - - -
High frequency peripheral clock trees On On - - -
Core voltage regulator On On - - -
High frequency oscillator On On - - -
12C full functionality On On - - -
Low frequency peripheral clock trees On On On - -
Low frequency oscillator On On On - -
Real Time Counter On On On On3 -
LCD On On On - -
LEUART On On On - -
LETIMER On On On on3 -
LESENSE On On On On3 -
PCNT On On On On -
ACMP On On On On -
I2C receive address recognition On On On On -
Watchdog On On On on3 -
Pin interrupts On On On On -
RAM voltage regulator/RAM retention On On On On -
Brown Out Reset On On On On -
Power On Reset On On On On On
Pin Reset On On On On On
GPIO state retention On On On On on?
EM4 Reset Wakeup Request - - - - on4
Backup RTC On On On On On
Backup retention registers On On On On On

Note:
1. Energy Mode 0/Active Mode.
2.Energy Mode 1/2/3/4.

4. Not available in Backup mode.

3.When the 1 kHz ULFRCO is selected.

The different Energy Modes are summarized in the following sections.

silabs.com | Building a more connected world.

Rev. 1.1 | 155




EFM32WG Reference Manual
EMU - Energy Management Unit

10.3.1.1 EMO

» The high frequency oscillator is active
» High frequency clock trees are active
« All peripheral functionality is available

10.3.1.2 EM1

» The high frequency oscillator is active

* MCU clock tree is inactive

» High frequency peripheral clock trees are active
« All peripheral functionality is available

10.3.1.3 EM2

» The high frequency oscillator is inactive

» The high frequency peripheral and MCU clock trees are inactive

» The low frequency oscillator and clock trees are active

» Low frequency peripheral functionality is available

* Wakeup through peripheral interrupt or asynchronous pin interrupt
* RAM and register values are preserved

* DAC and OPAMPs are available

10.3.1.4 EM3

» Both high and low frequency oscillators and clock trees are inactive

* Wakeup through asynchronous pin interrupts, 12C address recognition or ACMP edge interrupt

+ Watchdog and some low frequency peripherals available when ULFRCO (1 kHz clock) has been selected
* BURTC is available.

« All other peripheral functionality is disabled

* RAM and register values are preserved

* DAC and OPAMPs are available

10.3.1.5 EM4

+ All oscillators and regulators are inactive, if Backup RTC is not enabled.

* RAM and register values are not preserved, except for the ones located in the Backup RTC.
» Optional GPIO state retention

» Wakeup from Backup RTC interrupt, external pin reset, or pins that support EM4 wakeup

silabs.com | Building a more connected world. Rev. 1.1 | 156




EFM32WG Reference Manual
EMU - Energy Management Unit

10.3.2 Entering a Low Energy Mode

A low energy mode is entered by first configuring the desired Energy Mode through the EMU_CTRL register and the SLEEPDEEP bit in
the Cortex-M4 System Control Register, see the following table. A Wait For Interrupt (WFI) or Wait For Event (WFE) instruction from the
Cortex-M4 triggers the transition into a low energy mode.

The transition into a low energy mode can optionally be delayed until the lowest priority Interrupt Service Routine (ISR) is exited, if the
SLEEPONEXIT bit in the Cortex-M4 System Control Register is set.

Entering the lowest energy mode, EM4, is done by writing a sequence to the EM4CTRL bitfield in the EMU_CTRL register. Writing a
zero to the EM4CTRL bitfield will restart the power sequence. EM2BLOCK prevents the EMU to enter EM2 or lower, and it will instead
enter EM1.

EMS3 is equal to EM2, except that the LFACLK/LFBCLK are disabled in EM3. The LFACLK/LFBCLK must be disabled by the user be-
fore entering low energy mode.

The EMVREG bit in EMU_CTRL can be used to prevent the voltage regulator from being turned off in low energy modes. The device
will then essentially stay in EM1 when entering a low energy mode.

Table 10.2. EMU Entering a Low Energy Mode

Low Energy Mode EM4CTRL EMVREG EM2BLOCK SLEEPDEEP Cortex-M4 Instruc-
tion

EM1 0 X X 0 WFI or WFE

EM2 0 0 0 1 WFI or WFE

EM4 Write sequence: X X X X

2,3,2,3,2,3,2,3,
2

Note:
1. ("X’ means don’t care)

silabs.com | Building a more connected world. Rev. 1.1 | 157




EFM32WG Reference Manual
EMU - Energy Management Unit

10.3.3 Leaving a Low Energy Mode

In each low energy mode a selection of peripheral units are available, and software can either enable or disable the functionality. Ena-
bled interrupts that can cause wakeup from a low energy mode are shown in the following table. The wakeup triggers always return the
EFM32 to EMO. Additionally, any reset source will return to EMO.

Table 10.3. EMU Wakeup Triggers from Low Energy Modes

Peripheral Wakeup Trigger EMO' EM12 EM22 EM32 EM42
RTC Any enabled interrupt — Yes Yes Yes3 —
USART Receive / transmit — Yes — — —
UART Receive / transmit — Yes — — —
LEUART Receive / transmit — Yes Yes — —
LESENSE Any enabled interrupt — Yes Yes Yes?3 —
12C Any enabled interrupt — Yes — — —
12C Receive address recognition — Yes Yes Yes —
TIMER Any enabled interrupt — Yes — — —
LETIMER Any enabled interrupt — Yes Yes Yes3 —
CMU Any enabled interrupt — Yes — — —
DMA Any enabled interrupt — Yes — — —
MSC Any enabled interrupt — Yes — — —
DAC Any enabled interrupt — Yes — — —
ADC Any enabled interrupt — Yes — — —
AES Any enabled interrupt — Yes — — —
PCNT Any enabled interrupt — Yes Yes Yes4 —
LCD Any enabled interrupt — Yes Yes — —
ACMP Any enabled edge interrupt — Yes Yes Yes —
VCMP Any enabled edge interrupt — Yes Yes Yes —
Pin interrupts Asynchronous — Yes Yes Yes —
Pin Reset — Yes Yes Yes Yes
EM4 wakeup on supported pins Asynchronous — — — — Yes
Backup RTC Any enabled interrupt Yes Yes Yes Yes Yes
Power Cycle Off/On — Yes Yes Yes Yes
Note:

1. Energy Mode 0/Active Mode.

2.Energy mode 1/2/3/4.

3.When the 1 kHz ULFRCO is selected.

4.When using an external clock.

silabs.com | Building a more connected world. Rev. 1.1 | 158




EFM32WG Reference Manual
EMU - Energy Management Unit

10.3.4 Backup Power Domain

10.3.4.1 Introduction

The EFM32WG has the possibility to be partly powered by a backup battery. The backup power input, BU_VIN, is connected to a power
domain in the EFM32WG containing the Backup RTC and 512 bytes of data retention, available in all energy modes. The following
figure shows an overview of the backup powering scheme. During normal operation, the entire chip is powered by the main power sup-
ply. If the main power supply drains out and the Backup mode functionality is enabled, the system enters a low energy mode, equiva-
lent to EM4, and automatically switches over to the backup power supply.

EFM32
BUCTRL_STATEN

BUCTRL_EN \I\ BU_STAT
Main power BOD Dc ®
BUINACT_PWRCON /.

BUACT_PWRCON . —X PWRCONF_PWRRES

*~——

o—m—

l BUBODBUVIN
BU_VIN
A A Backup power
VDD_DREG o—| >'| WV\
- N ey Q Backup

power

Main power
M— ?
Main power e e
supply N
- BUBODVDDDREG STRONG -~

]

BU_VOUT
MEDIUM
BUBODUNREG WW -
Main Domain Backup Regulator WEAK

BUBODREG 1

Backup Domain

BURTC
512 byte
retention

PWRCONF_VOUTxxx

Wake-up
controller

<«——EM4 pin Wake-Up

RESETn

Figure 10.3. Backup Power Domain Overview

When in backup mode, available functionality is the same as the functionality available in EM4. Refer to 10.3.4.10 EM4 with RTC and
Data Retention for further details.

10.3.4.2 Brown Out Detectors

The backup power domain functionality utilizes four brown-out detectors, BODs. One senses the main power supply, one senses the
backup power supply, one senses the unregulated selected power supply (main or backup, depending on mode), and one BOD senses
the regulated power supply. The bits BUBODVDDDREG ,BUBODBUVIN, BUBODUNREG, and BUBODREG in the RSTCAUSE regis-
ter in the RMU are set when the associated BOD triggers. The locations of the Backup BODs are indicated in Figure 10.3 Backup Pow-
er Domain Overview on page 159. A brown out on the main power supply will trigger a switch to the backup power supply if the backup
functionality is enabled and the BOD sensing on the backup power supply has not triggered. The two other BODs are used for error
indication and will only set the bits in RMU_RSTCAUSE if they are triggered.

A reset from backup mode on BUBODUNREG brown-out can also be triggered if BUMODEBODEN in EMU_BUCTRL is set. This will
cause the device to switch back to the main power supply regardless of whether this is valid or not. Set this bit to make sure the device
always asssume a known condition when the backup voltage drops below the operating limits.

silabs.com | Building a more connected world. Rev. 1.1 | 159




EFM32WG Reference Manual
EMU - Energy Management Unit

10.3.4.3 Entering Backup Mode

To be able to enter backup mode, the EN bit in EMU_BUCTRL has to be set. The BURDY interrupt flag will be set as soon as the
backup sensing module is operational. Status of the backup functionality is also available in the BURDY flag in the EMU_STATUS reg-
ister. The BU_VIN pin also needs to be enabled. This is done by setting the BUVINPEN bit in EMU_ROUTE. To enter backup mode,
the voltage on VDD_DREG has to drop below the programmable threshold of the BOD sensing on this power. This threshold is pro-
grammed using BUENRANGE and BUENTHRES in EMU_BUINACT. BUENRANGE decides the voltage range for the BOD, while
BUENTHRES is used for tuning of the BOD threshold. Refer to 10.3.4.5 Threshold Calibration for details regarding BOD calibration.

Note: BUVINPEN in EMU_ROUTE is by default set. If Backup mode is not to be used, this bit should be cleared.
Note: The voltage on BU_VIN has to be above the threshold for the BOD sensing on BU_VIN to enter backup mode.

The BU_STAT pin can be used to indicate whether or not the system is in backup mode. To enable exporting of the backup mode
status, set STATEN in EMU_BUCTRL. The BU_STAT pin is driven to BU_VIN when backup mode is active and to ground otherwise.

10.3.4.4 Leaving Backup Mode

To exit backup mode, the voltage on VDD_DREG has to be above the threshold programmed in EMU_BUACT. BUEXRANGE decides
the voltage range for backup mode exit, while BUEXTHRES is used for tuning. When leaving backup mode, a system reset is triggered,
resetting everything except the backup domain. When backup mode has been active, the BURST bit in RMU_RSTCAUSE is set.

VDDREG

A

EMU_BUACT_BUEXRANGE /
EMU_BUACT_BUEXTHRES

EMU_BUINACT_BUENRANGE //
EMU_BUINACT_BUENTHRES

Backup mode active |_| |

Figure 10.4. Entering and Leaving Backup Mode

The previous figure illustrates how the BOD sensing on VDD_DREG can be programmed to implement hysteresis on entering and exit-
ing backup mode.

silabs.com | Building a more connected world. Rev. 1.1 | 160




EFM32WG Reference Manual

10.3.4.5 Threshold Calibration

The thresholds for entering and exiting backup mode are configured in the EMU_BUINACT and EMU_BUACT registers, respectively.
Calibration of these thresholds is performed during production test, but may also be performed using the DAC. The calibration values
for the BODs sensing on unregulated power and BU_VIN, BUBODUNREG and BUBODBUVIN respectively, are available in EMU_BU-
BODVINCAL and EMU_BUBODUNREGCAL. These registers are written during production test and should not be modified except for
calibrating the Backup BOD sensing on VDD_DREG, as described in the following section.

Setting BODCAL in EMU_BUCTRL will enable a mode where the BOD is sensing the DAC output, as depicted in the following figure.
For the BODCAL bit to take effect, the backup power enable bit, EN in EMU_BUCTRL, has to be cleared. The procedure for BOD cali-
bration is as follows:

1.Clear EN and set BODCAL in EMU_BUCTRL.

2. Store the values in EMU_BUBODVINCAL and EMU_BUBODUNREGCAL before clearing these registers.

3. Configure the DAC to output to the maximum level and wait for 500 us before configuring the DAC output to the wanted BOD trig-
ger voltage level.

4. Step through the BOD calibration values (RANGE and THRES in EMU_BUINACT) with 500 us delay in between steps until the
BUBODVDDDREG flag in RMU_RSTCAUSE is set. The RANGE and THRES values in EMU_BUINACT can now be written to
EMU_BUINACT for configuration of threshold for entering backup mode, or EMU_BUACT for configuration of the threshold for
leaving backup mode.

5. Restore the values in EMU_BUBODVINCAL and EMU_BUBODUNREGCAL.

BUCTRL_BODCAL

VDD_DREG

1.8V 1 —DAC alternative output

BOD trigger
EMU_BUINACT_BUENRANGE /

EMU_BUINACT_BUENTHRES

A

4
Z

Figure 10.5. BOD Calibration Using DAC

10.3.4.6 Backup Battery Charging

The EFM32WG includes functionality for charging of the backup battery. This is done by connecting the main power and the backup
power through a resistor, and optionally a diode. The connection is configured individually for when in backup mode and when in nor-
mal mode. When in normal mode, the connection is configured in PWRCON in EMU_BUINACT. PWRCON in EMU_BUACT configures
the connection when in backup mode. The series resistance between the two power domains is configured in PWRRES in
EMU_PWRCONF, this configuration applies both to backup mode and normal mode.



EFM32WG Reference Manual

10.3.4.7 Supply Voltage Output

To be able to power external devices, the supply voltage for the backup domain is available as an output. Three switches connect the
backup supply voltage to the BU_VOUT pin. To be able to control the series resistance, the switches have different strengths: weak,
medium, and strong. The switches are controlled using the VOUTWEAK, VOUTMED, and VOUTSTRONG bits in EMU_PWRCONF.
For resistor values, refer to Device Datasheet Electrical Characteristics.

10.3.4.8 Voltage Probing

It is possible to probe the voltage levels at VDD_DREG, BU_VIN, and BU_VOUT. This is done by configuring the ADC to measure a
tristated channel, for instance a disabled DAC channel. The PROBE bitfield in EMU_BUCTRL configures which voltage to be probed.
The voltage measured by the ADC will be 1/8 of the actual probed voltage, meaning that the result needs to be multiplied by 8 for the
correct result. Voltage probing does not work when BODCAL in the EMU_BUCTRL register is set.

10.3.4.9 Configuration Lock

Configurations used in Backup mode and EM4, like BOD calibration, and Backup RTC settings need to be locked before entering EM4,
this is done by setting the LOCKCONF bit in EMU_EM4CONF. This bit should also be set before a potential entry to backup mode.
Setting this bit will lock following the configuration:

+ LFXOMODE, LFXOBUFCUR, and LFXOBOOST in CMU_CTRL
* TUNING in CMU_LFRCOCTRL

+ BURSTEN in RMU_CTRL

+ BURTCWU and VREGEN in EMU_EM4CONF

+ EMU_BUCTRL

+ EMU_PWRCONF

+ EMU_BUINACT

+ EMU_BUACT

+ EMU_ROUTE

Note: For registers residing in the CMU and EMU_AUXCTRL, the reset value will be read after exit from EM4 or Backup mode, but if
LOCKCONF in EMU_EM4CONF has been set, the locked configuration will be used until LOCKCONF is cleared. This also applies for
the LOCKCONF bit itself.

10.3.4.10 EM4 with RTC and Data Retention

The backup power domain can also be powered by the main power. This provides possibility for Backup RTC operation and data reten-
tion in EM4. Available functionality in EM4 is configured in EMU_EM4CONF. Setting the VREGEN bit will keep the voltage regulator for
the Backup domain enabled when in EM4. This allows the Backup RTC to keep running. To enable the Backup RTC to wake up the
system from EM4, BURTCWU in EMU_EM4CONF needs to be set. When BURTCWU is set, any enabled Backup RTC interrupt will
wake up the system. For further details regarding the Backup RTC and EM4 data retention, refer to 22. BURTC - Backup Real Time
Counter.

The voltage regulator can also be used to power the Backup RTC during a watchdog reset from any energy mode. Set
EMU_EM4CONF_VREGEN to enable the Backup RTC to be powered from the regulator, making sure it survives a watchdog reset.
10.3.4.10.1 Oscillators in EM4

When the system is in EM4 or backup mode with the voltage regulator enabled, the ULFRCO is by default enabled. If the LFXO or
LFRCO is used by the Backup RTC, the ULFRCO can be shut down to reduce power consumption. To do this, configure the OSC
bitfield in EMU_EM4CONF.

Note: If OSC in EMU_EM4CONF is not set to ULFRCO, PRESC and LPCOMP in BURTC_CTRL has to be configured in the following
manner:

4 < (PRESC + LPCOMP) < 8, PRESC =0,5,6,7

Refer to 22. BURTC - Backup Real Time Counter for details on how to configure the Backup RTC.



EFM32WG Reference Manual
EMU - Energy Management Unit

10.3.4.10.2 Brown Out Detector in EM4

To enable Brown-out detection in EM4, the Backup BODs have to be enabled, by setting EN in EMU_BUCTRL. When BURDY in
EMU_STATUS is set, the Brown-out detectors are ready and able to issue a reset from EM4 if a Brown-out is detected on either regula-
ted or unregulated power. The Backup BOD' ability to issue reset from EM4 can be disabled by setting BUBODRSTDIS in
EMU_EM4CONF.

Note: The Backup BODs can be enabled without allowing entrance to backup mode. This is done by setting EN in EMU_BUCTRL, and
clearing BUVINPEN in EMU_ROUTE.

10.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 EMU_CTRL RW Control Register

0x008 EMU_LOCK RwW Configuration Lock Register

0x024 EMU_AUXCTRL RwW Auxiliary Control Register

0x02C |EMU_EM4CONF RW Energy mode 4 configuration register
0x030 EMU_BUCTRL RwW Backup Power configuration register

0x034 EMU_PWRCONF RW Power connection configuration register
0x038 EMU_BUINACT RwW Backup mode inactive configuration register
0x03C |EMU_BUACT RW Backup mode active configuration register
0x040 EMU_STATUS R Status register

0x044 EMU_ROUTE RwW I/0 Routing Register

0x048 EMU_IF R Interrupt Flag Register

0x04C |EMU_IFS W1 Interrupt Flag Set Register

0x050 EMU_IFC (R)W1 Interrupt Flag Clear Register

0x054 EMU_IEN RwW Interrupt Enable Register

0x058 |EMU_BUBODBUVINCAL RW BU_VIN Backup BOD calibration

0x05C |EMU_BUBODUNREGCAL RwW Unregulated power Backup BOD calibration

silabs.com | Building a more connected world. Rev. 1.1 | 163




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5 Register Description

10.5.1 EMU_CTRL - Control Register

Offset Bit Position
%000 |58/ RN &R IQNTR22= L T2dC2o0lo~owv voa o
Reset g olo
Access E E E
4 15
r |[O 8
Name 5 |8l
< N>
= (==
W W w
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3:2 EM4CTRL 0x0 RW Energy Mode 4 Control
This register is used to enter Energy Mode 4, in which the device only wakes up from an external pin reset, from a power
cycle, Backup RTC interrupt, or EM4 wakeup reset request. Energy Mode 4 is entered when the EM4 sequence is written
to this bitfield.
1 EM2BLOCK 0 RW Energy Mode 2 Block
This bit is used to prevent the MCU to enter Energy Mode 2 or lower.
0 EMVREG 0 RW Energy Mode Voltage Regulator Control

Control the voltage regulator in low energy modes 2 and 3.

Value Mode Description
0 REDUCED Reduced voltage regulator drive strength in EM2 and EM3.
1 FULL Full voltage regulator drive strength in EM2 and EM3.

silabs.com | Building a more connected world. Rev. 1.1 | 164




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.2 EMU_LOCK - Configuration Lock Register

Offset Bit Position
%008 |5 8IRXNELRIRQN TR LL T2 2 olo~owv voa o
o
o
Reset =
x
o
Access 5
>
Y
Name 1
(6]
o
-
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 LOCKKEY 0x0000 RW Configuration Lock Key

Write any other value than the unlock code to lock all EMU registers, except the interrupt registers, from editing. Write the
unlock code to unlock. When reading the register, bit 0 is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 EMU registers are unlocked.
LOCKED 1 EMU registers are locked.
Write Operation

LOCK 0 Lock EMU registers.
UNLOCK OxADES8 Unlock EMU registers.

10.5.3 EMU_AUXCTRL - Auxiliary Control Register

Offset Bit Position

0x024 SR RIQIQI QRN |2 T2|¥ Q@ olom|o/b|lt|m|a|~|0O

Reset o

Access E
o
—

Name 8
[0
T

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 HRCCLR 0 RW Hard Reset Cause Clear

Write to 1 and then 0 to clear the POR, BOD and WDOG reset cause register bits. See also the Reset Management Unit
(RMU).

silabs.com | Building a more connected world. Rev. 1.1 | 165




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.4 EMU_EM4CONF - Energy Mode 4 Configuration Register

Offset Bit Position
x02C |58 IRXVNCQIQ VIR 22Eg2F@e¥dffow|~lojv|v o a0
Reset o o % oo
Access E 5 E E E
()
w =
P4 & g
Name 8 & 3 Z
X @) =0
8 S g 2y
S | O @S
Bit Name Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
16 LOCKCONF 0 RW EM4 configuration lock enable
Lock regulator, BOD and oscillator configuration. This is necessary before going to EM4 if the regulator is to be used in
EM4, and must also be done before a potential entry to backup mode.
16:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4 BUBODRSTDIS 0 RW Disable reset from Backup BOD in EM4
When set, no reset will be asserted due to Brownout when in EM4.
3:2 0osC 0x0 RW Select EM4 duty oscillator
Value Mode Description
0 ULFRCO ULFRCO is available.
1 LFRCO LFRCO is available. Can only be set if LFRCO is running before EM4/
backup entry.
2 LFXO LFXO is available. Can only be set if LFXO is available before EM4/
backup entry.
1 BURTCWU 0 RW Backup RTC EM4 wakeup enable
Exit EM4 on Backup RTC interrupt.
0 VREGEN 0 RW EM4 voltage regulator enable

When set, the voltage regulator is enabled in EM4, enabling operation of the Backup RTC and retention registers.

silabs.com | Building a more connected world.

Rev. 1.1 | 166




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.5 EMU_BUCTRL - Backup Power configuration register

Offset Bit Position
%030 |5 8/ XN &L RIRQN TR LR T2 2olon~owv von o
Reset g o|lo|o|o
Access E E E E E
zZ
L
a
@)
Name ﬁ
@ L Q|2 &
m |0 |F
o] = 0|«
[ 20|k |Z
o m o »n|W
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6:5 PROBE 0x0 RW Voltage probe select
Configure which voltage to export to ADC.
Value Mode Description
0 DISABLE Disable voltage probe.
1 VDDDREG Connect probe to VDD_DREG.
2 BUIN Connect probe to BU_IN.
3 BUOUT Connect probe to BU_OUT.
4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3 BUMODEBODEN 0 RwW Enable brown out detection on BU_VIN when in backup mode
When set, a reset (and switch back to main power) will be performed when in backup mode and the BUBODUNREG-bod
senses a brown-out on BU_VIN.
2 BODCAL 0 RW Enable BOD calibration mode
When set, the Backup BOD sensing on VDD_DREG will be sensing the DAC output.
1 STATEN 0 RW Enable backup mode status export
When enabled, BU_STAT will indicate when backup mode is active.
0 EN 0 RW Enable backup mode

Backup mode will be entered when main power browns out and backup battery is present.

silabs.com | Building a more connected world.

Rev.1.1 | 167




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.6 EMU_PWRCONF - Power Connection Configuration Register

Offset Bit Position
0034 |58 /R/QNIQILI RN TR 22T L T2 20w ~ow< oo~ o
Reset 2 o =}
Access E E E E
2
2ol
Name o 5 g "g
£ 5|55
MEIEIE
Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4:3 PWRRES 0x0 RwW Power domain resistor select
Select value of series resistor between main power domain and backup power domain.
Value Mode Description
0 RESO Main power and backup power connected with RESO series resistance.
1 RES1 Main power and backup power connected with RES1 series resistance.
2 RES2 Main power and backup power connected with RES2 series resistance.
3 RES3 Main power and backup power connected with RES3 series resistance.
2 VOUTSTRONG 0 RwW BU_VOUT strong enable
Enable strong switch between backup domain power supply and BU_VOUT.
1 VOUTMED 0 RW BU_VOUT medium enable
Enable medium switch between backup domain power supply and BU_VOUT.
0 VOUTWEAK 0 RW BU_VOUT weak enable

Enable weak switch between backup domain power supply and BU_VOUT.

silabs.com | Building a more connected world.

Rev. 1.1 | 168




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.7 EMU_BUINACT - Backup Mode Inactive Configuration Register

Offset Bit Position
0x038 |5 8RN ERIQY TR LL T2 2olo~owv von o
(e} -~ ™
Reset 3 3 3
Access E E 5
L
e §
z
Name S & =
& = zZ
w I,
= o) )
o m m
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6:5 PWRCON 0x0 RW Power connection configuration when not in Backup mode

Value Mode Description

0 NONE No connection.

1 BUMAIN Main power and backup power are connected through a diode, allow-
ing current to flow from backup power source to main power source,
but not the other way.

2 MAINBU Main power and backup power are connected through a diode, allow-
ing current to flow from main power source to backup power source,
but not the other way.

3 NODIODE Main power and backup power are connected without diode.

4:3 BUENRANGE 0x1 RW
Threshold range for Backup BOD sensing on VDD_DREG when not in backup mode. This field is set to the threshold range
calibrated during production, hence the reset value might differ from device to device.

2:0 BUENTHRES 0x3 RW

Threshold for Backup BOD sensing on VDD_DREG when not in backup mode. This field is set to the threshold value cali-

brated during production, hence the reset value might differ from device to device.

silabs.com | Building a more connected world.

Rev. 1.1 | 169




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.8 EMU_BUACT - Backup mode active configuration register

Offset Bit Position
0x03C |5 8/ XN LR IQN TR LR T2 2 olon~owv von o
(=] - (s¢]
Reset 3 3 3
Access E E 5
L
e §
zZ
Name 9 = =
& X X
L i
= o) )
o m m
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6:5 PWRCON 0x0 RW Power connection configuration when in Backup mode

Value Mode Description

0 NONE No connection.

1 BUMAIN Main power and backup power are connected through a diode, allow-
ing current to flow from backup power source to main power source,
but not the other way.

2 MAINBU Main power and backup power are connected through a diode, allow-
ing current to flow from main power source to backup power source,
but not the other way.

3 NODIODE Main power and backup power are connected without diode.

4:3 BUEXRANGE 0x1 RW
Threshold range for Backup BOD sensing on VDD_DREG when in backup mode. This field is set to the threshold range
calibrated during production, hence the reset value might differ from device to device.

2:0 BUEXTHRES 0x3 RW

Threshold for Backup BOD sensing on VDD_DREG when in backup mode. This field is set to the threshold value calibrated

during production, hence the reset value might differ from device to device.

silabs.com | Building a more connected world.

Rev.1.1 | 170




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.9 EMU_STATUS - Status register

Offset Bit Position

0040 |58/ QINERIQNFTR2RT L LT T 2o lw~oo von o

Reset o

Access o
3

Name g
)
m

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 BURDY 0 R Backup mode ready

Set when the Backup power functionality is ready.

10.5.10 EMU_ROUTE - I/O Routing Register

Bit Position
004 |15/3RIQNQRIRNTR2LEL TN 2o~ on/t oo
Reset -
Access E
pd
L
o
Name z
>
)
m
Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
0 BUVINPEN 1 RW BU_VIN Pin Enable

When set, the BU_VIN pin is enabled.

silabs.com | Building a more connected world.

Rev. 1.1 | 171




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.11 EMU_IF - Interrupt Flag Register

Offset Bit Position

0048 |5 I8/RQIN LR IRQNFTRZRT L LT T2 o0lw~oo von o

Reset o

Access o
3

Name g
)
m

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 BURDY 0 R Backup functionality ready Interrupt Flag

Set when the Backup functionality is ready for use.

10.5.12 EMUL_IFS - Interrupt Flag Set Register

Bit Position
0x04C 153 IRIRINICIRIQNTR2R T2 T2 N2 0/w/~ov v o« «|o
Reset o
Access =
5
Name z
)
m
Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
0 BURDY 0 W1 Set Backup functionality ready Interrupt Flag

Write to 1 to set the BURDY interrupt flag.

silabs.com | Building a more connected world. Rev. 1.1 | 172




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.13 EMU_IFC - Interrupt Flag Clear Register

Offset Bit Position

X050 158 RRKNLRIQYTIR2R TR IV T2 0 o/ ~ov v o a o

Reset o

Access E
e
5

Name z
)
m

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 BURDY 0 (R)w1 Clear Backup functionality ready Interrupt Flag

Write to 1 to clear the BURDY interrupt flag.

10.5.14 EMU_IEN - Interrupt Enable Register

Bit Position
X054 15 18R QN QIQQNIQR22T|T QYT Qo w|~|olv|t|o|la|-|o
Reset o
Access E
5
Name s
)
m
Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
0 BURDY 0 RwW Backup functionality ready Interrupt Enable

Enable interrupt when Backup functionality is ready.

silabs.com | Building a more connected world.

Rev.1.1 | 173




EFM32WG Reference Manual
EMU - Energy Management Unit

10.5.15 EMU_BUBODBUVINCAL - BU_VIN Backup BOD calibration

Offset Bit Position
0058 | 518RENIQRIRNTR 22 T2 T2 T 20 w~oow oo
- (s¢]
Reset 3 3
Access E E
]
0 0
Name zZ [
é T
|_
Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4:3 RANGE 0x1 RW
Threshold range for Backup BOD sensing on BU_VIN. This field is set to the threshold range calibrated during production,
hence the reset value might differ from device to device.
2:0 THRES 0x3 RW

Threshold for Backup BOD sensing on BU_VIN. This field is set to the threshold value calibrated during production, hence

the reset value might differ from device to device.

10.5.16 EMU_BUBODUNREGCAL - Unregulated power Backup BOD calibration

Offset Bit Position
0x05C |5 8/ RN &QRIQNTIRI22E LT 2dC2olo~owv von o
~— (a2}
Reset 3 3
Access E E
L
o 0
Name z x
é I
|_
Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4:3 RANGE 0x1 RW
Threshold range for Backup BOD sensing on unregulated power. This field is set to the threshold range calibrated during
production, hence the reset value might differ from device to device.
2:0 THRES 0x3 RW

Threshold for Backup BOD sensing on unregulated power. This field is set to the threshold value calibrated during produc-

tion, hence the reset value might differ from device to device.

silabs.com | Building a more connected world.

Rev.1.1 | 174




EFM32WG Reference Manual
CMU - Clock Management Unit

11. CMU - Clock Management Unit

Quick Facts
What?

supports five different oscillators with minimized
power consumption and short start-up time. An addi-
tional separate RC oscillator is used for flash pro-
gramming and debug trace. The CMU also has HW
support for calibration of RC oscillators.

The CMU controls oscillators and clocks. EFM32WG
» (H0O)

Why?

—» WDOG clock
_l ,_ Oscillators and clocks contribute significantly to the

| LETIMER dlock ‘|_|_|_|_‘—,—|_|‘|_|‘|_|‘ power consumption of the MCU. With the low power

oscillators combined with the flexible clock control

L »1CD clock scheme, it is possible to minimize the energy con-

sumption in any given application.

Oscillators How?

The CMU can configure different clock sources, ena-
I—» Peripheral B clock ble/disable clocks to peripherals on an individual ba-

sis and set the prescaler for the different clocks. The

|3 Peripheral C clock "ﬂﬂmummm short oscillator start-up times makes duty-cycling be-
tween active mode and the different low energy
| » Peripheral D clock Hmmumﬂﬂm modes (EM2-EM4) very efficient. The calibration

feature ensures high accuracy RC oscillators. Sever-

L—» CPU clock al interrupts are available to avoid CPU polling of

flags.

11.1 Introduction

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32WG. The CMU pro-
vides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and config-
ure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application
by not wasting power on peripherals and oscillators that are inactive.

11.2 Features

» Multiple clock sources available:
» 1-28 MHz High Frequency RC Oscillator (HFRCO)
* 4-48 MHz High Frequency Crystal Oscillator (HFXO)
» 32.768 kHz Low Frequency RC Oscillator (LFRCO)
» 32.768 kHz Low Frequency Crystal Oscillator (LFXO)
» 1 kHz Ultra Low Frequency RC Oscillator (ULFRCO)
* Low power oscillators
* Low start-up times
» Separate prescaler for High Frequency Core Clocks (HFCORECLK) and Peripheral Clocks (HFPERCLK)
+ Individual clock prescaler selection for each Low Energy Peripheral
» Clock Gating on an individual basis to core modules and all peripherals
+ Selectable clocks can be output on two pins for use externally.
* Auxiliary 1-28 MHz RC oscillator (AUXHFRCO) for flash programming, debug trace, and LESENSE timing.

silabs.com | Building a more connected world. Rev. 1.1 | 175




EFM32WG Reference Manual
CMU - Clock Management Unit

11.3 Functional Description

An overview of the CMU is shown in the following figure. The number of peripheral modules that are connected to the different clocks
varies from device to device.

|

: LESENSE

| (High frequency timing)
I

! |

! MSC !

| (Flash Programming) :

AUXCLK I I

AUXHFRCO Timeout f—moem———— e e

EEE— Debug Trace

|
CMU_CTRL_DBGCLK | :_,@
| |
L ____ I
clock
switch CMU_HFPERCLKENO.TIMERO—
™ HFPERCLKrimero
Clock Gate
CMU_HFPERCLKENO.TIMER1 HFPERCLKTeRt
Clock Gate
——————»
CMU_HFPERCLKDIV.HFPERCLKEN HFPERCLK
prescaler
CMU_HFPERCLKDIV.HFPERCLKDIV CMU_HFPERCLKEN0.12C0— HFPERCLKizco
Clock Gate

CMU_CTRL.HFCLKDIV

HFXO
Timeout

clock HFCLK
switch [ [ | DIV HFCLK
Timeout
HFRCO EMO ——
| HFCORECLKcws
—_—

Clock Gate

CMU_CMD.HFCLKBEL

CMU_HFCORECLKDIV
CMU_HFCORECLKENO.DMA——| HFECORECLKova
HFCORECLK Clock Gate
prescaler
CMU_CMD.USBCCLKSEL
CMU_HFCORECLKENO0.USBC
ook HECORECLKyssc CMU_HFCORECLKENO.LE—— HFGOREGLK.E
switch Clock Gate ————®
—

te

LFRCO Timeout

Figure 11.1. CMU Overview - High Frequency Portion

silabs.com | Building a more connected world. Rev. 1.1 | 176




EFM32WG Reference Manual
CMU - Clock Management Unit

CMU_HFCORECLKENO.LE—— HFCORECLKLe
Clock Gate

HFCORECLK

120r/4
CMU_LFACLKENO.LESENSE——{
LFACLKiesense
Clock Gate
prescaler
) CMU_LFAPRESCO.LESENSE
LFX0 Timeout CMU_LFACLKENO.RTC——
I LFACLK

Clock Gate

prescaler
_>| | T
LFRCO Timeout CMU_LFAPRESCO.RTC

prescaler

CMU_LFACLKENO.LETIMERO—

LFACLK eTimERD

Clock Gate

- T
CMU_LFAPRESCO.LETIMERO CMU LFAGLKENO.LG
clt?ck LFACLK | .LCD—— LFACLKco
switch Clock Gate
LFACLK copre
prescaler Frame Rate Control
CMU_LFCLKSEL.LFA/ LFAE T CMU_LCDCTRL.FDIV

CMU_LFAPRESCO.LCD

PCNTn_SO
PCNTnCLK

CMU_PCNTCTRL.PCNTnCLKSEL

CMU_LFBPRESCO.LEUARTO CMU_LFBCLKENO.LEUARTO——|
1 - LFBCLK.euaRTo
CMU_LFCLKSEL.LFB/ LFBE Clock Gate
prescaler
dock | {LFBOLK CMU_LFBCLKENO.LEUART1 ——
switch - - LFBCLKLeuarr1
Clock Gate
prescaler
T
CMU_LFBPRESCO.LEUART1
“““““ |
WDOGCLK !

ULFRCO

e

WDOG_CTRL.CLKSEL

e e

Figure 11.2. CMU Overview - Low Frequency Portion

11.3.1 System Clocks

11.3.1.1 HFCLK - High Frequency Clock

HFCLK is the selected High Frequency Clock. This clock is used by the CMU and drives the two prescalers that generate HFCORECLK
and HFPERCLK. The HFCLK can be driven by a high-frequency oscillator (HFRCO or HFXO) or one of the low-frequency oscillators
(LFRCO or LFXO). By default the HFRCO is selected. In most applications, one of the high frequency oscillators will be the preferred
choice. To change the selected HFCLK write to HFCLKSEL in CMU_CMD. The HFCLK is running in EMO and EM1.

HFCLK can optionally be divided down by setting HFCLKDIV in CMU_CTRL to a nonzero value. This divides down HFCLK to all high
frequency components except the USB Core and is typically used to save energy in USB applications where the system is not required
to run at 48 MHz. Combined with the HFCORECLK and HFPERCLK prescalers the HFCLK divider also allows for more flexible clock
division.

silabs.com | Building a more connected world. Rev. 1.1 | 177




EFM32WG Reference Manual

11.3.1.2 HFCORECLK - High Frequency Core Clock

HFCORECLK is a prescaled version of HFCLK. This clock drives the Core Modules, which consists of the CPU and modules that are
tightly coupled to the CPU, e.g. MSC, DMA etc. This also includes the interface to the Low Energy Peripherals. Some of the modules
that are driven by this clock can be clock gated completely when not in use. This is done by clearing the clock enable bit for the specific
module in CMU_HFCORECLKENO. The frequency of HFCORECLK is set using the CMU_HFCORECLKDIV register. The setting can
be changed dynamically and the new setting takes effect immediately.

The USB Core clock (USBC) is always undivided regardless of the HFCLKDIV setting. When the USB Core is active this clock must be
switched to a 32 kHz clock (LFRCO or LFXO) when entering EM2. The USB Core uses this clock for monitoring the USB bus. The
switch is done by writing USBCCLKSEL in CMU_CMD. The currently active clock can be checked by reading CMU_STATUS. The
clock switch can take up to 1.5 32 kHz cycle (45 us). To avoid polling the clock selection status when switching switching from 32 kHz
to HFCLK when coming up from EM2 the USBCHFCLKSEL interrupt can be used. EM3 is not supported when the USB is active.

Note: Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each bus-access to peripheral modules
will increase with the ratio between the clocks. Please refer to 5.2.3.2 Access Performance for more details.

11.3.1.3 HFPERCLK - High Frequency Peripheral Clock

Like HFCORECLK, HFPERCLK can also be a prescaled version of HFCLK. This clock drives the High-Frequency Peripherals. All the
peripherals that are driven by this clock can be clock gated completely when not in use. This is done by clearing the clock enable bit for
the specific peripheral in CMU_HFPERCLKENO. The frequency of HFPERCLK is set using the CMU_HFPERCLKDIV register. The set-
ting can be changed dynamically and the new setting takes effect immediately.

Note: Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each bus-access to peripheral modules
will increase with the ratio between the clocks. E.g. if a bus-access normally takes three cycles, it will take 9 cycles if HFPERCLK runs
three times as fast as the HFCORECLK.

11.3.1.4 LFACLK - Low Frequency A Clock

LFACLK is the selected clock for the Low Energy A Peripherals. There are four selectable sources for LFACLK: LFRCO, LFXO,
HFCORECLK/2 and ULFRCO. In addition, the LFACLK can be disabled. From reset, the LFACLK source is set to LFRCO. However,
note that the LFRCO is disabled from reset. The selection is configured using the LFA field in CMU_LFCLKSEL. The HFCORECLK/2
setting allows the Low Energy A Peripherals to be used as high-frequency peripherals.

Note: If HFCORECLK/2 is selected as LFACLK, the clock will stop in EM2/3.

Each Low Energy Peripheral that is clocked by LFACLK has its own prescaler setting and enable bit. The prescaler settings are config-
ured using CMU_LFAPRESCO and the clock enable bits can be found in CMU_LFACLKENO. Notice that the LCD has an additional
high resolution prescaler for Frame Rate Control, configured by FDIV in CMU_LCDCTRL. When operating in oversampling mode, the
pulse counters are clocked by LFACLK. This is configured for each pulse counter (n) individually by setting PCNTnCLKSEL in
CMU_PCNTCTRL.

11.3.1.5 LFBCLK - Low Frequency B Clock

LFBCLK is the selected clock for the Low Energy B Peripherals. There are four selectable sources for LFBCLK: LFRCO, LFXO,
HFCORECLK/2 and ULFRCO. In addition, the LFBCLK can be disabled. From reset, the LFBCLK source is set to LFRCO. However,
note that the LFRCO is disabled from reset. The selection is configured using the LFB field in CMU_LFCLKSEL. The HFCORECLK/2
setting allows the Low Energy B Peripherals to be used as high-frequency peripherals.

Note: If HFCORECLK/2 is selected as LFBCLK, the clock will stop in EM2/3.

Each Low Energy Peripheral that is clocked by LFBCLK has its own prescaler setting and enable bit. The prescaler settings are config-
ured using CMU_LFBPRESCO and the clock enable bits can be found in CMU_LFBCLKENQO.
11.3.1.6 PCNTNnCLK - Pulse Counter n Clock

Each available pulse counter is driven by its own clock, PCNTnCLK where n is the pulse counter instance number. Each pulse counter
can be configured to use an external pin (PCNTn_S0) or LFACLK as PCNTnCLK.



EFM32WG Reference Manual
CMU - Clock Management Unit

11.3.1.7 WDOGCLK - Watchdog Timer Clock

The Watchdog Timer (WDOG) can be configured to use one of three different clock sources: LFRCO, LFXO or ULFRCO. ULFRCO
(Ultra Low Frequency RC Oscillator) is a separate 1 kHz RC oscillator that also runs in EM3.

11.3.1.8 AUXCLK - Auxiliary Clock

AUXCLK is a 1-28 MHz clock driven by a separate RC oscillator, AUXHFRCO. This clock is used for flash programming, and Serial
Wire Output (SWO), and LESENSE operation. During flash programming, or if needed by LESENSE, this clock will be active. If the
AUXHFRCO has not been enabled explicitly by software, the MSC or LESENSE module will automatically start and stop it. The
AUXHFRCO is enabled by writing a 1 to AUXHFRCOEN in CMU_OSCENCMD. This explicit enabling is required when SWO is used.

11.3.2 Oscillator Selection

11.3.2.1 Start-Up Time

The different oscillators have different start-up times. For the RC oscillators, the start-up time is fixed, but both the LFXO and the HFXO
have configurable start-up time. At the end of the start-up time a ready flag is set to indicated that the start-up time has exceeded and
that the clock is available. The low start-up time values can be used for an external clock source of already high quality, while the higher
start-up times should be used when the clock signal is coming directly from a crystal. The start-up time for HFXO and LFXO can be set
by configuring the HFXOTIMEOUT and LFXOTIMEOUT bitfields, respectively. Both bitfields are located in CMU_CTRL. For HFXO it is
also possible to enable a glitch detection filter by setting HFXOGLITCHDETEN in CMU_CTRL. The glitch detector will reset the start-up
counter if a glitch is detected, making the start-up process start over again.

There are individual bits for each oscillator indicating the status of the oscillator:

* ENABLED - Indicates that the oscillator is enabled
* READY - Start-up time is exceeded
» SELECTED - Start-up time is exceeded and oscillator is chosen as clock source

These status bits are located in the CMU_STATUS register.

silabs.com | Building a more connected world. Rev. 1.1 | 179




EFM32WG Reference Manual
CMU - Clock Management Unit

11.3.2.2 Switching Clock Source

The HFRCO oscillator is a low energy oscillator with extremely short wake-up time. Therefore, this oscillator is always chosen by hard-
ware as the clock source for HFCLK when the device starts up (e.g. after reset and after waking up from EM2 and EM3). After reset,
the HFRCO frequency is 14 MHz.

Software can switch between the different clock sources at run-time. E.g., when the HFRCO is the clock source, software can switch to
HFXO by writing the field HFCLKSEL in the CMU_CMD command register. See the following figure for a description of the sequence of
events for this specific operation.

Note: It is important first to enable the HFXO since switching to a disabled oscillator will effectively stop HFCLK and only a reset can
recover the system.

During the start-up period HFCLK will stop since the oscillator driving it is not ready. This effectively stalls the Core Modules and the
High-Frequency Peripherals. It is possible to avoid this by first enabling the HFXO and then wait for the oscillator to become ready
before switching the clock source. This way, the system continues to run on the HFRCO until the HFXO has timed out and provides a
reliable clock. This sequence of events is shown in Figure 11.4 CMU Switching from HFRCO to HFXO After HFXO is Ready on page
181.

A separate flag is set when the oscillator is ready. This flag can also be configured to generate an interrupt.

emu_cmp.Hretkser < : 00: : X 2 X

CMU_OSCENCMD.HFRCOEN

CMU_OSCENCMD.HFRCODIS

CMU_OSCENCMD.HFXOEN : :

CMU_OSCENCMD.HFXODIS

command

CMU_STATUS.HFRCORDY |

CMU_STATUS.HFRCOENS |

CMU_STATUS.HFRCOSEL |

status

CMU_STATUS..HFXORDY

CMU_STATUS.HFXOENS

CMU_STATUS HFXOSEL E E E E |

w LS
S I N o W o IV
o “WWWWWWWWUUUUUUUUL

HFXO time-out period

|
e e e e B S I

clocks

Figure 11.3. CMU Switching from HFRCO to HFXO Before HFXO is Ready

silabs.com | Building a more connected world. Rev. 1.1 | 180




EFM32WG Reference Manual
CMU - Clock Management Unit

CMU_CMD.HFCLKSEL

@7 G

CMU_OSCENCMD.HFRCOEN

CMU_OSCENCMD.HFRCODIS R R R R
CMU_OSCENCMD.HFXOEN

CMU_OSCENCMD.HFXODIS

command

CMU_STATUS.HFRCORDY |

CMU_STATUS.HFRCOENS | :

CMU_STATUS.HFRCOSEL |

status

CMU_STATUS.HFXORDY

CMU_STATUS.HFXOENS

CMU_STATUS.HFXOSEL

o) —
-
a
J—
I .
S
I
J—
'
J—

HFCLK

clocks

HFXO | !
L i HFXO time-out period ) - ’ ’ .
- »

Figure 11.4. CMU Switching from HFRCO to HFXO After HFXO is Ready

Switching clock source for LFACLK and LFBCLK is done by setting the LFA and LFB fields in CMU_LFCLKSEL. To ensure no stalls in
the Low Energy Peripherals, the clock source should be ready before switching to it.

Note: To save energy, remember to turn off all oscillators not in use.

11.3.3 Oscillator Configuration

11.3.3.1 HFXO and LFXO

The crystal oscillators are by default configured to ensure safe startup and operation of the most common crystals. In order to optimize
startup margin, startup time and power consumption for a given crystal, it is possible to adjust the gain in the oscillator. HFXO gain can
be increased by setting HFXOBOOST field in CMU_CTRL, LFXO gain can be increased by setting LFXOBOOST field in CMU_CTRL. It
is important that the boost settings, along with the crystal load capacitors are matched to the crystals in use. Correct values for these
parameters can be found using Hardware Configurator in Simplicity Studio.

The HFXO crystal is connected to the HFXTAL_N/HFXTAL_P pins as shown in the following figure.

4-32 MHz

—0—

Cu == Co ==

DEVICE

Figure 11.5. HFXO Pin Connection

silabs.com | Building a more connected world. Rev. 1.1 | 181




EFM32WG Reference Manual
CMU - Clock Management Unit

Similarly, the LFXO crystal is connected to the LFXTAL_N/LFXTAL_P pins as shown in the following figure.

)X{ LFXTAL_N

X4 LFXTAL_P
32.768kHz

——

Cu == C ==

Device

Figure 11.6. LFXO Pin Connection

It is possible to connect an external clock source to HFXTAL_N/LFXTAL_N pin of the HFXO or LFXO oscillator. By configuring the
HFXOMODE/LFXOMODE fields in CMU_CTRL, the HFXO/LFXO can be bypassed.

silabs.com | Building a more connected world. Rev. 1.1 | 182




EFM32WG Reference Manual

11.3.3.2 HFRCO, LFRCO, and AUXHFRCO

It is possible to calibrate the HFRCO, LFRCO and AUXHFRCO to achieve higher accuracy (see the device datasheets for details on
accuracy). The frequency is adjusted by changing the TUNING fields in CMU_HFRCOCTRL/CMU_LFRCOCTRL/CMU_AUXHFR-
COCTRL. Changing to a higher value will result in a higher frequency. Please refer to the datasheet for stepsize details.

The HFRCO and AUXHFRCO can be set to one of several different frequency bands from 1 MHz to 28 MHz by setting the BAND field
in CMU_HFRCOCTRL and CMU_AUXHFRCOCTRL.The HFRCO and AUXHFRCO frequency bands are calibrated during production
test, and the production tested calibration values can be read from the Device Information (DI) page. The DI page contains a separate
tuning value for each frequency band. During reset, HFRCO and AUXHFRCO tuning values are set to the production calibrated values
for the 14 MHz band, which is the default frequency band. When changing to a different HFRCO or AUXHFRCO band, make sure to
also update the tuning value.

The LFRCO and is also calibrated in production and its TUNING value is set to the correct value during reset.

The CMU has built-in HW support to efficiently calibrate the RC oscillators at run-time, see the following figure. The concept is to select
a reference and compare the RC frequency with the reference frequency. When the calibration circuit is started, one down-counter run-
ning on a selectable clock (DOWNSEL in CMU_CALCTRL) and one up-counter running on a selectable clock (UPSEL in
CMU_CALCTRL) are started simultaneously. The top value for the down-counter must be written to CMU_CALCNT before calibration is
started. The smallest value that can be written to the CMU_CALCNT is 1. The down-counter counts for CMU_CALCNT+1 cycles. When
the down-counter has reached 0, the up-counter is sampled and the CALRDY interrupt flag is set. If CONT in CMU_CALCTRL is
cleared, the counters are stopped at this point. If continuous mode is selected by setting CONT in CMU_CALCTRL the down-counter
reloads the top value and continues counting and the up-counter restarts from 0. Software can then read out the sampled up-counter
value from CMU_CALCNT. Then it is easy to find the ratio between the reference and the oscillator subject to the calibration. Overflows
of the up-counter will not occur. If the up-counter reaches its top value before the down counter reaches 0, the top counter stays at its
top value. Calibration can be stopped by writing CALSTOP in CMU_CMD. With this HW support, it is simple to write efficient calibration
algorithms in software.

DOWNCLK Domain

Reload down-counter with
top value in continouous
mode.

CMU_CALCTRL.DOWNSEL

AUXHFRCO \L
HFRCO ——
LFRCO — Write top-value using
| DOWNCLK 20-bit down-counter < CMU_CALCNT before
HFXO — starting calibration.
LFXO —
(Default) HFCLK  ——]

Take snapshot of up-counter in
up-counter bufffer. If in
continouous mode, restart up-
counter from 0.

UPCLK Domain SYNC
CMU_CALCTRL.REFSEL

AUXHFRCO
HFRCO ——
UPCLK ) 20-bit up-counter

LFRCO 20-bit up-counter buffer

HFXO —

LFXO —

. SYNC SYNC
HFCLK Domain
CMU_CALCNT Set CMU_IF.CALRDY

Figure 11.7. HW Support for RC Oscillator Calibration

The counter operation for single and continuous mode are shown in the following figures.



EFM32WG Reference Manual
CMU - Clock Management Unit

Up-counter

TOP

Down-counter

Up-counter sampled and
CALRDY interrupt flag set.
Sampled value available in

CMU_CALCNT.

Calibration Started Callibration Stopped

Up-counter

TOP

Down-counter

(counters stopped)

Figure 11.8. Single Calibration (CONT=0)

Up-counter sampled and Up-counter sampled and
CALRDY interrupt flag set. CALRDY interrupt flag set.
Sampled value available in Sampled value available in

CMU_CALCNT. CMU_CALCNT.

Calibration Started

Figure 11.9. Continuous Calibration (CONT=1)

silabs.com | Building a more connected world. Rev. 1.1 | 184




EFM32WG Reference Manual
CMU - Clock Management Unit

11.3.4 Configuration For Operating Frequencies

The HFXO is capable of driving crystals up to 48 MHz, which allows the EFM32 to run at up to this frequency. Different frequencies
have different requirements as shown in the following table. Before going to a high frequency, make sure the registers in the table have
the correct values. When going down in frequency, make sure to keep the registers at the values required by the higher frequency until
after the switch has been done.

Table 11.1. Table 11.1. Configuration For Operating Frequencies

Maximum Fre- MODE in MSC_READCTRL HFLE in HFXOBUFCUR in CMU_CTRL

quency CMU_CTRL

16 MHz WS0 / WSOSCBTP / WS1/WS1SCBTP / WS2/ |— BOOSTUPTO32MHZ (default value)
WS2SCBTP

24 MHz WS1/WS1SCBTP / WS2 / WS2SCBTP — BOOSTUPTO32MHZ (default value)

32 MHz WS1/WS1SCBTP / WS2 / WS2SCBTP 1 BOOSTUPTO32MHZ (default value)

48 MHz WS2 / WS2SCBTP 1 BOOSTABOVE32MHZ

MODE in MSC_READCTRL makes sure the flash is able to operate at the given frequencies by inserting waitstates for flash accesses.
HFXOBUFCUR in CMU_CTRL should be set to BOOSTABOVE32MHZ when operating above 32 MHz. When operating at 32 MHz or
below, the default value (BOOSTUPTO32MHZ) should be used. HFLE in CMU_CTRL is only required for frequencies above 24 MHz,
and ensures correct operation of LE peripherals. The CMU_CTRL_HFLE is or'ed with HFCORECLKLEDIV in CMU_HFCORECLKDIV,
so setting either of this bits will reduce the the frequency of CMU_HFCORECLKLEDIV2.

11.3.5 Output Clock on a Pin

It is possible to configure the CMU to output clocks on two pins. This clock selection is done using CLKOUTSELO and CLKOUTSEL1
fields in CMU_CTRL. The output pins must be configured in the CMU_ROUTE register.

* LFRCO, LFXO, HFCLK or the qualified clock from any of the oscillators can be output on one pin (CMU_OUT1). A qualified clock
will not have any glitches or skewed duty-cycle during startup. For LFXO and HFXO you need to configure LFXOTIMEOUT and
HFXOTIMEOUT in CMU_CTRL correctly to guarantee a qualified clock.

* HFRCO, HFXO, HFCLK/2, HFCLK/4, HFCLK/8, HFCLK/16, ULFRCO or AUXHFRCO can be output on another pin (CMU_OUTO)

Note that HFXO and HFRCO clock outputs to pin can be unstable after startup and should not be output on a pin before HFXORDY/
HFRCORDY is set high in CMU_STATUS.

11.3.6 Protection

It is possible to lock the control- and command registers to prevent unintended software writes to critical clock settings. This is control-
led by the CMU_LOCK register.

silabs.com | Building a more connected world. Rev. 1.1 | 185




EFM32WG Reference Manual
CMU - Clock Management Unit

11.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 CMU_CTRL RW CMU Control Register

0x004 CMU_HFCORECLKDIV RwW High Frequency Core Clock Division Register
0x008 CMU_HFPERCLKDIV RW High Frequency Peripheral Clock Division Register
0x00C |CMU_HFRCOCTRL RW HFRCO Control Register

0x010 CMU_LFRCOCTRL RW LFRCO Control Register

0x014 | CMU_AUXHFRCOCTRL RW AUXHFRCO Control Register

0x018 CMU_CALCTRL RwW Calibration Control Register

0x01C |CMU_CALCNT RWH Calibration Counter Register

0x020 CMU_OSCENCMD WA1 Oscillator Enable/Disable Command Register
0x024 CMU_CMD WA1 Command Register

0x028 CMU_LFCLKSEL RW Low Frequency Clock Select Register

0x02C |CMU_STATUS Status Register

0x030 CMU_IF Interrupt Flag Register

0x034 CMU_IFS W1 Interrupt Flag Set Register

0x038 CMU_IFC (R)W1 Interrupt Flag Clear Register

0x03C |CMU_IEN RwW Interrupt Enable Register

0x040 CMU_HFCORECLKENO RW High Frequency Core Clock Enable Register 0
0x044 CMU_HFPERCLKENO RW High Frequency Peripheral Clock Enable Register 0
0x050 CMU_SYNCBUSY R Synchronization Busy Register

0x054 CMU_FREEZE RwW Freeze Register

0x058 CMU_LFACLKENO RW Low Frequency A Clock Enable Register 0 (Async Reg)
0x060 CMU_LFBCLKENO RW Low Frequency B Clock Enable Register 0 (Async Reg)
0x068 CMU_LFAPRESCO RW Low Frequency A Prescaler Register 0 (Async Reg)
0x070 CMU_LFBPRESCO RwW Low Frequency B Prescaler Register 0 (Async Reg)
0x078 |CMU_PCNTCTRL RW PCNT Control Register

0x07C |CMU_LCDCTRL RwW LCD Control Register

0x080 |CMU_ROUTE RW I/0 Routing Register

0x084 CMU_LOCK RW Configuration Lock Register

silabs.com | Building a more connected world.

Rev. 1.1 | 186




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5 Register Description

11.5.1 CMU_CTRL - CMU Control Register

Offset Bit Position
%000 |58/ RN &R IQNTR22= L T2dC2o0lo~owv voa o
Reset o o = R <X o = - R ol X R =
o o o o o o o o o
Access | |F |2 z = |8 8 & 2 & |z % -
z
L
m
= = Q| x
- o > & 2 I =
—1 — -} = -]
Name w w @ |o > o u 2 e o 3 a
L = (@) s = L
N4 [ [ = |5 o o| O = J| D o o
— o) o) = o X m = = O] om ] =
L Q O O o |O = ol © O ol O O O
1 Q X X < < O < < X X X < X
L [an] - — ™ ™ L w ™ L L L L L
T o (@] (@) — — T - — T T T T T
Bit Name Reset Access Description
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
30 HFLE 0 RwW High-Frequency LE Interface
Set to allow access to LE peripherals when running at frequencies higher than 24 MHz. Or'ed with CMU_HFCORECLK-
DIV_HFCORECLKLEDIV to reduce the frequency of CMU_HFCORECLKLEDIV2.
29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
28 DBGCLK 0 RW Debug Clock
Select clock used for the debug system.
Value Mode Description
0 AUXHFRCO AUXHFRCO is the debug clock.
1 HFCLK The system clock is the debug clock.
27 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
26:23 CLKOUTSELA1 0x0 RW Clock Output Select 1

Controls the clock output multiplexer. To actually output on the pin, set CLKOUT1PEN in CMU_ROUTE.

Value Mode Description

0 LFRCO LFRCO (directly from oscillator).
1 LFXO LFXO (directly from oscillator).
2 HFCLK HFCLK (undivided).

3 LFXOQ LFXO (qualified).

4 HFXOQ HFXO (qualified).

5 LFRCOQ LFRCO (qualified).

6 HFRCOQ HFRCO (qualified).

7 AUXHFRCOQ AUXHFRCO (qualified).

silabs.com | Building a more connected world. Rev. 1.1 | 187




EFM32WG Reference Manual
CMU - Clock Management Unit

Bit Name Reset Access Description
22:20 CLKOUTSELO 0x0 RW Clock Output Select 0
Controls the clock output multiplexer. To actually output on the pin, set CLKOUTOPEN in CMU_ROUTE.

Value Mode Description

0 HFRCO HFRCO (directly from oscillator).

1 HFXO HFXO (directly from oscillator).

2 HFCLK2 HFCLK/2.

3 HFCLK4 HFCLK/4.

4 HFCLK8 HFCLK/8.

5 HFCLK16 HFCLK/16.

6 ULFRCO ULFRCO (directly from oscillator).

7 AUXHFRCO AUXHFRCO (directly from oscillator).
19:18 LFXOTIMEOUT 0x3 RW LFXO Timeout

Configures the start-up delay for LFXO.

Value Mode Description

0 8CYCLES Timeout period of 8 cycles.

1 1KCYCLES Timeout period of 1024 cycles.

2 16KCYCLES Timeout period of 16384 cycles.

3 32KCYCLES Timeout period of 32768 cycles.
17 LFXOBUFCUR 0 RW LFXO Boost Buffer Current

This value has been updated to the correct level during calibration and should not be changed.

16:14 HFCLKDIV 0x0 RW HFCLK Division
Use to divide HFCLK frequency by (HFCLKDIV + 1).
13 LFXOBOOST 1 RW LFXO Start-up Boost Current

Adjusts start-up boost current for LFXO.

Value Mode Description

0 7O0PCENT 70 %.

1 100PCENT 100 %.
12:11 LFXOMODE 0x0 RW LFXO Mode

Set this to configure the external source for the LFXO. The oscillator setting takes effect when 1 is written to LFXOEN in
CMU_OSCENCMD. The oscillator setting is reset to default when 1 is written to LFXODIS in CMU_OSCENCMD.

Value Mode Description

0 XTAL 32.768 kHz crystal oscillator.

1 BUFEXTCLK An AC coupled buffer is coupled in series with LFXTAL_N pin, suitable
for external sinus wave (32.768 kHz).

2 DIGEXTCLK Digital external clock on LFXTAL_N pin. Oscillator is effectively by-
passed.

silabs.com | Building a more connected world. Rev. 1.1 | 188




EFM32WG Reference Manual
CMU - Clock Management Unit

Bit Name Reset Access Description
10:9 HFXOTIMEOUT 0x3 RW HFXO Timeout
Configures the start-up delay for HFXO.

Value Mode Description
0 8CYCLES Timeout period of 8 cycles.
1 256CYCLES Timeout period of 256 cycles.
2 1KCYCLES Timeout period of 1024 cycles.
3 16KCYCLES Timeout period of 16384 cycles.
8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
7 HFXOGLITCHDET- 0 RW HFXO Glitch Detector Enable
EN

This bit enables the glitch detector which is active as long as the start-up ripple-counter is counting. A detected glitch will
reset the ripple-counter effectively increasing the start-up time. Once the ripple-counter has timed-out, glitches will not be
detected.

6:5 HFXOBUFCUR 0x1 RW HFXO Boost Buffer Current

The current level in the HFXO buffer should be set to default value when operating on 32 MHz or below. When operating on
frequencies above 32 MHz, the buffer current level should be set to 3.

Value Mode Description
1 BOOSTUPTO32MHZ Boost Buffer Current level when HFXO is below or equal to 32 MHz.
3 BOOSTABOVE32MHZ Boost Buffer Current Level when HFXO is above 32 MHz.
4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3:2 HFXOBOOST 0x3 RW HFXO Start-up Boost Current

Used to adjust start-up boost current for HFXO.

Value Mode Description

0 50PCENT 50 %.

1 70PCENT 70 %.

2 80PCENT 80 %.

3 100PCENT 100 % (default).
1:0 HFXOMODE 0x0 RW HFXO Mode

Set this to configure the external source for the HFXO. The oscillator setting takes effect when 1 is written to HFXOEN in
CMU_OSCENCMD. The oscillator setting is reset to default when 1 is written to HFXODIS in CMU_OSCENCMD.

Value Mode Description
0 XTAL 4-48 crystal oscillator.
1 BUFEXTCLK An AC coupled buffer is coupled in series with HFXTAL_N, suitable for

external sine wave (4-48). The sine wave should have a minimum of
200 mV peak to peak.

2 DIGEXTCLK Digital external clock on HFXTAL_N pin. Oscillator is effectively by-
passed.

silabs.com | Building a more connected world. Rev. 1.1 | 189




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.2 CMU_HFCORECLKDIV - High Frequency Core Clock Division Register

Offset Bit Position
X004 |5 I2IRIRNLRIRQYTRIZI2T R I Y 20w~ v o~ o
Reset o g
Access E %
=
a >
4 8
v x
— -
Name O O
| |
o o
O O
O O
L [T
T T
Bit Name Reset Access Description
31:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
8 HFCORECLKLEDIV 0 RW Additional Division Factor For HFCORECLKLE
Additional division factor for HFCORECLKLE. When running at frequencies higher than 24 MHz, this must be set to DIV4.
Value Mode Description
0 DIV2 Valid for frequencies 24 MHz and lower.
1 Div4 Must be used when HFCORECLK may go above 24 MHz.
7:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3:.0 HFCORECLKDIV 0x0 RW HFCORECLK Divider

Specifies the clock divider for HFCORECLK.

Value Mode Description

0 HFCLK HFCORECLK = HFCLK.

1 HFCLK2 HFCORECLK = HFCLK/2.

2 HFCLK4 HFCORECLK = HFCLK/4.

3 HFCLKS8 HFCORECLK = HFCLK/8.

4 HFCLK16 HFCORECLK = HFCLK/16.
5 HFCLK32 HFCORECLK = HFCLK/32.
6 HFCLK64 HFCORECLK = HFCLK/64.
7 HFCLK128 HFCORECLK = HFCLK/128.
8 HFCLK256 HFCORECLK = HFCLK/256.
9 HFCLK512 HFCORECLK = HFCLK/512.

silabs.com | Building a more connected world. Rev. 1.1 | 190




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.3 CMU_HFPERCLKDIV - High Frequency Peripheral Clock Division Register

Offset Bit Position
%008 |58 RRKNLRIQNTRZR TR IV T2 0 0/ ~olv <o a o
Reset - %
Access E E
z =
i =)
X X
0 &
Name 4 °
i [
o o
L [T
T T
Bit Name Reset Access Description
31:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
8 HFPERCLKEN 1 RW HFPERCLK Enable
Set to enable the HFPERCLK.
7:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3:.0 HFPERCLKDIV 0x0 RW HFPERCLK Divider

Specifies the clock divider for the HFPERCLK.

Value Mode Description

0 HFCLK HFPERCLK = HFCLK.

1 HFCLK2 HFPERCLK = HFCLK/2.

2 HFCLK4 HFPERCLK = HFCLK/4.

3 HFCLKS8 HFPERCLK = HFCLK/8.

4 HFCLK16 HFPERCLK = HFCLK/16.
5 HFCLK32 HFPERCLK = HFCLK/32.
6 HFCLK64 HFPERCLK = HFCLK/64.
7 HFCLK128 HFPERCLK = HFCLK/128.
8 HFCLK256 HFPERCLK = HFCLK/256.
9 HFCLK512 HFPERCLK = HFCLK/512.

silabs.com | Building a more connected world.

Rev. 1.1 | 191




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.4 CMU_HFRCOCTRL - HFRCO Control Register

Offset Bit Position
0x00C |5 8/ XN &LRIQYNTR22TLL T2 2olon~owv von o
o o
Reset < R X
IS © IS]
Access E E E
< Q
—
Name w =) Zz
[m) b= P4
=) < )
%) m =
Bit Name Reset Access Description
31:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
16:12 SUDELAY 0x00 RW HFRCO Start-up Delay
Always write this field to 0.
11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
10:8 BAND 0x3 RW HFRCO Band Select
Write this field to set the frequency band in which the HFRCO is to operate. When changing this setting there will be no
glitches on the HFRCO output, hence it is safe to change this setting even while the system is running on the HFRCO. To
ensure an accurate frequency, the HFTUNING value should also be written when changing the frequency band. The cali-
brated tuning value for the different bands can be read from the Device Information page.
Value Mode Description
0 1MHZ 1 MHz band. NOTE: Also set the TUNING value (bits 7:0) when chang-
ing band.
1 7TMHZ 7 MHz band. NOTE: Also set the TUNING value (bits 7:0) when chang-
ing band.
2 11MHZ 11 MHz band. NOTE: Also set the TUNING value (bits 7:0) when
changing band.
3 14MHZ 14 MHz band. NOTE: Also set the TUNING value (bits 7:0) when
changing band.
4 21MHZ 21 MHz band. NOTE: Also set the TUNING value (bits 7:0) when
changing band.
5 28MHZz 28 MHz band. NOTE: Also set the TUNING value (bits 7:0) when
changing band.
7:0 TUNING 0x80 RW HFRCO Tuning Value

Writing this field adjusts the HFRCO frequency (the higher value, the higher frequency). This field is updated with the pro-
duction calibrated value for the 14 MHz band during reset, and the reset value might therefore vary between devices.

silabs.com | Building a more connected world. Rev. 1.1 | 192




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.5 CMU_LFRCOCTRL - LFRCO Control Register

Offset Bit Position
x010 15 18|QKQQI QAT Q]IN T g I ed e ol~|lo|lw|e m N~ o
o
Reset *
o
Access E
O]
z
Name z
)
|_
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6:0 TUNING 0x40 RW LFRCO Tuning Value

Writing this field adjusts the LFRCO frequency (the higher value, the higher frequency). This field is updated with the pro-
duction calibrated value during reset, and the reset value might therefore vary between devices.

silabs.com | Building a more connected world.

Rev. 1.1 | 193




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.6 CMU_AUXHFRCOCTRL - AUXHFRCO Control Register

Offset Bit Position
0014 15I8IRIRNICRIQY RS2 T2 N2 0/w/i~oo/ v o ~|o
o o
Reset S g
Access E E
2
Name S z
< )
m [
Bit Name Reset Access Description
31:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
10:8 BAND 0x0 RW AUXHFRCO Band Select
Write this field to set the frequency band in which the AUXHFRCO is to operate. When changing this setting there will be no
glitches on the AUXHFRCO output, hence it is safe to change this setting even while the system is using the AUXHFRCO.
To ensure an accurate frequency, the AUXTUNING value should also be written when changing the frequency band. The
calibrated tuning value for the different bands can be read from the Device Information page. Flash erase and write use this
clock. If it is changed to another value than the default, MSC_TIMEBASE must also be configured to ensure correct flash
erase and write operation.
Value Mode Description
0 14MHZ 14 MHz band. NOTE: Also set the TUNING value (bits 7:0) when
changing band.
1 11MHZ 11 MHz band. NOTE: Also set the TUNING value (bits 7:0) when
changing band.
2 7TMHZ 7 MHz band. NOTE: Also set the TUNING value (bits 7:0) when chang-
ing band.
3 1MHZ 1 MHz band. NOTE: Also set the TUNING value (bits 7:0) when chang-
ing band.
6 28MHZz 28 MHz band. NOTE: Also set the TUNING value (bits 7:0) when
changing band.
7 21MHZ 21 MHz band. NOTE: Also set the TUNING value (bits 7:0) when
changing band.
7:0 TUNING 0x80 RW AUXHFRCO Tuning Value

Writing this field adjusts the AUXHFRCO frequency (the higher value, the higher frequency).This field is updated with the
production calibrated value during reset, and the reset value might therefore vary between devices.

silabs.com | Building a more connected world.

Rev.1.1 | 194




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.7 CMU_CALCTRL - Calibration Control Register

Offset Bit Position
0018 5|88 NIQIRI RN TIR 2T L T2 20w ~oo<oa - o
Reset o g g
Access E E E
E
Name = g y)
8 28 5
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6 CONT 0 RwW Continuous Calibration
Set this bit to enable continuous calibration.
5:3 DOWNSEL 0x0 RW Calibration Down-counter Select
Selects clock source for the calibration down-counter.
Value Mode Description
0 HFCLK Select HFCLK for down-counter.
1 HFXO Select HFXO for down-counter.
2 LFXO Select LFXO for down-counter.
3 HFRCO Select HFRCO for down-counter.
4 LFRCO Select LFRCO for down-counter.
5 AUXHFRCO Select AUXHFRCO for down-counter.
2:0 UPSEL 0x0 RW Calibration Up-counter Select
Selects clock source for the calibration up-counter.
Value Mode Description
0 HFXO Select HFXO as up-counter.
1 LFXO Select LFXO as up-counter.
2 HFRCO Select HFRCO as up-counter.
3 LFRCO Select LFRCO as up-counter.
4 AUXHFRCO Select AUXHFRCO as up-counter.

silabs.com | Building a more connected world. Rev. 1.1 | 195




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.8 CMU_CALCNT - Calibration Counter Register

Offset Bit Position
x1C |58/12/88NLRZ QY TIR2R e N2 o o/ ~ow < ool -|o
o
3
Reset S
o
X
o
I
Access =
o
|_
zZ
Name 9
<
O
Bit Name Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
19:0 CALCNT 0x00000 RWH Calibration Counter

Write top value before calibration. Read calibration result from this register when Calibration Ready flag has been set.

silabs.com | Building a more connected world. Rev. 1.1 | 196




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.9 CMU_OSCENCMD - Oscillator Enable/Disable Command Register

Offset Bit Position
%020 |58/ RN &L RIRQYTR22T LR T2 2 o0lon~owv von o
Reset o|lo|lo|lo|lo|lo|lo|o|o
Access z|z|z|zlzlz/22 /2=
Q=
3ls)
D1z|0|0 |, |2z
Name N zolw| x| x| lzoWw
QW 0|0 L |w ajw 0|0
oO|lo/l0o|0OZT|T|O0|C Q|9
XRE|ES|ZEEEE
J|d|ld|a|< || T ||| T
Bit Name Reset Access Description
31:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
9 LFXODIS 0 W1 LFXO Disable

Disables the LFXO. LFXOEN has higher priority if written simultaneously.

8 LFXOEN 0 W1 LFXO Enable
Enables the LFXO.
7 LFRCODIS 0 W1 LFRCO Disable

Disables the LFRCO. LFRCOEN has higher priority if written simultaneously.

6 LFRCOEN 0 W1 LFRCO Enable
Enables the LFRCO.
5 AUXHFRCODIS 0 W1 AUXHFRCO Disable

Disables the AUXHFRCO. AUXHFRCOEN has higher priority if written simultaneously. WARNING: Do not disable this
clock during a flash erase/write operation.

4 AUXHFRCOEN 0 W1 AUXHFRCO Enable
Enables the AUXHFRCO.
3 HFXODIS 0 W1 HFXO Disable

Disables the HFXO. HFXOEN has higher priority if written simultaneously. WARNING: Do not disable the HFRXO if this

oscillator is selected as the source for HFCLK.

2 HFXOEN 0 W1 HFXO Enable
Enables the HFXO.
1 HFRCODIS 0 W1 HFRCO Disable

Disables the HFRCO. HFRCOEN has higher priority if written simultaneously. WARNING: Do not disable the HFRCO fif this

oscillator is selected as the source for HFCLK.

0 HFRCOEN
Enables the HFRCO.

0

W1

HFRCO Enable

silabs.com | Building a more connected world.

Rev.1.1 | 197




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.10 CMU_CMD - Command Register

Offset Bit Position
0x024 IR FVQRIIT QIR TI2¥ T8 oo|~|o < | ™ -
Reset g ol|lo g
Access = =z = =
—
7
¢ ok o
Name @) Ol 2
O [ ER) |
m i (@]
(%) < | < L
-] OO I
Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
75 USBCCLKSEL 0x0 W1 USB Core Clock Select
Selects the clock for HFCORECLKysgc. The status register is updated when the clock switch has taken effect.
Value Mode Description
1 HFCLKNODIV Select HFCLK (undivided) as HFCORECLKysgc.
2 LFXO Select LFXO as HFCORECLKysgc.-
3 LFRCO Select LFRCO as HFCORECLKysgc-
4 CALSTOP 0 W1 Calibration Stop
Stops the calibration counters.
3 CALSTART 0 W1 Calibration Start
Starts the calibration, effectively loading the CMU_CALCNT into the down-counter and start decrementing.
2:0 HFCLKSEL 0x0 W1 HFCLK Select

Selects the clock source for HFCLK. Note that selecting an oscillator that is disabled will cause the system clock to stop.
Check the status register and confirm that oscillator is ready before switching.

Value Mode Description

1 HFRCO Select HFRCO as HFCLK.
2 HFXO Select HFXO as HFCLK.
3 LFRCO Select LFRCO as HFCLK.
4 LFXO Select LFXO as HFCLK.

silabs.com | Building a more connected world.

Rev. 1.1 | 198



EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.11 CMU_LFCLKSEL - Low Frequency Clock Select Register

Offset Bit Position
%028 |58/ XN &LRIQNTRI22T L L T2 2 olo~owv von o
Reset o o g g
Access E 5 % E
L w
Name @ X @ X
- - - -
Bit Name Reset Access Description
31:21 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
20 LFBE 0 RW Clock Select for LFB Extended
This bit redefines the meaning of the LFB field.
Value Mode Description
0 DISABLED LFBCLK is disabled (when LFB = DISABLED).
1 ULFRCO ULFRCO selected as LFBCLK (when LFB = DISABLED).
19:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
16 LFAE 0 RW Clock Select for LFA Extended
This bit redefines the meaning of the LFA field.
Value Mode Description
0 DISABLED LFACLK is disabled (when LFA = DISABLED).
1 ULFRCO ULFRCO selected as LFACLK (when LFA = DISABLED).
15:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3:2 LFB 0x1 RW Clock Select for LFB
Selects the clock source for LFBCLK.
LFB LFBE Mode
0 0 Disabled
1 0 LFRCO
2 0 LFXO
3 0 HFCORECLKLEDIV2
0 1 ULFRCO
1:0 LFA 0x1 RW Clock Select for LFA
Selects the clock source for LFACLK.
LFA LFAE Mode
0 0 Disabled
1 0 LFRCO

silabs.com | Building a more connected world.

Rev. 1.1 | 199



EFM32WG Reference Manual
CMU - Clock Management Unit

Bit Name Reset Access Description
2 0 LFXO
3 0 HFCORECLKLEDIV2
0 1 ULFRCO

silabs.com | Building a more connected world. Rev. 1.1 | 200




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.12 CMU_STATUS - Status Register

Offset Bit Position
002 |58/ 8N LR IRQNITRSRTLL T2 T 2o lw~oovon o
Reset o|lo|o|o k=) oo - |-
Access ¥ r e x| x| ¥ | x| x X o
— |
Name §g§>d§d%5£§%885%’35
J|dZ|n|ln 0| 0Ol W O|0 |k |w| | wlo|o
21808 3%\ ERERREESSREEE
SD|D|D|o|d|ld|lT|T|ad|lad|gd|a|<|<|T|T|T|T
Bit Name Reset Access Description
31:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17 USBCLFRCOSEL 0 R USBC LFRCO Selected
LFRCO is selected (and active) as HFCORECLKyspc.
16 USBCLFXOSEL 0 R USBC LFXO Selected
LFXO is selected (and active) as HFCORECLKysgc.
15 USBCHFCLKSEL 0 R USBC HFCLK Selected
HFCLK is selected (and active) as HFCORECLKyspc.
14 CALBSY 0 R Calibration Busy
Calibration is on-going.
13 LFXOSEL 0 R LFXO Selected
LFXO is selected as HFCLK clock source.
12 LFRCOSEL 0 R LFRCO Selected
LFRCO is selected as HFCLK clock source.
11 HFXOSEL 0 R HFXO Selected
HFXO is selected as HFCLK clock source.
10 HFRCOSEL 1 R HFRCO Selected
HFRCO is selected as HFCLK clock source.
9 LFXORDY 0 R LFXO Ready
LFXO is enabled and start-up time has exceeded.
8 LFXOENS 0 R LFXO Enable Status
LFXO is enabled.
7 LFRCORDY 0 R LFRCO Ready
LFRCO is enabled and start-up time has exceeded.
6 LFRCOENS 0 R LFRCO Enable Status
LFRCO is enabled.
5 AUXHFRCORDY 0 R AUXHFRCO Ready

AUXHFRCO is enabled and start-up time has exceeded.

silabs.com | Building a more connected world.

Rev. 1.1 | 201




EFM32WG Reference Manual
CMU - Clock Management Unit

Bit Name Reset Access Description
4 AUXHFRCOENS 0 R AUXHFRCO Enable Status
AUXHFRCO is enabled.

3 HFXORDY 0 R HFXO Ready

HFXO is enabled and start-up time has exceeded.

2 HFXOENS 0 R HFXO Enable Status
HFXO is enabled.
1 HFRCORDY 1 R HFRCO Ready

HFRCO is enabled and start-up time has exceeded.
0 HFRCOENS 1 R HFRCO Enable Status
HFRCO is enabled.

silabs.com | Building a more connected world. Rev. 1.1 | 202




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.13 CMU_IF - Interrupt Flag Register

Offset Bit Position
%030 |5 8/ XN &L RIRQN TR LR T2 2olon~owv von o
Reset o olo -
Access 14 ¥ v e e o o
—
o 5
2 a4
3 _8x3x5
Name 2 > 8 E ¥ 0O
I w|lOo|lw|x|O|xX| O
TR
0| < | < > E E |
/00| |a|a|T|T
Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
7 USBCHFCLKSEL 0 R USBC HFCLK Selected Interrupt Flag
Set when HFCLK is selected as HFCORECLKysgc.-
6 CALOF 0 R Calibration Overflow Interrupt Flag
Set when calibration overflow has occurred
5 CALRDY 0 R Calibration Ready Interrupt Flag
Set when calibration is completed.
4 AUXHFRCORDY 0 R AUXHFRCO Ready Interrupt Flag
Set when AUXHFRCO is ready (start-up time exceeded).
3 LFXORDY 0 R LFXO Ready Interrupt Flag
Set when LFXO is ready (start-up time exceeded).
2 LFRCORDY 0 R LFRCO Ready Interrupt Flag
Set when LFRCO is ready (start-up time exceeded).
1 HFXORDY 0 R HFXO Ready Interrupt Flag
Set when HFXO is ready (start-up time exceeded).
0 HFRCORDY 1 R HFRCO Ready Interrupt Flag

Set when HFRCO is ready (start-up time exceeded).

silabs.com | Building a more connected world.

Rev. 1.1 | 203




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.14 CMUL_IFS - Interrupt Flag Set Register

Offset Bit Position
0x034 |5 I8IRTJCQIQNIK22Eg2Fe¥d R0 w|~lojv|v o a0
Reset o|lo|o|o|o|o|o|o
Access zzz|zz/2 2|2
—
o )
< x
o S~ 35>
Name s > | E ¥ Oolx
I|lw| QjL|ig|lOolx O
Olojx | ZT|0o|O Q|9
m - d | X |x% | |X | K
N < < Dl |w|w
2000|444 || T
Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
7 USBCHFCLKSEL 0 W1 USBC HFCLK Selected Interrupt Flag Set
Write to 1 to set the USBC HFCLK Selected Interrupt Flag.
6 CALOF 0 W1 Calibration Overflow Interrupt Flag Set
Write to 1 to set the Calibration Overflow Interrupt Flag.
5 CALRDY 0 W1 Calibration Ready Interrupt Flag Set
Write to 1 to set the Calibration Ready(completed) Interrupt Flag.
4 AUXHFRCORDY 0 W1 AUXHFRCO Ready Interrupt Flag Set
Write to 1 to set the AUXHFRCO Ready Interrupt Flag.
3 LFXORDY 0 W1 LFXO Ready Interrupt Flag Set
Write to 1 to set the LFXO Ready Interrupt Flag.
2 LFRCORDY 0 W1 LFRCO Ready Interrupt Flag Set
Write to 1 to set the LFRCO Ready Interrupt Flag.
1 HFXORDY 0 W1 HFXO Ready Interrupt Flag Set
Write to 1 to set the HFXO Ready Interrupt Flag.
0 HFRCORDY 0 W1 HFRCO Ready Interrupt Flag Set

Write to 1 to set the HFRCO Ready Interrupt Flag.

silabs.com | Building a more connected world.

Rev.1.1 | 204




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.15 CMU_IFC - Interrupt Flag Clear Register

Offset Bit Position
0038 53R QKNSR IRISTR 22 T2 T2 T 20 w~oowon|o
Reset o|lo|lo|o|lo|o|o|o
Access S 2/2/2|212 22
Clrirlrriexx
-
w 5
2 e
o Sl=5x8
Name o > | E ¥ | olx
I w|lo|lw|x|O|x| O
OOl | ZT|0|O|Q|Q
midid X |Ix|lxe|X| K
i< < | Dk |w|b|w
D00l |a|a|T |
Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
7 USBCHFCLKSEL 0 (R)W1 USBC HFCLK Selected Interrupt Flag Clear

Write to 1 to clear the USBC HFCLK Selected Interrupt Flag.

6 CALOF

0

(R)W1

Calibration Overflow Interrupt Flag Clear

Write to 1 to clear the Calibration Overflow Interrupt Flag.

5 CALRDY

0

(R)W1

Calibration Ready Interrupt Flag Clear

Write to 1 to clear the Calibration Ready Interrupt Flag.

4 AUXHFRCORDY

0

(R)W1

AUXHFRCO Ready Interrupt Flag Clear

Write to 1 to clear the AUXHFRCO Ready Interrupt Flag.

3 LFXORDY

0

(R)W1

LFXO Ready Interrupt Flag Clear

Write to 1 to clear the LFXO Ready Interrupt Flag.

2 LFRCORDY

0

(R)W1

LFRCO Ready Interrupt Flag Clear

Write to 1 to clear the LFRCO Ready Interrupt Flag.

1 HFXORDY

0

(R)W1

HFXO Ready Interrupt Flag Clear

Write to 1 to clear the HFXO Ready Interrupt Flag.

0 HFRCORDY

0

(R)W1

HFRCO Ready Interrupt Flag Clear

Write to 1 to clear the HFRCO Ready Interrupt Flag.

silabs.com | Building a more connected world.

Rev. 1.1 | 205




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.16 CMU_IEN - Interrupt Enable Register

Offset Bit Position
0x03C 1S8R XQQI QTR 22T g2 ¥ C|8lo|o ~|ojw|v o|a|-|o
Reset o|lo|lo|lo|o|o|o
Accass SHEBHEEEE
-
o 5
v x
o =35>
Name L > | E ¥ 0O
T w|lo|lw|x|O|x| O
Ololx|ZT 00|09
m Jd X % || X | X
N < < Dl |w|w
D2/0|0|<|a|la|xT|xT
Bit Name Reset Access Description
31:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
7 USBCHFCLKSEL 0 RW USBC HFCLK Selected Interrupt Enable
Set to enable the USBC HFCLK Selected Interrupt.
6 CALOF 0 RW Calibration Overflow Interrupt Enable
Set to enable the Calibration Overflow Interrupt.
5 CALRDY 0 RW Calibration Ready Interrupt Enable
Set to enable the Calibration Ready Interrupt.
4 AUXHFRCORDY 0 RW AUXHFRCO Ready Interrupt Enable
Set to enable the AUXHFRCO Ready Interrupt.
3 LFXORDY 0 RW LFXO Ready Interrupt Enable
Set to enable the LFXO Ready Interrupt.
2 LFRCORDY 0 RW LFRCO Ready Interrupt Enable
Set to enable the LFRCO Ready Interrupt.
1 HFXORDY 0 RW HFXO Ready Interrupt Enable
Set to enable the HFXO Ready Interrupt.
0 HFRCORDY 0 RW HFRCO Ready Interrupt Enable

Set to enable the HFRCO Ready Interrupt.

silabs.com | Building a more connected world.

Rev. 1.1 | 206




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.17 CMU_HFCORECLKENO - High Frequency Core Clock Enable Register 0

Offset Bit Position
0040 |52 IR/RNIQIRIT RN TR 22T L T2 T2 0w ~ow< oo~ o
Reset o|lo|lo|o|o|o
Access SHBBEE
(@]
Name 5w 8883
w|a| DD« |Aa
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 EBI 0 RwW External Bus Interface Clock Enable
Set to enable the clock for EBI.
4 LE 0 RW Low Energy Peripheral Interface Clock Enable
Set to enable the clock for LE. Interface used for bus access to Low Energy peripherals.
3 uUSB 0 RW Universal Serial Bus Interface Clock Enable
Set to enable the clock for USB.
2 USBC 0 RwW Universal Serial Bus Interface Core Clock Enable
Set to enable the clock for USBC.
1 AES 0 RW Advanced Encryption Standard Accelerator Clock Enable
Set to enable the clock for AES.
0 DMA 0 RW Direct Memory Access Controller Clock Enable

Set to enable the clock for DMA.

silabs.com | Building a more connected world. Rev. 1.1 | 207




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.18 CMU_HFPERCLKENO - High Frequency Peripheral Clock Enable Register 0

Offset Bit Position
x044 158X RQIQIIRI]IJIRI2e T g2 IedtQow~lowv <o oal~|o
Reset o|lo|lo|o|o o|lo|lo|o|o|o|o o|lo|lo|o
Access z23323333333:8333:3¢
— N |~ |O
Name 88, ke o EEEEEEEEE
32886 I<QRFEEEESSSSS
Bit Name Reset Access Description
31:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17 DACO 0 RW Digital to Analog Converter 0 Clock Enable
Set to enable the clock for DACO.
16 ADCO 0 RW Analog to Digital Converter 0 Clock Enable
Set to enable the clock for ADCO.
15 PRS 0 RW Peripheral Reflex System Clock Enable
Set to enable the clock for PRS.
14 VCMP 0 RW Voltage Comparator Clock Enable
Set to enable the clock for VCMP.
13 GPIO 0 RW General purpose Input/Output Clock Enable
Set to enable the clock for GPIO.
12 12C1 0 RW 12C 1 Clock Enable
Set to enable the clock for [12C1.
11 12C0 0 RW 12C 0 Clock Enable
Set to enable the clock for 12C0.
10 ACMP1 0 RW Analog Comparator 1 Clock Enable
Set to enable the clock for ACMP1.
9 ACMPO 0 RW Analog Comparator 0 Clock Enable
Set to enable the clock for ACMPO.
8 TIMER3 0 RW Timer 3 Clock Enable
Set to enable the clock for TIMERS.
7 TIMER2 0 RW Timer 2 Clock Enable
Set to enable the clock for TIMER2.
6 TIMER1 0 RwW Timer 1 Clock Enable
Set to enable the clock for TIMER1.
5 TIMERO 0 RW Timer 0 Clock Enable

Set to enable the clock for TIMERO.

silabs.com | Building a more connected world.

Rev. 1.1 | 208




EFM32WG Reference Manual
CMU - Clock Management Unit

Bit Name Reset Access Description
4 UART1 0 RW Universal Asynchronous Receiver/Transmitter 1 Clock Enable
Set to enable the clock for UART1.

3 UARTO 0 RW Universal Asynchronous Receiver/Transmitter 0 Clock Enable
Set to enable the clock for UARTO.

2 USART2 0 RW Universal Synchronous/Asynchronous Receiver/Transmitter 2
Clock Enable

Set to enable the clock for USART2.

1 USART1 0 RW Universal Synchronous/Asynchronous Receiver/Transmitter 1
Clock Enable

Set to enable the clock for USART1.

0 USARTO 0 RW Universal Synchronous/Asynchronous Receiver/Transmitter 0
Clock Enable

Set to enable the clock for USARTO.

silabs.com | Building a more connected world. Rev. 1.1 | 209




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.19 CMU_SYNCBUSY - Synchronization Busy Register

Offset Bit Position
%050 |5 8/ XN LR IQN TR L L T2 2olon~owv von o
Reset o o o o
Access o x o o
o o Q o
AT
Name o 5 o X
o O o O
m m < <
T [ L L
— — — —
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6 LFBPRESCO 0 R Low Frequency B Prescaler 0 Busy
Used to check the synchronization status of CMU_LFBPRESCO.
Value Description
1 CMU_LFBPRESCO is busy synchronizing new value.
5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4 LFBCLKENO 0 R Low Frequency B Clock Enable 0 Busy
Used to check the synchronization status of CMU_LFBCLKENO.
Value Description
0 CMU_LFBCLKENQO is ready for update.
1 CMU_LFBCLKENQO is busy synchronizing new value.
3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
2 LFAPRESCO 0 R Low Frequency A Prescaler 0 Busy
Used to check the synchronization status of CMU_LFAPRESCO.
Value Description
0 CMU_LFAPRESCO is ready for update.
1 CMU_LFAPRESCO is busy synchronizing new value.
1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
0 LFACLKENO 0 R Low Frequency A Clock Enable 0 Busy
Used to check the synchronization status of CMU_LFACLKENO.
Value Description
0 CMU_LFACLKENO is ready for update.
1 CMU_LFACLKENOQO is busy synchronizing new value.

silabs.com | Building a more connected world. Rev. 1.1 | 210




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.20 CMU_FREEZE - Freeze Register

Offset Bit Position

0x054 15 18I RNIQIQII QNIRRT e¥t|Qloo|~|lojv|t|m|a|-]|o

Reset o

Access 5
L
N
L
w

Name 4
L
O]
w
(4

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 REGFREEZE 0 RW Register Update Freeze

When set, the update of the Low Frequency clock control registers is postponed until this bit is cleared. Use this bit to up-

date several registers simultaneously.

Value Mode Description

0 UPDATE Each write access to a Low Frequency clock control register is updated
into the Low Frequency domain as soon as possible.

1 FREEZE The LE Clock Control registers are not updated with the new written

value.

silabs.com | Building a more connected world.

Rev. 1.1 | 211




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.21 CMU_LFACLKENQO - Low Frequency A Clock Enable Register 0 (Async Reg)

Offset Bit Position
x088 158K KNILR IR TR IRV T2 0 o/ ~ov v o a o
Reset olololo
Access 5 5 5 5
o
5
Name = &
OO0 lwm
O|w| k=W
J ||\ |a
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3 LCD 0 RW Liquid Crystal Display Controller Clock Enable
Set to enable the clock for LCD.
2 LETIMERO 0 RW Low Energy Timer 0 Clock Enable
Set to enable the clock for LETIMERO.
1 RTC 0 RwW Real-Time Counter Clock Enable
Set to enable the clock for RTC.
0 LESENSE 0 RW Low Energy Sensor Interface Clock Enable

Set to enable the clock for LESENSE.

11.5.22 CMU_LFBCLKENO - Low Frequency B Clock Enable Register 0 (Async Reg)

Offset Bit Position

0x060 |5 8RN LR IRQYTRZ2T LR T2 2 o0lon~owv von o

Reset o|o

Access 5 5
— | O
==
X o

Name < | <
ol
w W
- | d

Bit Name Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
1 LEUART1 0 RW Low Energy UART 1 Clock Enable
Set to enable the clock for LEUART1.
0 LEUARTO 0 RwW Low Energy UART 0 Clock Enable

Set to enable the clock for LEUARTO.

silabs.com | Building a more connected world.

Rev.1.1 | 212




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.23 CMU_LFAPRESCO - Low Frequency A Prescaler Register 0 (Async Reg)

Offset Bit Position
0068 |53 /R/RNIQILI QN TR 22T LT 220w ~ow< oo~ o
(] (e} (e} (e}
Reset = 3 3 3
Access E E E 5
o
L
i 2
Name = w
o fu O %)
O L = w
| 4 [1'd |
Bit Name Reset Access Description
31:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:12 LCD 0x0 RwW Liquid Crystal Display Controller Prescaler

Configure Liquid Crystal Display Controller prescaler

Value Mode Description

0 DIV16 LFACLKcp = LFACLK/16

1 DIV32 LFACLK_cp = LFACLK/32

2 DIV64 LFACLK_cp = LFACLK/64

3 DIV128 LFACLK|cp = LFACLK/128
11:8 LETIMERO 0x0 RwW Low Energy Timer 0 Prescaler

Configure Low Energy Timer O prescaler

Value Mode Description

0 DIV1 LFACLK|gTiMERO = LFACLK

1 DIv2 LFACLK_gTiMERO = LFACLK/2

2 DIV4 LFACLK_gTiMeERD = LFACLK/4

3 DIV8 LFACLK_gTiMERO = LFACLK/8

4 DIV16 LFACLK_gTiMERD = LFACLK/16

5 DIV32 LFACLK_gTiMeR0 = LFACLK/32

6 DIve4 LFACLK|gTiMERO = LFACLK/64

7 DIV128 LFACLK_gTiMERD = LFACLK/128
8 DIV256 LFACLK_g1imMeR0 = LFACLK/256
9 DIV512 LFACLK_gTiMERO = LFACLK/512
10 DIV1024 LFACLK_eTiMero = LFACLK/1024
11 DIV2048 LFACLK_gTiMeRO = LFACLK/2048
12 DIV4096 LFACLK_eTiMERO = LFACLK/4096
13 DIV8192 LFACLK_gTiMERD = LFACLK/8192

silabs.com | Building a more connected world.

Rev.1.1 | 213




EFM32WG Reference Manual
CMU - Clock Management Unit

Bit Name Reset Access Description
14 DIV16384 LFACLK_eTiMERO = LFACLK/16384
15 DIV32768 LFACLK| gTimMERO = LFACLK/32768
74 RTC 0x0 RW Real-Time Counter Prescaler

Configure Real-Time Counter prescaler

Value Mode Description
0 DIV1 LFACLKRTc = LFACLK
1 DIV2 LFACLKRTc = LFACLK/2
2 DIV4 LFACLKRrTc = LFACLK/4
3 DIV8 LFACLKRTc = LFACLK/8
4 DIV16 LFACLKRrTc = LFACLK/16
5 DIV32 LFACLKRTc = LFACLK/32
6 DIV64 LFACLKRTc = LFACLK/64
7 DIV128 LFACLKRrTc = LFACLK/128
8 DIV256 LFACLKRrTc = LFACLK/256
9 DIV512 LFACLKRTc = LFACLK/512
10 DIV1024 LFACLKRrTc = LFACLK/1024
11 DIV2048 LFACLKRrTc = LFACLK/2048
12 DIV4096 LFACLKRTc = LFACLK/4096
13 DIV8192 LFACLKRrTc = LFACLK/8192
14 DIV16384 LFACLKRrTc = LFACLK/16384
15 DIV32768 LFACLKRTc = LFACLK/32768
3:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 LESENSE 0x0 RW Low Energy Sensor Interface Prescaler

Configure Low Energy Sensor Interface prescaler

Value Mode Description

0 DIV1 LFACLK| gsense = LFACLK

1 DIv2 LFACLK_gsense = LFACLK/2
2 DIV4 LFACLK_gsense = LFACLK/4
3 DIV8 LFACLK|_gsense = LFACLK/8

silabs.com | Building a more connected world. Rev. 1.1 | 214




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.24 CMU_LFBPRESCO - Low Frequency B Prescaler Register 0 (Async Reg)

Offset Bit Position
X070 |58 IRIXNCQIIQ VIR 22Eg2F@e¥d R0 w|~lojv|v o a0
Reset g g
Access E 5
~ o
= =
o nd
Name < <
o) )
w w
— —
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5:4 LEUART1 0x0 RW Low Energy UART 1 Prescaler
Configure Low Energy UART 1 prescaler
Value Mode Description
0 DIV1 LFBCLKgyarT1 = LFBCLK
1 DIV2 LFBCLK| gyarT1 = LFBCLK/2
2 DIV4 LFBCLK_guarT1 = LFBCLK/4
3 DIV8 LFBCLK_gyarT1 = LFBCLK/8
3:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 LEUARTO 0x0 RW Low Energy UART 0 Prescaler

Configure Low Energy UART O prescaler

Value Mode Description

0 DIV1 LFBCLK| gyarTo = LFBCLK

1 DIV2 LFBCLK_gyarTO = LFBCLK/2
2 DIV4 LFBCLK_gyarT0 = LFBCLK/4
3 DIV8 LFBCLK| gyarTo = LFBCLK/8

silabs.com | Building a more connected world.

Rev.1.1 | 215




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.25 CMU_PCNTCTRL - PCNT Control Register

Offset Bit Position
%078 |58/ XN LR IQNTRI22T L L T2 2 olo~owv von o
Reset o|lo|lo|o|o|o
Access 5 E 5 5 5 5
— - -
W|Zz|W|zZ|Ww|z
0|W|n| W n W
¥ | ¥ |X¥|X| Y| X
RN [ R [ R [ I N [ |
Name 212(21213|28
ElElE|E|E|E
z|lz|\z|z|z|z
OO0 0 0|0
o|a|d|d|a|a
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 PCNT2CLKSEL 0 RW PCNT2 Clock Select
This bit controls which clock that is used for the PCNT.
Value Mode Description
0 LFACLK LFACLK is clocking PCNT2.
1 PCNT2S0 External pin PCNT2_S0 is clocking PCNTO.
4 PCNT2CLKEN 0 RW PCNT2 Clock Enable
This bit enables/disables the clock to the PCNT.
Value Description
0 PCNT2 is disabled.
1 PCNT2 is enabled.
3 PCNT1CLKSEL 0 RW PCNT1 Clock Select
This bit controls which clock that is used for the PCNT.
Value Mode Description
0 LFACLK LFACLK is clocking PCNTO.
1 PCNT1S0 External pin PCNT1_S0 is clocking PCNTO.
2 PCNT1CLKEN 0 RW PCNT1 Clock Enable

This bit enables/disables the clock to the PCNT.

Value Description
0 PCNT1 is disabled.
1 PCNT1 is enabled.
1 PCNTOCLKSEL 0 RW PCNTO Clock Select

This bit controls which clock that is used for the PCNT.

Value

Mode

Description

silabs.com | Building a more connected world.

Rev.1.1 | 216




EFM32WG Reference Manual
CMU - Clock Management Unit

Bit Name Reset Access Description

0 LFACLK LFACLK is clocking PCNTO.

1 PCNTOSO0 External pin PCNTO_SO0 is clocking PCNTO.
0 PCNTOCLKEN 0 RW PCNTO Clock Enable

This bit enables/disables the clock to the PCNT.

Value Description
0 PCNTO is disabled.
1 PCNTO is enabled.

11.5.26 CMU_LCDCTRL - LCD Control Register

Offset Bit Position
M7C 53R ENIQRIQN TR 222 T2 T 20 w~oowon|o
Reset g o g
Access % E E
i
Name % 8
L o =
g |2 B
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.

6:4 VBFDIV 0x2 RW Voltage Boost Frequency Division

These bits control the voltage boost update frequency division.

Value Mode Description

0 DIVA1 Voltage Boost update Frequency = LFACLK.

1 DIvV2 Voltage Boost update Frequency = LFACLK/2.

2 Div4 Voltage Boost update Frequency = LFACLK/4.

3 DIV8 Voltage Boost update Frequency = LFACLK/8.

4 DIV16 Voltage Boost update Frequency = LFACLK/16.

5 DIV32 Voltage Boost update Frequency = LFACLK/32.

6 DIve4 Voltage Boost update Frequency = LFACLK/64.

7 DIV128 Voltage Boost update Frequency = LFACLK/128.
3 VBOOSTEN 0 RW Voltage Boost Enable

This bit enables/disables the VBOOST function.
2:0 FDIV 0x0 RW Frame Rate Control

These bits controls the framerate according to this formula: LFACLK cp = LFACLK cppre / (1 + FDIV). Do not change this
value while the LCD bit in CMU_LFACLKENQO is set to 1.

silabs.com | Building a more connected world. Rev. 1.1 | 217




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.27 CMU_ROUTE - I/0 Routing Register

Offset Bit Position
0x080 S RIQAQIRILIQIQIN IIRIZ 2T 2¥It|Qlow|~|lojlv|d|w|a|~|o
Reset g olo
Access E E E
Z\|Z
B | &
prd
o |EE
Name = e
< O |0
g 133
| [ONN®)
Bit Name Reset Access Description
31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4:2 LOCATION 0x0 RW 1/0 Location
Decides the location of the CMU 1/O pins.
Value Mode Description
0 LOCO Location 0
1 LOCA1 Location 1
2 LOC2 Location 2
1 CLKOUT1PEN 0 RW CLKOUT1 Pin Enable
When set, the CLKOUT1 pin is enabled.
0 CLKOUTOPEN 0 RW CLKOUTO Pin Enable

When set, the CLKOUTO pin is enabled.

silabs.com | Building a more connected world.

Rev.1.1 | 218




EFM32WG Reference Manual
CMU - Clock Management Unit

11.5.28 CMU_LOCK - Configuration Lock Register

Offset Bit Position
0084 158 IRIRNILRIQY TR T2 N T2 0 w/~o|o| v o« o
o
o
Reset =
x
o
Access §
>
Y
Name 1
(6]
o
-
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 LOCKKEY 0x0000 RW Configuration Lock Key

Write any other value than the unlock code to lock CMU_CTRL, CMU_HFCORECLKDIV, CMU_HFPERCLKDIV,
CMU_HFRCOCTRL, CMU_LFRCOCTRL, CMU_AUXHFRCOCTRL, CMU_OSCENCMD, CMU_CMD, CMU_LFCLKSEL,
CMU_HFCORECLKENO, CMU_HFPERCLKENO, CMU_LFACLKENO, CMU_LFBCLKENO, CMU_LFAPRESCO,
CMU_LFBPRESCO0, and CMU_PCNTCTRL from editing. Write the unlock code to unlock. When reading the register, bit 0
is set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 CMU registers are unlocked.
LOCKED 1 CMU registers are locked.
Write Operation

LOCK 0 Lock CMU registers.
UNLOCK 0x580E Unlock CMU registers.

silabs.com | Building a more connected world. Rev. 1.1 | 219




EFM32WG Reference Manual
WDOG - Watchdog Timer

12. WDOG - Watchdog Timer

Quick Facts
What?

case of a fault condition, and can be enabled in all
energy modes as long as the low frequency clock
source is available.

The WDOG (Watchdog Timer) resets the system in
10O

Why?

Counter value If a software failure or external event renders the
A Watchdog clear System reset MCU unresponsive, a Watchdog timeout will reset
¢ the system to a known, safe state.

Timeout period

v How?

Y An enabled Watchdog Timer implements a configu-
rable timeout period. If the CPU fails to re-start the

» Time Watchdog Timer before it times out, a full system re-
set will be triggered. The Watchdog consumes insig-
nificant power, and allows the device to remain safe-
ly in low energy modes for up to 256 seconds at a
time.

12.1 Introduction

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may
e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

12.2 Features

» Clock input from selectable oscillators
* Internal 32.768 kHz RC oscillator
* Internal 1 kHz RC oscillator
« External 32.768 kHz XTAL oscillator
» Configurable timeout period from 9 to 256k watchdog clock cycles
+ Individual selection to keep running or freeze when entering EM2 or EM3
+ Selection to keep running or freeze when entering debug mode
+ Selection to block the CPU from entering Energy Mode 4
+ Selection to block the CMU from disabling the selected watchdog clock

12.3 Functional Description

The watchdog is enabled by setting the EN bit in WDOG_CTRL. When enabled, the watchdog counts up to the period value configured
through the PERSEL field in WDOG_CTRL. If the watchdog timer is not cleared to O (by writing a 1 to the CLEAR bit in WDOG_CMD)
before the period is reached, the chip is reset. If a timely clear command is issued, the timer starts counting up from 0 again. The
watchdog can optionally be locked by writing the LOCK bit in WDOG_CTRL. Once locked, it cannot be disabled or reconfigured by
software.

The watchdog counter is reset when EN is reset.

silabs.com | Building a more connected world. Rev. 1.1 | 220




EFM32WG Reference Manual
WDOG - Watchdog Timer

12.3.1 Clock Source

Three clock sources are available for use with the watchdog, through the CLKSEL field in WDOG_CTRL. The corresponding clocks
must be enabled in the CMU. The SWOSCBLOCK bit in WDOG_CTRL can be written to prevent accidental disabling of the selected
clocks. Also, setting this bit will automatically start the selected oscillator source when the watchdog is enabled. The PERSEL field in
WDOG_CTRL is used to divide the selected watchdog clock, and the timeout for the watchdog timer can be calculated like this:

- _ QB+PERSEL , 4
TIMEOUT = f

where f is the frequency of the selected clock.
It is recommended to clear the watchdog first if PERSEL is changed while the watchdog is enabled.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKENO, in addition to the module clock.

12.3.2 Debug Functionality

The watchdog timer can either keep running or be frozen when the device is halted by a debugger. This configuration is done through
the DEBUGRUN bit in WDOG_CTRL. When code execution is resumed, the watchdog will continue counting where it left off.

12.3.3 Energy Mode Handling

The watchdog timer can be configured to either keep on running or freeze when entering EM2 or EM3. The configuration is done indi-
vidually for each energy mode in the EM2RUN and EM3RUN bits in WDOG_CTRL. When the watchdog has been frozen and is re-
entering an energy mode where it is running, the watchdog timer will continue counting where it left off. For the watchdog there is no
difference between EMO and EM1. The watchdog does not run in EM4, and if EM4BLOCK in WDOG_CTRL is set, the CPU is preven-
ted from entering EM4.

Note: If the WDOG is clocked by the LFXO or LFRCO, writing the SWOSCBLOCK bit will effectively prevent the CPU from entering
EM3. When running from the ULFRCO, writing the SWOSCBLOCK bit will prevent the CPU from entering EM4.

12.3.4 Register Access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations
must be taken when accessing registers. Please refer to 5.2.4 Access to Low Energy Peripherals (Asynchronous Registers) for a de-
scription on how to perform register accesses to Low Energy Peripherals. note that clearing the EN bit in WDOG_CTRL will reset the
WDOG module, which will halt any ongoing register synchronization.

Note: Never write to the WDOG registers when it is disabled, except to enable it by setting the EN bitfield in WDOG_CTRL. Make sure
that the enable is registered (i.e. WDOG_SYNCBUSY_CTRL goes low), before writing other registers.

12.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 WDOG_CTRL RW Control Register

0x004 WDOG_CMD W1 Command Register

0x008 WDOG_SYNCBUSY R Synchronization Busy Register

silabs.com | Building a more connected world. Rev. 1.1 | 221




EFM32WG Reference Manual
WDOG - Watchdog Timer

12.5 Register Description

12.5.1 WDOG_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers, see 5.2.4 Access to Low Energy Peripherals (Asynchronous Registers).

(0] C1-14 Bit Position
0x000 SRR IQQIIQIF QR I 2 ¥tQlolo~ojw|t|m|n|~]|o
L
Reset g S o|lo|o|o|o|o|o
| 3 | 333333
N
8 =
X
N — @ 8 z|z a
ame o o 212 >/20
%) %) o|D|x X x| D
X o T O IQ 9 m
O m = =022 |w|=z
(@) o W |3 |w w[a|w
Bit Name Reset Access Description
31:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:12 CLKSEL 0x0 RW Watchdog Clock Select
Selects the WDOG oscillator, i.e. the clock on which the watchdog will run.
Value Mode Description
0 ULFRCO ULFRCO
1 LFRCO LFRCO
2 LFXO LFXO
11:8 PERSEL OxF RW Watchdog Timeout Period Select

Select watchdog timeout period.

Value Description

0 Timeout period of 9
watchdog clock cycles.

1 Timeout period of 17
watchdog clock cycles.

2 Timeout period of 33
watchdog clock cycles.

3 Timeout period of 65
watchdog clock cycles.

4 Timeout period of 129
watchdog clock cycles.

5 Timeout period of 257
watchdog clock cycles.

6 Timeout period of 513
watchdog clock cycles.

7 Timeout period of 1k
watchdog clock cycles.

silabs.com | Building a more connected world. Rev. 1.1 | 222




EFM32WG Reference Manual
WDOG - Watchdog Timer

Bit Name Reset Access Description

8 Timeout period of 2k
watchdog clock cycles.

9 Timeout period of 4k
watchdog clock cycles.

10 Timeout period of 8k
watchdog clock cycles.

11 Timeout period of 16k
watchdog clock cycles.

12 Timeout period of 32k
watchdog clock cycles.

13 Timeout period of 64k
watchdog clock cycles.

14 Timeout period of 128k
watchdog clock cycles.

15 Timeout period of 256k
watchdog clock cycles.

7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6 SWOSCBLOCK 0 RW Software Oscillator Disable Block

Set to disallow disabling of the selected WDOG oscillator. Writing this bit to 1 will turn on the selected WDOG oscillator if it
is not already running.

Value Description
0 Software is allowed to disable the selected WDOG oscillator. See CMU
for detailed description. Note that also CMU registers are lockable.
1 Software is not allowed to disable the selected WDOG oscillator.
5 EM4BLOCK 0 RW Energy Mode 4 Block

Set to prevent the EMU from entering EM4.

Value Description
0 EM4 can be entered. See EMU for detailed description.
1 EM4 cannot be entered.

4 LOCK 0 RW Configuration lock

Set to lock the watchdog configuration. This bit can only be cleared by reset.

Value Description

0 Watchdog configuration can be changed.

1 Watchdog configuration cannot be changed.
3 EM3RUN 0 RwW Energy Mode 3 Run Enable

Set to keep watchdog running in EM3.

Value Description

0 Watchdog timer is frozen in EM3.

silabs.com | Building a more connected world. Rev. 1.1 | 223




EFM32WG Reference Manual
WDOG - Watchdog Timer

Bit Name Reset Access Description
1 Watchdog timer is running in EM3.
2 EM2RUN 0 RW Energy Mode 2 Run Enable

Set to keep watchdog running in EM2.

Value Description

0 Watchdog timer is frozen in EM2.

1 Watchdog timer is running in EM2.
1 DEBUGRUN 0 RW Debug Mode Run Enable

Set to keep watchdog running in debug mode.

Value Description

0 Watchdog timer is frozen in debug mode.

1 Watchdog timer is running in debug mode.
0 EN 0 RwW Watchdog Timer Enable

Set to enabled watchdog timer.

12.5.2 WDOG_CMD - Command Register (Async Reg)

For more information about Asynchronous Registers, see 5.2.4 Access to Low Energy Peripherals (Asynchronous Registers).

Offset Bit Position

000 |5/8 % BKNERIENTR2 L2200 w~owy oo

Reset o

Access =
<

Name Y
-
O

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
0 CLEAR 0 W1 Watchdog Timer Clear

Clear watchdog timer. The bit must be written 4 watchdog cycles before the timeout.

Value Mode Description
0 UNCHANGED Watchdog timer is unchanged.
1 CLEARED Watchdog timer is cleared to 0.

silabs.com | Building a more connected world. Rev. 1.1 | 224




EFM32WG Reference Manual
WDOG - Watchdog Timer

12.5.3 WDOG_SYNCBUSY - Synchronization Busy Register

Offset Bit Position

X008 |5 228N ILRIZQNTIR2R e TN |20 o ~ow v ool -|o

Reset olo

Access X o

Name % P__:I
o0

Bit Name Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
1 CMD 0 R CMD Register Busy
Set when the value written to CMD is being synchronized.
0 CTRL 0 R CTRL Register Busy

Set when the value written to CTRL is being synchronized.

silabs.com | Building a more connected world.

Rev.1.1 | 225




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13. PRS - Peripheral Reflex System

Quick Facts
What?

The PRS (Peripheral Reflex System) allows configu-
rable, fast and autonomous communication between
the peripherals.

Why?
Events and signals from one peripheral can be used
as input signals or triggers by other peripherals and
ensure timing-critical operation and reduced soft-
ware overhead.
\
A -
”| prs How?
> Ch Without CPU intervention the peripherals can send
L — reflex signals (both pulses and level) to each other in
_>\ single- or chaineq steps. The periph_erals can be set
~| PRs up to perform actions based on the incoming reflex
ech [ signals. This results in improved system perform-
>/ ance and reduced energy consumption.

13.1 Introduction

The Peripheral Reflex System (PRS) system is a network which allows the different peripheral modules to communicate directly with
each other without involving the CPU. Peripheral modules which send out reflex signals are called producers. The PRS routes these
reflex signals to consumer peripherals which apply actions depending on the reflex signals received. The format for the reflex signals is
not given, but edge triggers and other functionality can be applied by the PRS.

13.2 Features

» 12 configurable interconnect channels
» Each channel can be connected to any producing peripheral
» Consumers can choose which channel to listen to
» Selectable edge detector (rising, falling and both edges)
» Software controlled channel output
» Configurable level
» Triggered pulses

13.3 Functional Description

An overview of the PRS module is shown in Figure 13.1 PRS Overview on page 227. The PRS contains 12 interconnect channels, and
each of these can select between all the output reflex signals offered by the producers. The consumers can then choose which PRS
channel to listen to and perform actions based on the reflex signals routed through that channel. The reflex signals can be both pulse
signals and level signals. Synchronous PRS pulses are one HFPERCLK cycle long, and can either be sent out by a producer (e.g.,
ADC conversion complete) or be generated from the edge detector in the PRS channel. Level signals can have an arbitrary waveform
(e.g., Timer PWM output).

silabs.com | Building a more connected world. Rev. 1.1 | 226




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13.3.1 Asynchronous Mode

Many reflex signals can operate in two modes, synchronous or asynchronous. A synchronous reflex is clocked on HFPERCLK, and can
be used as an input to all reflex consumers, but since they require HFPERCLK, they will not work in EM2/EM3.

Asynchronous reflexes are not clocked on HFPERCLK, and can be used even in EM2/EM3. There is a limitation to reflexes operating in
asynchronous mode though: they can only be used by a subset of the reflex consumers, the ones marked with async support in Table
13.2 Reflex Consumers on page 230. Peripherals that can produce asynchronous reflexes are marked with async support in Table
13.1 Reflex Producers on page 228. To use these reflexes asynchronously, set ASYNC in the CHCTRL register for the PRS channel
selecting the reflex signal.

Note: If a peripheral channel with ASYNC set is used in a consumer not supporting asynchronous reflexes, the behaviour is undefined.

13.3.2 Channel Functions

Different functions can be applied to a reflex signal within the PRS. Each channel includes an edge detector to enable generation of
pulse signals from level signals. It is also possible to generate output reflex signals by configuring the SWPULSE and SWLEVEL bits.
SWLEVEL is a programmable level for each channel and holds the value it is programmed to. The SWPULSE will give out a one-cycle
high pulse if it is written to 1, otherwise a 0 is asserted. The SWLEVEL and SWPULSE signals are then XOR'ed with the selected input
from the producers to form the output signal sent to the consumers listening to the channel.

Note: The edge detector controlled by EDSEL should only be used when working with synchronous reflexes, i.e., ASYNC in CHCTRL
is cleared.

SIGSEL[2:0]

SOURCESEL][5:0]

EDSEL[1:0]

SWPULSE[n]

APB Interface

SWLEVEL[n]

Signals from Signals to
producer .— consumer
peripherals peripherals

Figure 13.1. PRS Overview

silabs.com | Building a more connected world. Rev. 1.1 | 227




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13.3.3 Producers

Each PRS channel can choose between signals from several producers, which is configured in SOURCESEL in PRS_CHx_CTRL.
Each of these producers outputs one or more signals which can be selected by setting the SIGSEL field in PRS_CHx_CTRL. Setting
the SOURCESEL bits to 0 (Off) leads to a constant O output from the input mux. An overview of the available producers is given in the
following table.

Table 13.1. Reflex Producers

Module Reflex Output Output Format Async Support
ACMP Comparator Output Level Yes
ADC Single Conversion Done Pulse —
Scan Conversion Done Pulse —
DAC Channel 0 Conversion Done Pulse —
Channel 1 Conversion Done Pulse —
GPIO Pin O Input Level Yes
Pin 1 Input Level Yes
Pin 2 Input Level Yes
Pin 3 Input Level Yes
Pin 4 Input Level Yes
Pin 5 Input Level Yes
Pin 6 Input Level Yes
Pin 7 Input Level Yes
Pin 8 Input Level Yes
Pin 9 Input Level Yes
Pin 10 Input Level Yes
Pin 11 Input Level Yes
Pin 12 Input Level Yes
Pin 13 Input Level Yes
Pin 14 Input Level Yes
Pin 15 Input Level Yes
RTC Overflow Pulse Yes
Compare Match 0 Pulse Yes
Compare Match 1 Pulse Yes
TIMER Underflow Pulse —
Overflow Pulse —
CCO Output Level —
CC1 Output Level —
CC2 Output Level —
LETIMER CHO Level Yes
CH1 Level Yes

silabs.com | Building a more connected world. Rev. 1.1 | 228




EFM32WG Reference Manual
PRS - Peripheral Reflex System

Module Reflex Output Output Format Async Support
UART TX Complete Pulse —
RX Data Received Pulse —
USART TX Complete Pulse —
RX Data Received Pulse —
IrDA Decoder Output Level —
VCMP Comparator Output Level Yes
LESENSE SCANRES register Level Yes
Decoder Output Level/Pulse Yes
BURTC Overflow Pulse Yes
Compare match 0 Pulse Yes

silabs.com | Building a more connected world.

Rev. 1.1 | 229




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13.3.4 Consumers

Consumer peripherals (listed in the following table) can be set to listen to a PRS channel and perform an action based on the signal
received on that channel. Most consumers expect pulse input, while some can handle level inputs as well.

Table 13.2. Reflex Consumers

Module Reflex Input Input Format Async Support
ADC Single Mode Trigger Pulse —
Scan Mode Trigger Pulse —
DAC Channel 0 Trigger Pulse —
Channel 1 Trigger Pulse —
TIMER CCO Input Pulse/Level —
CC1 Input Pulse/Level —
CC2 Input Pulse/Level —
DTI Fault Source 0 (TIMERO Pulse —
only)
DTI Fault Source 1 (TIMERO Pulse —
only)
DTI Input (TIMERO only) Pulse/Level —
UART TX/RX Enable Pulse —
RX Input Pulse/Level Yes
USART TX/RX Enable Pulse —
IrDA Encoder Input (USARTO Pulse —
only)
RX Input Pulse/Level Yes
LEUART RX Input Pulse/Level Yes
PCNT S0 input Level Yes
S1 input Level Yes
LESENSE Start scan Pulse/Level Yes
Decoder Bit 0 Level Yes
Decoder Bit 1 Level Yes
Decoder Bit 2 Level Yes
Decoder Bit 3 Level Yes

Note: It is possible to output prs channel 0 - channel 3 onto the GPIO by setting CHOPEN, CH1PEN, CH2PEN, or CH3PEN in the
PRS_ROUTE register.

silabs.com | Building a more connected world. Rev. 1.1 | 230




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13.3.5 Example

The example below (illustrated in the following figure) shows how to set up ADCO to start single conversions every time TIMERO over-
flows (one HFPERCLK cycle high pulse), using PRS channel 5:

» Set SOURCESEL in PRS_CH5_CTRL to 0b011100 to select TIMERO as input to PRS channel 5.

» Set SIGSEL in PRS_CH5_CTRL to 0b001 to select the overflow signal (from TIMERO).

» Configure ADCO with the desired conversion set-up.

» Set SINGLEPRSEN in ADCO_SINGLECTRL to 1 to enable single conversions to be started by a high PRS input signal.

» Set SINGLEPRSSEL in ADCO_SINGLECTRL to 0x5 to select PRS channel 5 as input to start the single conversion.

« Start TIMERO with the desired TOP value, an overflow PRS signal is output automatically on overflow.

Note that the ADC results needs to be fetched either by the CPU or DMA.

TIMERO ADCO
Overflow Start single conv.
A

Figure 13.2. TIMERO Overflow Starting ADCO Single Conversions Through PRS Channel 5

13.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 PRS_SWPULSE WA1 Software Pulse Register

0x004 PRS_SWLEVEL RW Software Level Register

0x008 PRS_ROUTE RW I/0 Routing Register

0x010 PRS_CHO_CTRL RwW Channel Control Register
PRS_CHx_CTRL RwW Channel Control Register

0x03C |PRS_CH11_CTRL RwW Channel Control Register

silabs.com | Building a more connected world. Rev. 1.1 | 231




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13.5 Register Description

13.5.1 PRS_SWPULSE - Software Pulse Register

Offset Bit Position

0000 5|8 /R/RNIQIKLI RN TR 2SI L T2 20w ~oo< oo~ o

Reset o|lo|lo|lo|o|lo|lo|lo|o|o|o|o
™ | ¥ | ¥ ¥ (Y| Y Y YT YT YT YT

Access S EAES EN NN A A
W |w
Olo|lw W/ wiwww|w/w|w|w
Jjlannnnnlnnlnln n

N HHMEERIEIEEEREIEEE

m

ame —|lcla|ad|alald|a|d|d|a
— ||| N O W T M IN |~ O
I/ T ZT|/ZT|ZT/ZT|ZT|T|T| T |T|T
OO0 |0 0O

Bit Name Reset Access Description

31:12 Reserved

To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.

11 CH11PULSE 0 W1 Channel 11 Pulse Generation
See bit 0.

10 CH10PULSE 0 WA1 Channel 10 Pulse Generation
See bit 0.

9 CHOPULSE 0 W1 Channel 9 Pulse Generation
See bit 0.

8 CH8PULSE 0 W1 Channel 8 Pulse Generation
See bit 0.

7 CH7PULSE 0 W1 Channel 7 Pulse Generation
See bit 0.

6 CH6PULSE 0 W1 Channel 6 Pulse Generation
See bit 0.

5 CH5PULSE 0 W1 Channel 5 Pulse Generation
See bit 0.

4 CH4PULSE 0 W1 Channel 4 Pulse Generation
See bit 0.

3 CH3PULSE 0 WA1 Channel 3 Pulse Generation
See bit 0.

2 CH2PULSE 0 W1 Channel 2 Pulse Generation
See bit 0.

1 CH1PULSE 0 W1 Channel 1 Pulse Generation
See bit 0.

0 CHOPULSE 0 W1 Channel 0 Pulse Generation

Write to 1 to generate one HFPERCLK cycle high pulse. This pulse is XOR'ed with the corresponding bit in the SWLEVEL
register and the selected PRS input signal to generate the channel output.

silabs.com | Building a more connected world.

Rev.1.1 | 232




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13.5.2 PRS_SWLEVEL - Software Level Register

Offset Bit Position
0004 1583 RENSRIRIS K222 I 2N T 200~ o00 0o
Reset olo|lo|lo|lo|lo|lo|lo|lo|lo|o|o
Accass JHHHEEEBEEEE
1 | 4
[ N P T T Y Y [ A [ T [ Y Y N |
S (S| ||| W |0 |0 |Ww ||| w
wiw=>=>>=>>2>>1>>
Name 00| ||| w
~— O | d  d|d|d | d | d | d | Jd] 4
~ | DO N O | WO T MIN |~ O
I T|ZT|T|T|T/ZT|/T/ZT|T|T|I
OO0 |0 0O
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11 CH11LEVEL 0 RW Channel 11 Software Level
See bit 0.
10 CH10LEVEL 0 RW Channel 10 Software Level
See bit 0.
9 CHILEVEL 0 RW Channel 9 Software Level
See bit 0.
8 CH8LEVEL 0 RW Channel 8 Software Level
See bit 0.
7 CH7LEVEL 0 RW Channel 7 Software Level
See bit 0.
6 CH6LEVEL 0 RW Channel 6 Software Level
See bit 0.
5 CH5LEVEL 0 RW Channel 5 Software Level
See bit 0.
4 CH4LEVEL 0 RW Channel 4 Software Level
See bit 0.
3 CH3LEVEL 0 RW Channel 3 Software Level
See bit 0.
2 CH2LEVEL 0 RW Channel 2 Software Level
See bit 0.
1 CH1LEVEL 0 RW Channel 1 Software Level
See bit 0.
0 CHOLEVEL 0 RW Channel 0 Software Level

The value in this register is XOR'ed with the corresponding bit in the SWPULSE register and the selected PRS input signal

to generate the channel output.

silabs.com | Building a more connected world.

Rev. 1.1 | 233




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13.5.3 PRS_ROUTE - I/O Routing Register

Offset Bit Position
%008 |58 RRKNLRIQNTRR TR IR VT2 0 o/ ~olv <o a o
Reset % oclololo
Access 5 E E E E
z
z 5EEE
Name < oo
O M| N |~ | O
o) I | I T |I
| Ol |0 |0
Bit Name Reset Access Description
31:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
10:8 LOCATION 0x0 RW 1/0 Location
Decides the location of the PRS I/O pins.
Value Mode Description
0 LOCO Location 0
1 LOC1 Location 1
7:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
3 CH3PEN 0 RwW CH3 Pin Enable
When set, GPIO output from PRS channel 3 is enabled
2 CH2PEN 0 RW CH2 Pin Enable
When set, GPIO output from PRS channel 2 is enabled
1 CH1PEN 0 RW CH1 Pin Enable
When set, GPIO output from PRS channel 1 is enabled
0 CHOPEN 0 RW CHO Pin Enable

When set, GPIO output from PRS channel 0 is enabled

silabs.com | Building a more connected world.

Rev.1.1 | 234




EFM32WG Reference Manual
PRS - Peripheral Reflex System

13.5.4 PRS_CHx_CTRL - Channel Control Register

Offset Bit Position
0010 |58/ XN &L RIRQY TR LL T2 2olon~owv von o
o = o
Reset o X g X
Access E E E E
—
w
N
) 4
Name (ZJ o $ ]
> %) ) @D
) fa) o) )
< I n »n
Bit Name Reset Access Description
31:29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
28 ASYNC 0 RW Asynchronous reflex
Set to disable synchronization of this reflex signal
27:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
25:24 EDSEL 0x0 RW Edge Detect Select
Select edge detection.
Value Mode Description
0 OFF Signal is left as it is
1 POSEDGE A one HFPERCLK cycle pulse is generated for every positive edge of
the incoming signal
2 NEGEDGE A one HFPERCLK clock cycle pulse is generated for every negative
edge of the incoming signal
3 BOTHEDGES A one HFPERCLK clock cycle pulse is generated for every edge of the
incoming signal
23:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
21:16 SOURCESEL 0x00 RW Source Select
Select input source to PRS channel.
Value Mode Description
0b000000 NONE No source selected
0b000001 VCMP Voltage Comparator
0b000010 ACMPO Analog Comparator 0
0b000011 ACMP1 Analog Comparator 1
0b000110 DACO Digital to Analog Converter 0
0b001000 ADCO Analog to Digital Converter 0
0b010000 USARTO Universal Synchronous/Asynchronous Receiver/Transmitter O
0b010001 USART1 Universal Synchronous/Asynchronous Receiver/Transmitter 1

silabs.com | Building a more connected world. Rev. 1.1 | 235




EFM32WG Reference Manual
PRS - Peripheral Reflex System

Bit Name Reset Access Description
0b010010 USART2 Universal Synchronous/Asynchronous Receiver/Transmitter 2
0b011100 TIMERO Timer 0
0b011101 TIMER1 Timer 1
0b011110 TIMER2 Timer 2
0b011111 TIMER3 Timer 3
0b100100 usSB Universal Serial Bus Interface
0b101000 RTC Real-Time Counter
0b101001 UARTO Universal Asynchronous Receiver/Transmitter O
0b101010 UART1 Universal Asynchronous Receiver/Transmitter 1
0b110000 GPIOL General purpose Input/Output
0b110001 GPIOH General purpose Input/Output
0b110100 LETIMERO Low Energy Timer O
0b110111 BURTC Backup RTC
0b111001 LESENSEL Low Energy Sensor Interface
0b111010 LESENSEH Low Energy Sensor Interface
0b111011 LESENSED Low Energy Sensor Interface
15:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
2:0 SIGSEL 0x0 RW Signal Select

Select signal input to PRS channel.

Value Mode Description

SOURCESEL =
0b000000 (NONE)

Obxxx OFF Channel input selection is turned off

SOURCESEL =
0b000001 (VCMP)

0b000 VCMPOUT Voltage comparator output VCMPOUT

SOURCESEL =
0b000010 (ACMPO)

0b000 ACMPOOUT Analog comparator output ACMPOOUT

SOURCESEL =
0b000011 (ACMP1)

0b000 ACMP10OUT Analog comparator output ACMP10UT

SOURCESEL =
0b000110 (DACO)

0b000 DACOCHO DAC chO0 conversion done DACOCHO
0b001 DACOCH1 DAC ch1 conversion done DACOCH1

SOURCESEL =
0b001000 (ADCO)

silabs.com | Building a more connected world. Rev. 1.1 | 236




EFM32WG Reference Manual
PRS - Peripheral Reflex System

Bit Name Reset Access Description
0b000 ADCOSINGLE ADC single conversion done ADCOSINGLE
0b001 ADCOSCAN ADC scan conversion done ADCOSCAN
SOURCESEL =
0b010000 (USARTO)
0b000 USARTOIRTX USART 0 IRDA out USARTOIRTX
0b001 USARTOTXC USART 0 TX complete USARTOTXC
0b010 USARTORXDATAV USART 0 RX Data Valid USARTORXDATAV
SOURCESEL =
0b010001 (USART1)
0b001 USART1TXC USART 1 TX complete USART1TXC
0b010 USART1RXDATAV USART 1 RX Data Valid USART1RXDATAV
SOURCESEL =
0b010010 (USART2)
0b001 USART2TXC USART 2 TX complete USART2TXC
0b010 USART2RXDATAV USART 2 RX Data Valid USART2RXDATAV
SOURCESEL =
0b011100 (TIMERO)
0b000 TIMEROUF Timer 0 Underflow TIMEROUF
0b001 TIMEROOF Timer 0 Overflow TIMEROOF
0b010 TIMEROCCO Timer 0 Compare/Capture 0 TIMEROCCO
0b011 TIMEROCC1 Timer 0 Compare/Capture 1 TIMEROCC1
0b100 TIMEROCC2 Timer 0 Compare/Capture 2 TIMEROCC2
SOURCESEL =
0b011101 (TIMER1)
0b000 TIMER1UF Timer 1 Underflow TIMER1UF
0b001 TIMER10OF Timer 1 Overflow TIMER10F
0b010 TIMER1CCO Timer 1 Compare/Capture 0 TIMER1CCO
0b011 TIMER1CC1 Timer 1 Compare/Capture 1 TIMER1CC1
0b100 TIMER1CC2 Timer 1 Compare/Capture 2 TIMER1CC2
SOURCESEL =
0b011110 (TIMER2)
0b000 TIMER2UF Timer 2 Underflow TIMER2UF
0b001 TIMER2OF Timer 2 Overflow TIMER20OF
0b010 TIMER2CCO Timer 2 Compare/Capture 0 TIMER2CCO
0b011 TIMER2CC1 Timer 2 Compare/Capture 1 TIMER2CC1
0b100 TIMER2CC2 Timer 2 Compare/Capture 2 TIMER2CC2
SOURCESEL =
0b011111 (TIMER3)
0b000 TIMER3UF Timer 3 Underflow TIMER3UF
0b001 TIMER3OF Timer 3 Overflow TIMER3OF

silabs.com | Building a more connected world. Rev. 1.1 | 237




EFM32WG Reference Manual
PRS - Peripheral Reflex System

Bit Name Reset
0b010 TIMER3CCO
0b011 TIMER3CCA1
0b100 TIMER3CC?2
SOURCESEL =
0b100100 (USB)
0b000 USBSOF
0b001 USBSOFSR
SOURCESEL =
0b101000 (RTC)
0b000 RTCOF
0b001 RTCCOMPO
0b010 RTCCOMP1
SOURCESEL =
0b101001 (UARTO)
0b001 UARTOTXC
0b010 UARTORXDATAV
SOURCESEL =
0b101010 (UART1)
0b001 UART1TXC
0b010 UART1RXDATAV
SOURCESEL =
0b110000 (GPIO)
0b000 GPIOPINO
0b001 GPIOPIN1
0b010 GPIOPIN2
0b011 GPIOPIN3
0b100 GPIOPIN4
0b101 GPIOPINS
0b110 GPIOPING
0b111 GPIOPIN7
SOURCESEL =
0b110001 (GPIO)
0b000 GPIOPINS
0b001 GPIOPIN9
0b010 GPIOPIN10
0b011 GPIOPIN11
0b100 GPIOPIN12
0b101 GPIOPIN13
0b110 GPIOPIN14

silabs.com | Building a more connected world.

Access Description

Timer 3 Compare/Capture 0 TIMER3CCO
Timer 3 Compare/Capture 1 TIMER3CC1
Timer 3 Compare/Capture 2 TIMER3CC2

USB Start of Frame USBSOF
USB Start of Frame Sent/Received USBSOFSR

RTC Overflow RTCOF
RTC Compare 0 RTCCOMPO
RTC Compare 1 RTCCOMP1

USART 0 TX complete UARTOTXC
USART 0 RX Data Valid UARTORXDATAV

USART 0 TX complete UART1TXC
USART 0 RX Data Valid UART1RXDATAV

GPIO pin 0 GPIOPINO
GPIO pin 1 GPIOPIN1
GPIO pin 2 GPIOPIN2
GPIO pin 3 GPIOPIN3
GPIO pin 4 GPIOPIN4
GPIO pin 5 GPIOPIN5S
GPIO pin 6 GPIOPING
GPIO pin 7 GPIOPIN7

GPIO pin 8 GPIOPINS8

GPIO pin 9 GPIOPIN9

GPIO pin 10 GPIOPIN10
GPIO pin 11 GPIOPIN11
GPIO pin 12 GPIOPIN12
GPIO pin 13 GPIOPIN13
GPIO pin 14 GPIOPIN14

Rev. 1.1 | 238




EFM32WG Reference Manual
PRS - Peripheral Reflex System

Bit Name Reset Access Description
0b111 GPIOPIN15 GPIO pin 15 GPIOPIN15
SOURCESEL =
0b110100 (LETIM-
ERO)
0b000 LETIMEROCHO LETIMER CHO Out LETIMEROCHO
0b001 LETIMEROCH1 LETIMER CH1 Out LETIMEROCH1
SOURCESEL =
0b110111 (BURTC)
0b000 BURTCOF BURTC Overflow BURTCOF
0b001 BURTCCOMPO BURTC Compare 0 BURTCCOMPO
SOURCESEL =
0b111001 (LE-
SENSE)
0b000 LESENSESCANRESO LESENSE SCANRES register, bit 0 LESENSESCANRESO
0b001 LESENSESCANRES1 LESENSE SCANRES register, bit 1 LESENSESCANRES1
0b010 LESENSESCANRES2 LESENSE SCANRES register, bit 2 LESENSESCANRES2
0b011 LESENSESCANRES3 LESENSE SCANRES register, bit 3 LESENSESCANRES3
0b100 LESENSESCANRES4 LESENSE SCANRES register, bit 4 LESENSESCANRES4
0b101 LESENSESCANRES5 LESENSE SCANRES register, bit 5 LESENSESCANRES5
0b110 LESENSESCANRES6 LESENSE SCANRES register, bit 6 LESENSESCANRES6
0b111 LESENSESCANRES7 LESENSE SCANRES register, bit 7 LESENSESCANRES?
SOURCESEL =
0b111010 (LE-
SENSE)
0b000 LESENSESCANRES8 LESENSE SCANRES register, bit 8 LESENSESCANRESS
0b001 LESENSESCANRES9 LESENSE SCANRES register, bit 9 LESENSESCANRES9
0b010 LESENSESCANRES10 LESENSE SCANRES register, bit 10 LESENSESCANRES10
0b011 LESENSESCANRES11 LESENSE SCANRES register, bit 11 LESENSESCANRES11
0b100 LESENSESCANRES12 LESENSE SCANRES register, bit 12 LESENSESCANRES12
0b101 LESENSESCANRES13 LESENSE SCANRES register, bit 13 LESENSESCANRES13
0b110 LESENSESCANRES14 LESENSE SCANRES register, bit 14 LESENSESCANRES 14
0b111 LESENSESCANRES15 LESENSE SCANRES register, bit 15 LESENSESCANRES15
SOURCESEL =
0b111011 (LE-
SENSE)
0b000 LESENSEDECO LESENSE Decoder PRS out 0 LESENSEDECO
0b001 LESENSEDEC1 LESENSE Decoder PRS out 1 LESENSEDEC1
0b010 LESENSEDEC2 LESENSE Decoder PRS out 2 LESENSEDEC2

silabs.com | Building a more connected world. Rev. 1.1 | 239




EFM32WG Reference Manual
EBI - External Bus Interface

14. EBI - External Bus Interface

Quick Facts
What?

ces. The devices appear as a part of the
EFM32WG's internal memory map and are therefore
extremely simple to use.

The EBI is used for accessing external parallel devi-
q (2(:(+)

Why?

Even though the EFM32WG is versatile, there might
be a need for specific external devices such as extra
RAM, FLASH, LCD, TFT. The EBI simplifies the ac-
cess to such devices.

External

?

(DEEVBIL:E) Parallel Interface Async. s
Device

Through memory mapping the devices appear as a
part of the internal memory map. When the process-
or performs read or writes to the address range of
the EBI, the EBI handles the data transfers to and
from the external devices. The EBI may be inter-
faced by the DMA, thus enabling operation in EM1.

14.1 Introduction

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The inter-
face is memory mapped into the address bus of the Cortex-M4. This enables seamless access from software without manually manipu-
lating the 10 settings each time a read or write is performed. The data and address lines can be multiplexed in order to reduce the
number of pins required to interface the external devices. The bus timing is adjustable to meet specifications of the external devices.
The interface is limited to asynchronous devices and TFT.

14.2 Features

» Programmable interface for various memory types
* 4 memory bank regions
« Individual chip select line (EBI_CSn) per memory bank
 Accurate control of setup, strobe, hold and turn-around timing per memory bank
* Individual active high / active low setting of interface control signals per memory bank
+ Slave read/write cycle extension per memory bank
» Page mode read
* NAND Flash support
« Both multiplexed and non-multiplexed address and data line configurations
» Up to 28 address lines
» Up to 16-bit data bus width
+ Automatic translation when AHB transaction width and memory width differ
» Configurable prefetch from external device
» Write buffer to limit stalling of the Cortex-M4 or DMA
» TFT Direct Drive
* Programmable display and porch sizes
* Programmable bus timing (frequency, setup and hold timing)
« Individual active high / active low setting of interface control signals
» Frame buffer can be either on-chip or off-chip
» Alpha-blending and masking

silabs.com | Building a more connected world. Rev. 1.1 | 240




EFM32WG Reference Manual
EBI - External Bus Interface

14.3 Functional Description

An overview of the EBI module is shown in the following figure. The EBI module consists of two submodules. The first submodule im-
plements a generic external device interface to for example SRAM or Flash devices. The second submodule implements a TFT RGB
interface which can be used together with the generic external device interface to perform TFT Direct Drive from an external framebuff-
erto a TFT display.

The EBI has multiplexed and non-multiplexed addressing modes. Fastest operation is achieved when using a non-multiplexed address-
ing mode. The multiplexed addressing modes are somewhat slower and require an external latch, but they use a significantly lower
number of pins. The use of the 16 EBI_AD pin connections depends on the addressing mode. They are used for both address and data
in the multiplexed modes. Also for the non-multiplexed 8-bit address mode both the address and data fit into these 16 EBI_AD pins. If
more address bits or data bits are needed, external latches can be used to support up to 24-bit addresses or 16-bit data in the multi-
plexed addressing modes using only the 16 EBI_AD pins. Furthermore, independent of the addressing mode, up to 28 non-multiplexed
address lines can be enabled on the EBI_A pin connections.

When a read operation is requested by the Cortex-M4 or DMA via the EBI's AHB interface, the address is transferred onto the EBI_AD
and/or EBI_A bus. After a specific number of cycles, the EBI_REn pin is activated and data is read from the EBI_AD bus. When a write
operation is requested, the address is transferred onto the EBI_AD and/or EBI_A bus and subsequently the write data is transferred
onto the EBI_AD bus as the EBI_WERn pin is activated. The detailed operation in the supported modes is presented in the following
sections.

silabs.com | Building a more connected world. Rev. 1.1 | 241




EFM32WG Reference Manual
EBI - External Bus Interface

EBI_A[27:0]

»X

EBI_AD[15:0]

EBI g

Memory Interface

EBI_WEn

%

EBI_REn

- pp-|  Data/Address |-

;

EBI_BLn[1:0]

AHB

:

APB

< - CONTROL |- EBI_CSn[3:0]

)

- | Timing
: EBI_ALE
|

¢ Polarity

!

L

L

T EBI_NANDWEnN

|

-t > MODE

EBI_NANDREN

X

EBI_DCLK

;

TFT Interface
EBI_DATAEN

AHB

:

APB

TFT CONTROL

P14

gt P TFT Timing

- | TFT Polarity EBI_CSTFTn

| — X

EBI_VSYNC

!

EBI_HSYNC

;

et P TFT Size

Figure 14.1. EBI Overview

silabs.com | Building a more connected world. Rev. 1.1 | 242




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.1 Non-Multiplexed 8-Bit Data, 8-Bit Address Mode

In this mode, 8-bit address and 8-bit data is supported. The address is put on the higher 8 bits of the EBI_AD lines while the data uses
the lower 8 bits. This mode is set by programming the MODE field in the EBI_CTRL register to D8A8. The address space can be exten-
ded to 256 MB by using the EBI_A lines as described in 14.3.6 Extended Addressing. Read and write signals in 8-bit mode are shown
in the following figures.

RDSETUP RDSTRE  RDHOLD
01,2, ..) (1,2,3,.) ©,1,2,..)
EBI_AD[15:8] ADDR[7:0] z
EBI_AD[7:0] z X palaro] X z
EBI.CSn | a
EBI_REn

Figure 14.2. EBI Non-multiplexed 8-bit Data, 8-bit Address Read Operation

WRSETUP WRSTRB WRHOLD

0,1,2,..) (1,2,3,..) 0,1,2,..)
EBI_AD[15:8] ADDRI7:0] z
EBI_AD[7:0] DATA[7:0] z
EBLCSn | e
EBI_WEn

Figure 14.3. EBI Non-multiplexed 8-bit Data, 8-bit Address Write Operation

silabs.com | Building a more connected world. Rev. 1.1 | 243




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.2 Multiplexed 16-bit Data, 16-bit Address Mode

In this mode, 16-bit address and 16-bit data is supported, but the utilization of an external latch is required. The 16-bit address and 16-
bit data bits are multiplexed on the EBI_AD lines. An illustration of such a setup is shown in the following figure. This mode is set by
programming the MODE field in the EBI_CTRL register to D16A16ALE.

Note: In this mode the 16-bit address is organized in 2-byte chunks at memory addresses aligned to 2-byte offsets. Consequently, the
LSB of the 16-bit address will always be 0. In order to double the address space, the 16-bit address is internally shifted one bit to the
right so that the LSB of the address driven into the EBI_AD bus, i.e. the EBI_ADI[0]-bit, corresponds to the second least significant bit of
the address, i.e. ADDR[1]. At the external device, the LSB of the address must be tied either low or high in order to create a full ad-
dress.

EBI_AD I:ILatch ADDR _,

A
EBI S External
(DEVICE) 7 ALE (ELTIG:
Device
DATA
Control |

Figure 14.4. EBI Address Latch Setup

At the start of the transaction the address is output on the EBI_AD lines. The Latch is controlled by the ALE (Address Latch Enable)
signal and stores the address. Then the data is read or written according to operation. Read and write signals are shown in the follow-
ing figures.

ADDRSETUP  RDSETUP RDSTRB RDHOLD
1,2,3,..) 0,1,2,..) 1,2,3,..) 0,1,2,..)
EBI_AD[15:0] ADDR[16:1] z X DATA150] z
EBLALE
EBI.CSn | ol
EBI_REn

Figure 14.5. EBI Multiplexed 16-Bit Data, 16-Bit Address Read Operation

ADDRSETUP ADDRHOLD WRSETUP WRSTRB WRHOLD
(1,2,3,..) 0,1,2,..) 0,1,2,..) (1,2,3,..) 0,1,2,..)
EBI_AD[15:0] ADDRJ[16:1] DATA[15:0] z
EBLALE
EBI_CSn ] T
EBI_WEn

Figure 14.6. EBI Multiplexed 16-Bit Data, 16-Bit Address Write Operation

silabs.com | Building a more connected world. Rev. 1.1 | 244




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.3 Multiplexed 8-Bit Data, 24-Bit Address Mode

This mode allows 24-bit address with 8-bit data multiplexed on the EBI_AD lines. The upper 8 bits of the EBI_AD lines are consecutive-
ly used for the highest 8 bits and the lowest 8 bits of the address. The lower 8 bits of the EBI_AD lines are used for the middle 8
address bits and for data. This mode is set by programming the MODE field in the EBI_CTRL register to D8A24ALE. Read and write
signals are shown in the following figures.

ADDRSETUP  RDSETUP RDSTRB RDHOLD
(1,2,3,..) 0,1,2,..) 1,2,3,..) 0,1,2,..)
EBI_AD[15:8] ADDR][23:16] ADDRJ[7:0] z
EBI_ADI[7:0] ADDR[15:8] z X DATATO] X Z
EBLALE |
EBLCSn | o
EBI_REn

Figure 14.7. EBI Multiplexed 8-Bit Data, 24-Bit Address Read Operation

ADDRSETUP ADDRHOLD  WRSETUP WRSTRB  WRHOLD
1,2,3,..) 0,1,2,..) 0,1,2,..) 1,2,3,..) 0,1,2,..)
EBI_AD[15:8] ADDR[23:16] ADDRI7:0] z
EBI_AD[7:0] ADDR[15:8] DATA[7:0] z
EBIALE |
EBI_CSn e

EBI_WEn J

Figure 14.8. EBI Multiplexed 8-Bit Data, 24-Bit Address Write Operation

silabs.com | Building a more connected world. Rev. 1.1 | 245




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.4 Non-Multiplexed 16-Bit Data, N-Bit Address Mode

In this non-multiplexed mode 16-bit data is driven on the 16 EBI_AD lines. The addresses are driven on the EBI_A lines. The address
space can be up to 256 MB as described in 14.3.6 Extended Addressing. This mode is set by programming the MODE field in the
EBI_CTRL register to D16. Read and write signals are shown in the following figures for the case in which N address lines on EBI_A
have been enabled.

Note: In this mode the 16-bit address is organized in 2-byte chunks at memory addresses aligned to 2-byte offsets. Consequently, the
LSB of the 16-bit address will always be 0. In order to double the address space, the 16-bit address is internally shifted one bit to the
right so that the LSB of the address driven into the EBI_A bus, i.e. the EBI_A[0]-bit, corresponds to the second least significant bit of the
address, i.e. ADDR[1]. At the external device, the LSB of the address must be tied either low or high in order to create a full address.

RDSETUP RDSTRB  RDHOLD
©,1,2,..) 1,2,3,..) ©0,1,2, ..)
EBI_A[N-1:0] ADDRIN:1] z
EBI_AD[15:0] z X paTAisg) X 7
EBI.CSn | s
EBI_REn

Figure 14.9. EBI Non-Multiplexed 16-Bit Data Read Operation with Extended Address

WRSETUP WRSTRB WRHOLD

0,1,2,..) 1,2,3,..) 0,1,2,..)
EBI_A[N-1:0] ADDRIN:1] Z
EBI_AD[15:0] DATA[15:0] z
EBI_CSn g
EBI_WEn

Figure 14.10. EBI Non-Multiplexed 16-Bit Data Write Operation with Extended Address

silabs.com | Building a more connected world. Rev. 1.1 | 246




EFM32WG Reference Manual

14.3.5 Page Mode Read Operation

Page mode read operation can enhance the performance of a sequence of consecutive asynchronous read transactions by allowing
data at subsequent intrapage addresses to be read faster. Page mode operation is enabled by setting the PAGEMODE bitfield in the
EBI_RDTIMING (or EBI_RDTIMINGN) register to 1. If enabled, the RDPA bitfield in the EBI_PAGECTRL register defines the duration of
an intrapage access and the PAGELEN bitfield in the EBI_PAGECTRL register defines the number of members in a page. Page mode
reads can for example be triggered by consecutive reads resulting from wide AHB reads which are automatically translated into multiple
narrow external device reads. Page mode reads can also be triggered by sequential reads resulting from the EBI prefetch unit.

The number of members in a page together with the width of the external device and the INCHIT bit of the EBI_PAGECTRL register
define whether an address change results in an interpage access or in an intrapage access as shown in the following table.
Table 14.1. EBI Intrapage Hit Condition for Read on Address Addr (Non-Mentioned Addr Bits are Unchanged)

8-bit External Device 16-bit External Device

PAGELEN, INCHIT

PAGELEN=MEMBER4, INCHIT=0 Addr{1:0] changed Addr[2:0] changed

PAGELEN=MEMBERS, INCHIT=0 Addr[2:0] changed Addr[3:0] changed

PAGELEN=MEMBER16, INCHIT=0 Addr[3:0] changed Addr[4:0] changed

PAGELEN=MEMBERS32, INCHIT=0 Addr[4:0] changed Addr[5:0] changed

PAGELEN=MEMBER4, INCHIT=1 Addr[1:0] incremented by 1 Addr[2:0] incremented by 2

PAGELEN=MEMBERS, INCHIT=1 Addr[2:0] incremented by 1 Addr[3:0] incremented by 2

PAGELEN=MEMBER16, INCHIT=1 Addr{3:0] incremented by 1 Addr[4:0] incremented by 2

PAGELEN=MEMBER32, INCHIT=1 Addr[4:0] incremented by 1 Addr[5:0] incremented by 2

The initial page mode transaction uses the read setup and read strobe timing as shown in the following figures depending on the used
addressing mode. Subsequent transactions are started by changing the low-order address bits and use the page access time defined in
the RDPA bitfield of the EBI_PAGECTRL register. The read hold state RDHOLD is only performed at the end of a page mode read
sequence or when bus turn-around occurs. Note that bus turn-around can occur even if only read transactions are performed as the
D16A16ALE addressing mode will drive the EBI_AD lines when programming the external address latch. In this case one bus turn-
around RDHOLDX cycle is automatically inserted in between the read and the write action on the EBI_AD lines. Note that for the
D16A16ALE addressing mode the RDPA state immediately follows the ADDRSETUP state, so the HALFALE feature will typically be
required to satisfy the external address latch hold requirement. In the D8 A24ALE addressing mode there is no need to reprogram the
external address latch for intrapage addresses as the external latch then only latches the most significant, non-changed address lines.
The following figures show typical page mode read sequences for all addressing modes.

RDSETUP RDSTRB RDPA RDPA RDPA RDHOLD
0,1,2,..) 1,2,3,..) (1,2,3,...) 1,2,3,..) 1,2,3,..) 0,1,2,..)
EBI_AD[15:8] ADDRO ADDR1 ADDR2 ADDR3
EBI_AD[7:0] DaTAO X DATAT X DatA2 X Dhtas Xz
EBL.CSn |
EBI_REn

Figure 14.11. EBI Page Mode Read Operation for D8A8 Addressing Mode




EFM32WG Reference Manual

ADDRSETUP  RDSETUP RDSTRB RDHOLD ADDRSETUP RDSETUP RDPA RDHOLD
1,2,3,..) 0,1,2,..) (1,2,3,..) 0,1,2,..) 1,2,3,..) 0,1,2,..) (1,2,3,..) 0,1,2,..)
EBI_AD[15:0] ADDRO z X DATAO ADDR1 z X DATA1

EBI_ALE o

EBLCSn |

EBI_REn B

Figure 14.12. EBI Page Mode Read Operation for D16A16ALE Addressing Mode
ADDRSETUP  RDSETUP RDSTRB RDPA RDPA RDPA RDHOLD
0,1,2,..) 0,1,2,..) (1,2,3,..) (1,2,3,..) (1,2,3,..) (1,2,3,..) 0,1,2,..)

EBI_AD[15:8] ADDRO[23/16] ADDRO[7:0] ADDR1[7:0] ADDR2[7:0] ADDR3[7:0] z
EBI_ADI[7:0] ADDRO[158] z X DATAO X DATA1 X DATA2 X DATA3 X z

EBI_ALE ]

EBLCSn |

EBI_REn T

Figure 14.13. EBI Page Mode Read Operation for DBA24ALE Addressing Mode
RDSETUP RDSTRB RDPA RDPA RDPA RDHOLD
0,1,2,..) 1,2,3,..) 1,2,3,..) (1,2,3,..) 1,2,3,..) 0,1,2,..)

EBI_A[N-1:0] ADDRO ADDR1 ADDR2 ADDR3
EBI_AD[15:0] z X patao X Datat X pataz X ophtas Xz

EBL.CSn |

EBI_REn

Figure 14.14. EBI Page Mode Read Operation for D16 Addressing Mode

The maximum duration that a page is kept open is defined in the KEEPOPEN bitfield of the EBI_PAGECTRL register. New read trans-
actions which hit in an open page are started with RDPA intrapage timing if the KEEPOPEN time has not been exceeded at the start of
such a transaction. The default setting of KEEPOPEN, which is equal to 0, will therefore never allow for intrapage timing to occur.
Transactions are allowed to finish if the KEEPOPEN time is exceeded during the transaction. Otherwise the RDSTRB interpage timing
is used for the read transaction. Next to exceeding the KEEPOPEN time there are other reasons for closing an open page. In particular
EBI transactions which result in a write or a non-intrapage read always cause the page to be closed. Also the lack of a new EBI trans-
action will cause an open page to be closed. In order to prevent this last scenario as much as possible read transactions can often be
made back to back. This is achieved by enabling prefetching by setting PREFETCH to 1 in the EBI_RDTIMING (or EBI_RDTIMINGn)
register and by disallowing idle state insertion in between transfers by setting the NOIDLE (or NOIDLER) bit to 1 in EBI_CTRL register.
The following figure shows an example in which only ADDR1 benefits from intrapage timing because an unrelated AHB transfer not
directed at the EBI causes late arrival of ADDR2. ADDR2 arrives too late to be inserted as a back to back read transfer. The page is
considered closed and ADDR2 can therefore not benefit from intrapage timing and it results in an interpage access instead.



EFM32WG Reference Manual
EBI - External Bus Interface

RDSETUP RDSTRB RDPA  RDHOLD IDLE RDSETUP  RDSTRB
©1,2,.) (1,2,3,.) (1,2,3,.) ©.1.2.) ©0.1,2,..) (1.2,3,..)
AHB ADDRESS )X ADDRO ADDR1 NON-EBI ADDR2
EBIAIN-1:0] ADDRO ADDR1 z ADDR2
EBI_AD[15:0] z X paTAO X DATA1 X Z X
EBI_CSn
EBI_REn

Figure 14.15. EBI Page Closing

silabs.com | Building a more connected world. Rev. 1.1 | 249




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.6 Extended Addressing

Extended addressing is used to extend the address range for any of the addressing modes described in 14.3.1 Non-Multiplexed 8-Bit
Data, 8-Bit Address Mode, 14.3.2 Multiplexed 16-bit Data, 16-bit Address Mode, 14.3.3 Multiplexed 8-Bit Data, 24-Bit Address Mode,
and 14.3.4 Non-Multiplexed 16-Bit Data, N-Bit Address Mode. Up to 28 address bits can be individually enabled on the EBI_A address
lines providing up to 256 MB of address space per memory bank. The operation on the EBI_AD lines is not affected by this. See
14.3.12 Bank Access for the memory map definitions related to the EBI. An example of address extension for the D16 mode is shown in
Figure 14.9 EBI Non-Multiplexed 16-Bit Data Read Operation with Extended Address on page 246 and Figure 14.10 EBI Non-Multi-
plexed 16-Bit Data Write Operation with Extended Address on page 246. A further example for address extension in the multiplexed 16-
bit data, 16-bit address mode of 14.3.2 Multiplexed 16-bit Data, 16-bit Address Mode is shown in the following figure. This is achieved
by programming the MODE field in the EBI_CTRL register to D16A16ALE and by enabling the required address lines via the ALB and
APEN bitfields of the EBI_ROUTE register.

EBI_A ADDR MSBs
EBI_AD I:Latch IADDR LSBs >
A
External
ALE Async.
Device
DATA
Control

Figure 14.16. EBI Extended Address Latch Setup

Read and write signals for using extended addressing in the D16A16ALE mode are shown in the following figures for the case in which
N extra address lines have been enabled. At the start of the transaction the lower address bits are output on the EBI_AD lines. The
Latch is controlled by the ALE (Address Latch Enable) signal and stores the address. Then the data is read or written according to
operation. The higher address bits are output on the EBI_A lines throughout the transfer.

ADDRSETUP RDSETUP  RDSTRB RDHOLD
1,2,3,..) 0,1,2,..) 1,2,3,..) 0,1,2,..)
EBI_A[16+N-1:16] ADDR[16+N:17]
EBI_AD[15:0] ADDR[16:1] Z X DATA[150] z
EBLALE
EBIL.CSn | o
EBI_REn

Figure 14.17. EBI 16-Bit Data Multiplexed Read Operation using Extended Addressing

ADDRSETUP ADDRHOLD ~ WRSETUP  WRSTRB WRHOLD
1,2,3,..) ©0,1,2,..) ©0,1,2,..) 1,2,3,..) ©0,1,2, ..)
EBI_A[16+N-1:16] ADDR[16+N!17]
EBI_AD[15:0] ADDR[16:1] DATA[15:0] z
EBI ALE |
EBI_CSn al
EBI_WEn

Figure 14.18. EBI 16-Bit Data Multiplexed Write Operation using Extended Addressing

silabs.com | Building a more connected world. Rev. 1.1 | 250




EFM32WG Reference Manual
EBI - External Bus Interface

In order to minimize the pin requirements both the lower bound and the upper bound of the enabled EBI_A lines can be set. This is
done in the ALB and APEN bitfields of the EBI_ROUTE register respectively. For example, in case all memory banks use the 8-bit ad-
dressing mode D8AS8, then the lower 8 address bits are always output on EBI_AD. Therefore, if address extension is required, only
address bits 8 and upwards need to be enabled on EBI_A. This is done by setting the EBI_A lower bound to 8 by setting ALB to A8 in
EBI_ROUTE and by enabling the required higher address lines via the APEN bitfield in EBI_ROUTE. The operation of the APEN and
ALB bitfields is shown in the following table for some typical configurations.

Table 14.2. EBI Enabling EBI_ADDR Lines for Transaction with Address "Addr" and Data "Data"

Configuration Addresses on EBI_A Addresses/data on EBI_AD

MODE = D8AS8, ALB = A8, APEN = A28 EBI_A[27:8] = Addr[27:8] EBI_AD[15:0] = {Addr[7:0], Data[7:0]}
MODE = D16A16ALE, ALB = A16, APEN = | EBI_A[26:16] = Addr[27:17] EBI_AD[15:0] = Addr[16:1]; Data[15:0]
A27

MODE = D8A24ALE, ALB = A24, APEN = | EBI_A[27:24] = Addr[27:24] EBI_ADI[15:0] = Addr[23:8]; {Addr[7:0], Da-
A28 ta[7:0]}

MODE = D16, ALB = A0, APEN = A27 EBI_A[26:0] = Addr[27:1] EBI_ADI[15:0] = Data[15:0]

14.3.7 Prefetch Unit and Write Buffer

Prefetching from external memory can enhance the performance of a sequence of consecutive transfers. In particular sequential code
execution from external memory can benefit from prefetch. Also prefetch will typically lead to better utilization of intrapage accesses in
case page mode is used. If prefetch is enabled, the prefetch unit will sequentially prefetch one data item of the same width as the last
Cortex-M4 or DMA read transaction handled by the EBI. Note that one prefetch transaction might lead to multiple external device trans-
actions as described in Table 14.3 EBI Mapping of AHB Transactions to External Device Transactions on page 255. Prefetch is not
performed in reaction to write transactions, nor will prefetch cross bank boundaries. The prefetch unit is enabled via the PREFETCH
bitfield in the EBI_RDTIMING and EBI_RDTIMINGnN registers. When the ITS bitfield in the EBI_CTRL register is set to 0, the PRE-
FETCH bitfield from EBI_RDTIMING applies to all 4 memory banks. When ITS is set to 1 the prefetch unit can be individually enabled
per bank. In this case register EBI_RDTIMING only applies to bank 0. Prefetch enabling for bank n is then defined in the EBI_RDTI-
MINGn register.

The EBI has a 1 entry 32-bit wide write buffer. The write buffer can be used to limit stalling by partially decoupling the Cortex-M4 or
DMA from a potentially slow external device. Only writes which are guaranteed to not cause an error (e.g. timeout) in the EBI will be
buffered when the write buffer is enabled, such that precise error generation is guaranteed. The write buffer is disabled via the WBUF-
DIS bitfield in the EBI_WRTIMING and EBI_WRTIMINGnN registers. When the ITS bitfield in the EBI_CTRL register is set to 0, the
WBUFDIS bitfield from EBI_WRTIMING applies to all 4 memory banks. When ITS is set to 1 the write buffer can be individually disa-
bled per bank. In this case register EBI_WRTIMING only applies to bank 0. Write buffer disabling for bank n is then defined in the
EBI_WRTIMINGRN register.

The AHBACT status bit in the EBI_STATUS register indicates whether an AHB transaction is still active in the EBI or not. When per-
forming an AHB write, the AHBACT bit stays 1 until the required transaction(s) with the external device have finished, independent of
whether the AHB write gets buffered or not. On an AHB read with prefetching enabled, AHBACT stays high until the potential external
device prefetch transaction(s) have finished.

silabs.com | Building a more connected world. Rev. 1.1 | 251




EFM32WG Reference Manual

14.3.8 Strobe Length

For external devices with low, but non-zero, setup requirements the performance overhead for EBI transactions can be relatively large if
a full cycle setup time needs to be used. It is possible to borrow half of the cycle time from a neighboring strobe phase in order to define
setup times with a granularity of half the internal clock period.

The durations of the EBI_ALE, EBI_REn, EBI_WEn, EBI_NANDREn and EBI_NANDWER strobes can be individually decreased by half
the internal clock period via the HALFALE, HALFRE and HALFWE bitfields in the address timing, read timing and write timing registers
respectively. In case of EBI_ALE the trailing edge of the strobe can be moved half a clock period earlier. In case of EBI_REn,
EBI_WEn, EBI_NANDREn and EBI_NANDWER the leading edge of the strobe can be moved half a clock period later. Decreasing the
length of the EBI_ALE strobe can be thought of as increasing the length of the RDSETUP phase by the same amount. Similarly, de-
creasing the length of the EBI_REn, EBI_WEn, EBI_NANDREnN, EBI_NANDWER strobes can be thought of as increasing the length of
the RDSETUP and WRSETUP phases. Note that the length of the ADDRSETUP, RDSTRB, and WRSTRB phases is still 1 or more
internal clock cycles. For example, when HALFRE is set to 1 and RDSTRB is programmed to 2, the length of the RDSTRB phase is 2
cycles. The duration of the EBI_REn pulse is however decreased by half a cycle to 1 1/2 cycles.

The following figures show read and write transactions in the multiplexed 16-bit address, 16-bit data mode in which half strobes are
enabled for EBI_ALE, EBI_REn and EBI_WEn.

ADDRSETUP RDSETUP RDSTRB RDHOLD
1,2,3,..) 0,1,2,..) 1,2,3,..) 0,12,..)
EBI_AD[15:0] ADDRJ[16:1] z X DATA[15:0]
EBI_ALE
EBI_CSn
EBI_REn
%, 1%,2%,..) (2) (%2) (2, 1%,2%,..)
Figure 14.19. EBI Multiplexed Read Operation with Reduced Length Strobes
ADDRSETUP ADDRHOLD WRSETUP WRSTRB WRHOLD
(1,2,3,...) 0,1,2,...) 0,1,2,..) (1,2,3,...) 0,1,2,...)
EBI_AD[15:0] ADDR[16:1] DATA[15:0]
EBI_ALE
EBI_CSn '
EBI_WEn
(%, 1%,2%,..) (%) (%) (%, 1%,2%,..)

Figure 14.20. EBI Multiplexed Write Operation with Reduced Length Strobes




EFM32WG Reference Manual

14.3.9 Bus Turn-Around and Idle Cycles

The EBI_AD lines can be driven by either the EFM32WG or by the external device. Depending on the characteristics of an external
device, the RDHOLD should be programmed to ensure adequate bus turnaround time. Default the EBI inserts an initial IDLE cycle,
during which the EBI does not drive the EBI_AD lines, after each external transaction. Furthermore, the EBI deasserts the EBI_CSn,
EBI_REn, and EBI_WERn lines during IDLE cycles. In case of subsequent IDLE cycles, after the initial one, the EBI will drive the EBI_AD
lines while keeping the EBI_CSn, EBI_REn, and EBI_WERn lines deasserted. The IDLE state insertion is shown for two back-to-back
read transactions in the first following figure. In case that the IDLE state provides the required bus turn-around time, the RDHOLD pa-
rameter can be programmed to 0. For increased performance, the automatic IDLE state insertion can be prevented by setting the NOI-
DLE/NOIDLER bits in the EBI_CTRL register to 1. This scenario is shown in the second following figure for two back-to-back reads in a
non-multiplexed addressing mode. Note that in case RDSETUP and RDHOLD are both programmed to 0, then the EBI_REn line will
not be deasserted between back-to-back read transfers. The same will happen for non-multiplexed back-to-back write transactions with
WRSETUP and WRHOLD both programmed to 0. In case that NOIDLE/NOIDLEnN is 1 and a read is immediately followed by a write on
the EBI_AD lines, one bus turn-around cycle called RDHOLDX is automatically inserted in between the read and the write action. Dur-
ing a RDHOLDX cycle the external EBI signals are driven in the same way as during regular RDHOLD cycles, i.e. the EBI_RERn line will
get deasserted while the EBI_CSn line will stay asserted.

An IDLE cycle will automatically get inserted for the following cases:

» Between two external device transactions in case the NOIDLE/NOIDLER bit is 0.
» Between two external device transactions to different banks.
* When no request for an external transaction is available in the EBI.

A RDHOLDX cycle will automatically get inserted for the following case:

» Between a read and a subsequent write on the EBI_AD lines. Note that this is only possible if NOIDLE/ NOIDLEnN is set to 1. Also
note that a read in a multiplexed addressing mode (e.g. D16A16ALE) starts with a write on the EBI_AD lines when it is in the ADDR-
SETUP state.

RDSETUP RDSTRB RDHOLD IDLE RDSETUP RDSTRB RDHOLD IDLE
(0,1,2,..) | (1,2,3,.)](0,3,2,..) | (1,2,..) ](0,1,2,..) | (1,2,3,..)] (0,1,2,..) | (1,2,..)
EBI_AD[15:8] ADDRO([7:0] ADDR1[7:0]
EBI_ADI[7:0] z X pATAo[7:0] X z X DATA1[7:0] X
EBL_CSn | ]
EBI_REn
Figure 14.21. EBI Enforced IDLE Cycles between Transactions
RDSETUP RDSTRB RDHOLD RDSETUP RDSTRB RDHOLD
0,1,2,..) (1,2,3,..) 0,1,2,..) 0,1,2,..) 1,2,3,..) 0,1,2,..)
EBI_AD[15:8] ADDRO[7:0] ADDR1[7:0]
EBI_AD[7:0] z X pathorro) X z X DATAM[7:0] ><:
EBL.CSn |
EBI_REn

Figure 14.22. EBI No Enforced IDLE Cycles between Transactions

Note: In case NOIDLE/NOIDLEnN bits are set in EBI_CTRL the read or write strobes can remain asserted for back-to-back transfers if
no further separation is guaranteed via for example RDSETUP, RDHOLD, WRSETUP, or WRHOLD bitfields.



EFM32WG Reference Manual
EBI - External Bus Interface

14.3.10 Timing

The duration of the states in the transaction is defined by the corresponding uppercase name above the state, e.g. the address setup
state in Figure 14.8 EBI Multiplexed 8-Bit Data, 24-Bit Address Write Operation on page 245 is active for a number of internal clock
cycles defined by ADDRSET bitfield in the EBI_ADDRTIMING register. Similar timing can be defined by the RDSTRB bitfield in the
EBI_RDTIMING register and WRSTRB in the EBI_WRTIMING register. These parameters all have a minimum duration of 1 cycle,
which is set by HW in case the bitfield is programmed to 0.

The setup and hold timing parameters are ADDRHOLD in the EBI_ADDRTIMING register, RDHOLD and RDSETUP in the
EBI_RDTIMING register and WRHOLD and WR SETUP in the EBI_WRTIMING register. Writing a value m to one of these bitfields
results in a duration of the corresponding state of m cycles. If these parameters are set to 0, it effectively means that the state is skip-
ped.

Page mode access time is defined in the RDPA bitfield of the EBI_PAGECTRL register. This parameters has a minimum duration of 1
cycle, which is set by HW in case the bitfield is programmed to 0.

When the ITS bitfield in the EBI_CTRL register is set to 0, the timing set defined in the EBI_ADDRTIMING, EBI_RDTIMING and
EBI_WRTIMING registers applies to all 4 memory banks. When ITS is set to 1 each memory bank uses an individual timing set. In this
case registers EBI_ADDRTIMING, EBI_RDTIMING and EBI_WRTIMING only apply to bank 0. Timing for bank n is then defined in the
EBI_ADDRTIMINGnN, EBI_RDTIMINGn and EBI_WRTIMINGn registers.

Note: All timing related bitfields have a default value which is equal to the highest possible value for these bitfields, which makes the
default values a better fit for slow memory devices. This differs from the EFM32G devices in which the default values correspond to the
lowest possible values, which would only be appropriate for fast memory devices.

silabs.com | Building a more connected world. Rev. 1.1 | 254




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.11 Data Access Width

The mapping of AHB transactions to external device accesses depends on the data width of the external device and on whether or not
it supports byte lanes. The data width of external devices is specified in the MODE and MODER bitfields of the EBI_CTRL register. An
external device is specified to be either 8-bit or 16-bit wide. Availability of byte lane support by the external device is specified via the
BL and BLn bitfields of the EBI_CTRL register. When the ITS bitfield in the EBI_CTRL register is set to 0, the MODE and BL bitfields
apply to all 4 memory banks. When ITS is set to 1 each memory bank uses an individual mode and byte lane enable definition. In this
case bitfields MODE and BL only apply to bank 0. The mode and byte lane availability for bank n is then defined in the MODEnN and BLn
bitfields.

In case the AHB transaction width does not match the width of the selected device, the EBI automatically translates the AHB transac-
tion into 1 or more external device transactions matching the capabilities of that device. If one AHB transaction is translated into multi-
ple external transactions, then the external transactions have incrementing addresses and start with the lowest data byte(s) from the
AHB transaction. The translation, and possibly bus fault generation, is explained below and in the following table:

 If the AHB transaction width is larger than the external device width, then multiple consecutive external transactions are performed
starting with the least significant data.

« If the AHB transaction width is smaller than the external device width, then EBI behavior depends on whether or not byte lanes are
available for the selected device. Reads either use byte lane support when available, or read according to the full external device
width and disregard the superfluous data. Writes normally either use byte lane support when available, or perform a read-modify-
write sequence to only change the required data. However, NAND Flash does not support byte lanes or random access read-modi-
fy-write and therefore a hard fault is generated in case of an 8-bit write to a bank designated as 16-bit NAND bank.

Table 14.3. EBI Mapping of AHB Transactions to External Device Transactions

16-bit NAND Flash
transaction(s)

8-bit External De-
vice (non- NAND)
transaction(s)

16-bit External De- 16-bit External De- 8-bit NAND Flash
transaction(s)

Data Access by
Cortex- M4, DMA,
or prefetch

vice (non- NAND) vice (non- NAND)

transaction(s) (with transaction(s)

byte lanes) (without byte
lanes)

8-bit read 1 x 8-bit read 1 x 8-bit read (using | 1 x 16-bit read 1 x 8-bit read 1 x 16-bit read
byte lane)
16-bit read 2 x 8-bit read 1 x 16-bit read 1 x 16-bit read 2 x 8-bit read 1 x 16-bit read
32-bit read 4 x 8-bit read 2 x 16-bit read 2 x 16-bit read 4 x 8-bit read 2 x 16-bit read
8-bit write 1 x 8-bit write 1 x 8-bit write (using | 1 x 16-bitread; 1 x |1 x 8-bit write - (Hard fault)
byte lane) 16-bit write (read-
modify-write)
16-bit write 2 x 8-bit write 1 x 16-bit write 1 x 16-bit write 2 x 8-bit write 1 x 16-bit write
32-bit write 4 x 8-bit write 2 x 16-bit write 2 x 16-bit write 4 x 8-bit write 2 x 16-bit write

silabs.com | Building a more connected world.

Rev. 1.1 | 255




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.12 Bank Access

The EBI is split in 4 different address regions, each connected to an individual EBI_CSn line. When accessing one of the memory re-
gions, the corresponding CSn line is asserted. This way up to 4 separate devices can share the EBI lines and be identified by the
EBI_CSn line. Each bank can individually be enabled or disabled in the EBI_CTRL register.

The bank separation depends on whether the access originates from code space or not and on the setting of the ALTMAP bit in the
EBI_CTRL register. From code space three 32 MB banks and one 128 MB bank can be accessed. From data space either four 64 MB
banks (when ALTMAP bit is 0) or four 256 MB banks (when the ALTMAP bit is 1) can be accessed as shown in the following figures.

The EBI regions starting at address 0x80000000 in the memory map of the EFM32WG can also be used for code execution. When
running code via EBI regions starting at this address, the Cortex-M4 uses the System bus interface to fetch instructions. This results in
reduced performance as the Cortex-M4 accesses stack, other data in SRAM and peripherals using the System bus interface. Code
accesses via the System bus interface will not be cached. Furthermore, it should be noted that the address area from 0xA0000000 to
0xC0000000 is marked NX (no-execute) by default. To be able to run code via the EBI efficiently, the EBI is also mapped in the code
space at address 0x12000000. When running code from this space, the Cortex-M4 fetches instructions through the I/D-Code bus inter-
face, leaving the System bus interface for data access. Instructions fetched via the 1/D-Code bus interface can be cached to increase
performance. The EBI regions mapped into the code space can however only be accessed by the CPU, i.e. not the DMA.

Depending on the setting of the ITS bitfield in the EBI_CTRL register. The external device behavior, including for example data width,
timing definitions, page mode operation, and pin polarities, is either defined for all banks at once or individually per bank.

Oxffffffff
0xc0000000
Oxbfffffff P Ox8fffffff
JFgl EB| Region 3 (64 MB)
0x8c000000
0x8Dbffffff
- EBI Region 2 (64 MB)
g
X
Ox8ffffff EBI Region 1 (64 MB
0x80000000 2xg4000000
Ox 7 fffffff -~ EBI Region 0 (64 MB)
T 0x80000000
7 Ox 1fffffff
T EBI Region 3
(128 MB) 0x18000000
0x20000000 O 7
Ox 1 fffffff EBI Region 2 (32 MB)
T
0x12000000 . X
N EBI Region 1 (32 MB) [FSSSENN
0x1 3fffff
ISR EBI Region 0 (32 MB) B
0x00000000 0x12000000

Figure 14.23. EBI Default Memory Map (ALTMAP = 0)

silabs.com | Building a more connected world. Rev. 1.1 | 256




EFM32WG Reference Manual
EBI - External Bus Interface

Oxffffffff Oxbfffffff
EBI Region 3 (256 MB)
0xc0000000
xe OXbffffff 0xb0000000
Oxafffffff
EBI Region 2 (256 MB)
EBI Regions
0xa0000000
OxOfffffff
0x80000000 EBI Region 1 (256 MB)
Ox7ffffff
0x90000000
Ox8fffffff
EBI Region 0 (256 MB)
0x80000000
Ox 1fffffff
EBI Region 3 (128 MB)
0x18000000

0x20000000
Ox1 7Ffffff
O FfF EBI Region 2 (32 MB
egion 2 (S2 MB)  Ipprs
0x12000000 Ox1 5ffffF
EBI Region 1 (32 MB
egion 1 (S2 MB) I ppNa:
RS i Region 0 (32 MB) S
0x00000000 0x12000000

Figure 14.24. EBI Alternative Memory Map (ALTMAP = 1)

14.3.13 WAIT/ARDY

Some external devices are able to indicate that they are not finished with either write or read operation by asserting the WAIT / ARDY
line. This input signal is used to extend the REn/WEn cycles for slow devices. The interpretation of the polarity of this signal can be
configured with the ARDYPOL bit in EBI_POLARITY. E.g. if the ARDYPOL is set to ACTIVELOW, then the REn/WEn cycle is extended
while the ARDY line is kept low. The ARDY functionality is enabled by setting the ARDYEN bit in the EBI_CTRL register. It is also
possible to enable a timeout check, which generates a bus error if the ARDY is not deasserted within the timeout period. This prevents
a system lock up condition in the case that the external device does not deassert ARDY. The timeout functionality is disabled by setting
ARDYTODIS in the EBI_CTRL register.

When the ITS bitfield in the EBI_CTRL register is set to 0, the wait behavior defined in the ARDYEN and ARDYTODIS bitfields applies
to all 4 memory banks. When ITS is set to 1 each memory bank uses an individual wait behavior definition. In this case bitfields ARDY-
EN and ARDYTODIS only apply to bank 0. Wait behavior for bank n is then defined in the ARDYnEN and ARDYTONDIS bitfields.

silabs.com | Building a more connected world. Rev. 1.1 | 257




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.14 NAND Flash Support

NAND Flash devices offer high density at relatively low cost when compared to NOR Flash devices. Unlike NOR Flash, which offers
random read access, NAND Flash devices are based on page access and use an indirect interface. Furthermore, a NAND Flash can
contain invalid bits leading to invalid blocks, which leads to requirements such as bit error detection/correction and bad block manage-
ment.

The EBI offers support for glueless connection of a NAND Flash by implementing dedicated EBI_NANDREnN and EBI_NANDWEnN pins
and by providing hardware for single error correction double error detection (SEC-DED) Error Correction Code (ECC) generation.
NAND Flash support is enabled by setting the EN bitfield in the EBI_NANDCTRL register to 1. The BANKSEL bitfield in
EBI_NANDCTRL defines which memory bank has a NAND Flash devices attached to it. NAND Flash data width, read timing, and write
timing are programmed via the standard EBI registers as described in 14.3.14.2 Width and Timing Configuration. ECC support is de-
scribed in Section 14.3.15 Error Correction Code.

Both standard and Chip Enable Don't Care (CEDC) NAND Flash devices are supported and they can be attached as shown in the
following figures. For standard NAND Flash devices, the Chip Enable (CEn) pin needs to remain asserted low during the entire read
cycle busy period, in which data is transferred from the memory array into the NAND Flash internal data registers in order to prevent an
early return to standby mode. CEDC NAND Flash devices do not have this restriction, but they do not support the automatic sequential
read function. For CEDC NAND Flash the shared EBI_REn and EBI_WEn pins can be used instead of the dedicated EBI_NANDREnN
and EBI_NANDWER pins.

GPIO ©

P CEn
EBI_A[25] ™
AL ](1) P ALE
EBI_A[24
_Al24] (CLE
EBI_NANDREN »| REN
EBI_NANDWEN p| WEN
NAND
Flash
EBI_AD[] ®
P-10[]
GPIO »|\WPn
GPIO @
R/B

Figure 14.25. EBI Connection with Standard NAND Flash

EBI_CSn

EBI_A[25] > CEn
EBI_A[24] Q) | ALE
EBI_NANDREn(z) »CLE

= P REn
EBI_NANDWER® »-|WEN

CE don’t care

NAND
EBI_AD[ © Flash
P 10[]
GPIO
GPIO @ - \WPN
R/B

Figure 14.26. EBI Connection with Chip Enable Don't Care NAND Flash

Note:
* (0) For a standard NAND Flash the EBI_CSn should be left unconnected
* (1) The address lines mapping to the NAND Flash ALE and CLE signals can be chosen as explained in 14.3.14.1 Register Selection

* (2) For a CEDC NAND Flash the shared EBI_REn and EBI_WEn pins can be used instead of the dedicated EBI_NANDREnN and
EBI_NANDWER pins

* (3) Both 8-bit and 16-bit NAND Flash are supported.
* (4) The NAND Flash ready/busy (R/B) signal should be observed via GPIO (not via EBI_ARDY)

silabs.com | Building a more connected world. Rev. 1.1 | 258




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.14.1 Register Selection

NAND Flash uses an indirect 1/O interface in which the NAND Flash is controlled by programming the NAND Flash internal Command,
Address, and Data registers. NAND Flash does not use dedicated address lines. Because of this indirect I/O interface the NAND Flash
memory size is not restricted by the memory map of the EFM32WG. The NAND Command, Address, and Data registers can be ac-
cessed via memory mapped IO in which two address lines are chosen for connection with the ALE and CLE signals. The memory map-
ping and the two used address lines should be chosen such that they adhere to the ALE/CLE encoding shown in the following table.
Either EBI_A or EBI_AD address lines can be used as long as the chosen addressing mode does not multiplex data signals onto the
chosen lines. The EBI_A[25:24] address lines used in Figure 14.25 EBI Connection with Standard NAND Flash on page 258 and Figure
14.26 EBI Connection with Chip Enable Don't Care NAND Flash on page 258 are just an example.

Table 14.4. EBI NAND Flash Register Select

ALE CLE Selected NAND Flash Register
0 0 Data Register

0 1 Command Register

1 0 Address Register

1 1 Undefined

silabs.com | Building a more connected world. Rev. 1.1 | 259




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.14.2 Width and Timing Configuration

The regular EBI registers are used for defining transfer width, read timing, and write timing for the transactions on the NAND Flash
interface. NAND Flash specific parameters as for example block size or the number of address cycles are not configured in the EBI and
need to be dealt with via driver software. Also higher level tasks as for example wear-leveling, bad block management, and logical-to-
physical block mapping should be addressed via driver software.

External transaction width is defined via the address mode as defined in MODE field of EBI_CTRL. As only 3 NAND Flash registers are
memory mapped it suffices to use either the D8A8 or D16 address mode. The D16A16ALE and D8A24ALE address modes can also be
used, but they require unnecessary external address latch cycles and/or circuitry. For a 8-bit wide NAND Flash device, the D8A8 ad-
dress mode is therefore recommended, whereas for a 16-bit wide NAND Flash device the D16 address mode is recommended. If the
AHB transaction width does not match the external NAND device transaction width, then automatic transaction translation is performed
as described in 14.3.11 Data Access Width. Note that a bus fault is generated in case of an 8-bit write to a 16-bit NAND device as
neither byte lanes nor read-modify-write is supported for NAND Flash.

NAND Flash write timing is defined in the EBI_WRTIMING(n) register. The following figures show the command latch, address latch
and data input timing respectively assuming the D8A8 address mode with EBI_ADIx] used as ALE and EBI_AD|y] used as CLE.

WRSETUP WRSTRB WRHOLD

0,1,2,..) (1,2,3,...) 0,1,2,..)
P taLs »le tacH -
EBI_AD[x] = NAND ALE ]
teLs teLH
EBI_AD[y] = NAND CLE
tos toH
EBI_AD[7:0] = NAND IO \ COMMAND )
tes teH
GPIO or EBI_CSn = NAND CEn —\ T i
twe
EBI_NANDWEN = NAND WEn
< twe >
GPIO = NAND R/B /

Figure 14.27. EBI NAND Flash Command Latch Timing

silabs.com | Building a more connected world. Rev. 1.1 | 260




EFM32WG Reference Manual
EBI - External Bus Interface

WRSETUP WRSTRB WRHOLD

©,1,2,..) 1,2,3,..) ©,1,2,..)
taLs taLH
- #‘ >
EBI_AD[x] = NAND ALE ,
teLs teLH
EBI_AD[y] = NAND CLE l
tos toH
- Lt <—>
EBI_AD[7:0] = NAND IO ADDRESS
tcs tcH
GPIO or EBI_CSn = NAND CEn l
twe
twp P twh
EBI_NANDWEnN = NAND WEn

Figure 14.28. EBI NAND Flash Address Latch Timing

WRSETUP WRSTRB WRHOLD

0,1,2,..) (1,2,3,..) 0,1,2,..)
P taLs P tacH .
EBI_AD[x] = NAND ALE
teLs _ te
EBI_AD[y] = NAND CLE l
tos toH
- <—>
EBI_AD[7:0] = NAND IO DATA IN
tes e
GPIO or EBI_CSn = NAND CEn l
twe
twp P twH
EBI_NANDWEnN = NAND WEn /

Figure 14.29. EBI NAND Flash Data Input Timing

The EBI_WRTIMING(n) setting requirements for satisfying the NAND Flash timing parameters for command latching, address latching
and data input timing are shown in the following table.

Table 14.5. EBI NAND Flash Write Timing

NAND Flash Write Timing Parameter EBI Write Timing Parameter Requirements

tADL <= (WRHOLD) + t(WRSETUP) + t(WRSTRB)
tALS <= (WRSETUP) + t( WRSTRB)
tCS <= (WRSETUP) + t(WRSTRB)
tCLS <= t(WRSETUP) + t( WRSTRB)
tDS <= t(WRSETUP) + t( WRSTRB)

silabs.com | Building a more connected world. Rev. 1.1 | 261




EFM32WG Reference Manual
EBI - External Bus Interface

NAND Flash Write Timing Parameter EBI Write Timing Parameter Requirements

tALH <= t(WRHOLD)

tCH <= t(WRHOLD)

tCLH <= {(WRHOLD)

tDH <= t{(WRHOLD)

twC <= t{(WRHOLD) + t(WRSETUP) + {(WRSTRB)

tWH <= t(WRHOLD) + t(WRSETUP)

twWP <= t(WRSTRB)

twB (R/B edges can be detected by edge triggered GPIO interrupts)

NAND Flash read timing is defined in the EBI_RDTIMING(n) register. The following figure shows the NAND Flash data output timing

assuming the D8A8 address mode.

RDSETUP RDSTRB RDHOLD
0,1,2,..) (1,2,3,..) 0,1,2,..)
trREA trHZ
g trHOH
EBI_ADI[7:0] = NAND IO 7 DATA OUT Z
tcea
GPIO or EBI_CSn = NAND CEn
tre .
R tReH 4
EBI_NANDWEnN = NAND REn
trRR .
GPIO = NAND R/B

Figure 14.30. EBI NAND Flash Data Output Timing

The EBI_RDTIMING(n) setting requirements for satisfying the NAND Flash timing parameters for data output timing are shown in the

following table.

Table 14.6. EBI NAND Flash Read Timing

NAND Read Timing Parameter EBI Read Timing Parameter Requirements

tCEA <=t(RDSETUP) + t{(RDSTRB)

tREA <=t(RDSTRB)

tRP <=t(RDSTRB)

tRHZ <= {(RDHOLD)

tREH <= t(RDHOLD) + t(RDSETUP)

tRC <= t{(RDHOLD) + t(RDSETUP) + t(RDSTRB)

tRR <= t{(RDSETUP) (assuming software wait for R/B high)
tAR <=t(RDSETUP)

tCLR <= t{(RDSETUP)

tIR <= t{(RDSETUP)

silabs.com | Building a more connected world.

Rev. 1.1 | 262




EFM32WG Reference Manual

The NAND Flash timing parameters tWHR and tRHW define separation of read and write pulses and therefore they can be satisfied by
a combination of EBI_RDTIMING(n) and EBI_WRTIMING(n) settings as shown in the following table.

Table 14.7. EBI NAND Flash Read/Write Timing Requirements

NAND Timing Parameter EBI Timing Parameter

tWHR <= {(WRHOLD) + t(RDSETUP)

tRHW <= {(RDHOLD) + {(WRSETUP)

Remaining NAND Flash timing parameters, e.g. tRST and tPROG, should be dealt with in software.

14.3.14.3 Application Examples

A typical 528-byte page read sequence for an 8-bit wide NAND Flash is as follows:

Configuration: Enable and select the memory bank connected to the NAND Flash device via the EN and BANKSEL bitfields in the
EBI_NANDCTRL register. Set the MODE field of the EBI_CTRL register to D8AS8 indicating that the attached device is 8-bit wide.
Program the EBI_RDTIMING and EBI_WRTIMING registers to fulfill the NAND timing requirements.

Command and address phase: Program the NAND Command register to the page read command and program the NAND Address
register to the required read address. This can be done via Cortex- M4 or DMA writes to the memory mapped NAND Command and
Address registers. The automatic data access width conversions described in 14.3.11 Data Access Width can be used if desired to
for example automatically perform 4 consecutive address byte transactions in response to one 32-bit word AHB write to the NAND
Address register (in this case the 2 address LSBs should not be used to map onto the NAND ALE/CLE signals).

Data transfer phase: Wait for the NAND Flash internal data transfer phase to complete as indicated via its ready/busy (R/B) pin. The
user can use the GPIO interrupt functionality for this. The 528-byte data is now ready for sequential transfer from the NAND Flash
Data register.

Read phase: Clear the ECC_PARITY register and start Error Code Correction (ECC) parity generation by setting both the ECC-
START and ECCCLEAR bitfields in the EBI_CMD register to 1. Now all subsequently transferred data to/from the NAND Flash devi-
ces is used to generate the ECC parity code into the EBI_ECCPARITY register. Read 512 subsequent bytes of main area data from
the NAND Flash Data register via DMA transfers. This can for example be done via 32-bit word DMA transfers (as long as the two
address LSBs are not used to map onto the NAND ALE/CLE signals). Stop ECC parity generation by setting the ECCSTOP bitfield
in the EBI_CMD register to 1 so that following transactions will not modify the parity result. Read out the final 16 bytes from the
NAND Flash spare data area.

Error correction phase: Compare the ECC code contained in the read spare area data against the computed ECC code from the
EBI_ECCPARITY register. The user software can accept, correct, or discard the read data according the comparison result. No au-
tomatic correction is performed.

A typical 528-byte page program sequence for an 8-bit wide NAND Flash is as follows:

Configuration: Configure the EBI for NAND Flash support via the EBI_NANDCTRL, EBI_CTRL, EBI_RDTIMING and EBI_WRTIM-
ING registers.

Command and address phase: Program the NAND Command register to command for page programming (serial data input) and
program the NAND Address register to the desired write address.

Write phase: Clear the ECC_PARITY register and start Error Code Correction (ECC) parity generation by setting both the ECC-
START and ECCCLEAR bitfields in the EBI_CMD register to 1. Now all subsequently transferred data to/from the NAND Flash devi-
ces is used to generate the ECC parity code into the EBI_ECCPARITY register. Write 512 subsequent bytes of user main data to
the NAND Flash Data register via for example DMA transfers. Stop ECC parity generation and read out the computed ECC parity
data from EBI_ECCPARITY. Write the final 16 bytes of spare data including the computed ECC parity data bytes.

Program phase: Write the auto program command to the NAND Flash Command register after which the NAND Flash will indicate
that it is busy via its read/busy (R/B) pin. After read/busy goes high again, the success of the program command can be verified by
programming the read status command.



EFM32WG Reference Manual
EBI - External Bus Interface

14.3.15 Error Correction Code

The EBI provides provides hardware support for generation of an Error Correction Code (ECC). The used ECC is a Hamming (Hsiao)
code providing single bit error correction and double error detection (SECDED). ECC can be used to detect and/or correct failing bits in
a NAND Flash page. ECC generation is enabled by setting bitfield ECCSTART in the EBI_CMD register to 1. All subsequent data traffic
to/from the memory bank specified in the BANKSEL bitfield of the EBI_NANDCTRL register is then used for generation of the ECC into
the EBI_ECCPARITY register independent of the address in that bank. ECC generation is stopped by writing 1 to the ECCSTOP bitfield
in the EBI_CMD register. The EBI_ECCPARITY register is cleared by writing 1 to the ECCCLEAR register. The ECCACT status bit in
the EBI_STATUS register shows whether ECC generation is active or not.

The ECC computation is as shown in the following figure and table. Although the table only shows the ECC generation for 8-bit data
transfers, the ECC hardware also works for 16-bit data transfers. In that case only the interpretation of the parity bits is different.

Byte 0 Bit7 | Bit6é | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | P8
P16'
Byte 1 Bit7 | Bit6é | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito | P8
P32
Byte 2 Bit7 | Bité | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | P8
P16
Byte 3 Bit7 | Bit6é | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | P8
Byte N-4 Bit7 | Bité | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | P8
P16’
Byte N-3 Bit7 | Bité | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0o | P8
P32
Byte N-2 Bit7 | Bit6é | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | P8
P16
Byte N-1 Bit7 | Bit6é | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | P8
P1 P1' P1 P1' P1 P1’ P1 P1’
P2 P2’ P2 P2’
P4 P4’

Figure 14.31. EBI ECC Generation

Table 14.8. EBI ECC Bit/Column Parity

Parity Bit Generation for 8-Bit Data

P1' Bit 6 xor Bit 4 xor Bit 2 xor Bit 0 xor P1'
P1 Bit 7 xor Bit 5 xor Bit 3 xor Bit 1 xor P1
P2' Bit 5 xor Bit 4 xor Bit 1 xor Bit 0 xor P2'
P2 Bit 7 xor Bit 6 xor Bit 3 xor Bit 2 xor P2

silabs.com | Building a more connected world. Rev. 1.1 | 264




EFM32WG Reference Manual
EBI - External Bus Interface

Parity Bit Generation for 8-Bit Data

P4' Bit 3 xor Bit 2 xor Bit 1 xor Bit 0 xor P4’

P4 Bit 7 xor Bit 6 xor Bit 5 xor Bit 4 xor P4

Table 14.9. EBI ECC Byte/Row Parity

Parity Bit Generation for 8-Bit Data

RP(x) Byte(x)(7) xor Byte(x)(6) xor Byte(x)(5) xor Byte(x)(4) xor Byte(x)
(3) xor Byte(x)(2) xor Byte(x)(1) xor Byte(x)(0)

P8' RP(0) xor RP(2) xor RP(4) xor RP(6) xor ... xor RP(N-4) xor
RP(N-2)

P8 RP(1) xor RP(3) xor RP(5) xor RP(7) xor ... xor RP(N-3)xor
RP(N-1)

P16' RP(0) xor RP(1) xor RP(4) xor RP(5) xor ... xor RP(N-4) xor
RP(N-3)

P16 RP(2) xor RP(3) xor RP(6) xor RP(7) xor ... xor RP(N-2) xor
RP(N-1)

The generated ECC code can be read from the EBI_ECCPARITY register according to the format shown in the following figure. The
number of valid ECC bits depends on the number of transferred bytes during the time that the ECC hardware is running as indicated in
the following table.

MSB LSB

EBI_ECCPARITY[31:24] | P32768 |P32768'| P16384 | P16384'| P8192 | P8192' | P4096 | P4096'

EBI_ECCPARITY[23:16] P2048 | P2048' | P1024 | P1024' | P512 | P512' | P256 | P256'

EBI_ECCPARITY[15:8] P128 | P128 P64 P64’ P32 P32’ P16 P16’

EBI_ECCPARITY[7:0] P8 pg' P4 pP4' P2 p2' P1 P1

Figure 14.32. EBI EBI_ECCPARITY Format

Table 14.10. EBI EBI_ECCPARITY Calid Bits

Number of Data Bytes Used for ECC Generation Valid EBI_ECCPARITY Bits

256 EBI_ECCPARITY[21:0]
512 EBI_ECCPARITY[23:0]
1024 EBI_ECCPARITY[25:0]
2048 EBI_ECCPARITY[27:0]

silabs.com | Building a more connected world. Rev. 1.1 | 265




EFM32WG Reference Manual
EBI - External Bus Interface

Number of Data Bytes Used for ECC Generation Valid EBI_ECCPARITY Bits

4096 EBI_ECCPARITY[29:0]

8192 EBI_ECCPARITY[31:0]

Software can compare, XOR, the parity data generated in EBI_ECCPARITY with the parity information stored in the spare area for the
used data set. The syndrome resulting from XOR'ing the valid EBI_ECCPARITY bits with the ECC code read from the spare area can
be used for error detection and correction as shown in the following table.

Table 14.11. EBI Error Detection Result

Error Detection Result Syndrome Interpretation

No Error Syndrome has all valid Pn, Pn' | No error has been detected
bits 0

1-bit Correctable Error For all valid syndrome (Pn, Pn') |1 bit in the user main data is incorrect and it can be corrected. For
pairs: Pn = not(Pn’) 8-bit wide data the position of the incorrect bit is indicated by bit

pattern (P4, P2, P1); the position of the incorrect byte is indicated
by (..., P32, P16, P8). For 16-bit wide data the position of the in-
correct bit is (P8, P4, P2, P1); the incorrect byte number is indica-
ted by (..., P64, P32, P16)

ECC Error 1 bit of the XOR result is high An error has been detected in the ECC itself. No error has been
detected in the user data

Uncorrectable Error Other cases Multiple (2 or more) bits are incorrect. This error cannot be correc-
ted

silabs.com | Building a more connected world. Rev. 1.1 | 266




EFM32WG Reference Manual

14.3.16 TFT Direct Drive

TFT Direct Drive can be used to automatically transfer frame data stored in either internal or external memory to a TFT display without
frame buffer. The EBI generates the necessary RGB control signals for the TFT display and it coordinates and aligns the pixel data
transfers accordingly. The Direct Drive engine is enabled by setting the DD bitfield in the EBI_TFTCTRL register to either INTERNAL or
EXTERNAL. The RGB interface consists of 8 or 16 data lines on EBI_AD together with the EBI_DATAEN, EBI_VSYNC, EBI_HSYNC
and EBI_DCLK control signals. EBI_TFTCSn indicates whether the DD bitfield is programmed to DISABLED or not. Whether Direct
Drive is active or not can also be read via the DDACT status bit in the EBI_STATUS register.

The dimensions of the visible display are defined in the VSZ and HSZ bitfields of the EBI_TFTSIZE register. Hardware automatically
adds 1 to the size programmed in these bitfields. The front and back porch sizes are defined in the HFPORCH, HBPORCH, VFPORCH
and VBPORCH bitfields of the EBI_TFTHPORCH and EBI_TFTVPORCH registers. The porch and visible display sizes define the num-
ber of EBI_DCLK pulses per line and the number of lines per frame according to the following equations.

Number of EBI_DCLK pulses per line = HBPORCH + (HSZ + 1) + HFPORCH
Number of lines per frame = VBPORCH + (VSZ + 1) + VFPORCH

The horizontal and vertical synchronization pulses begin at the starts of the horizontal and vertical back porch intervals respectively. For
the HSYNC pulse a delayed start position can be defined in the HSYNCSTART bitfield of the EBI_TFTHPORCH register. The end of
the HSYNC pulse is not delayed and therefore the HSYNC pulse width is shortened when using a non-zero HSYNCSTART. The
widths, or rather end positions, of the HSYNC and VSYNC synchronization pulses are defined in the HSYNC and VSYNC bitfields of
the EBI_TFTSIZE register respectively. The horizontal synchronization pulse width is specified in pixels. The vertical synchronization
pulse width is specified in lines. Hardware automatically adds 1 to the width programmed in these bitfields. The EBI_TFTSIZE bitfields
are shown in the following figure. When Direct Drive is enabled, the VCNT and HCNT bitfields in the EBI_TFTSTATUS register show
how the frame display progresses. VCNT is a counter containing the current line position in a frame. It counts from 0 (first line in the
vertical back porch) to VBPORCH + VSZ + VFPORCH (last line in the vertical front porch). HCNT is a counter containing the current
pixel position within a line. It counts from 0O (first pixel in the horizonal back porch) to HBPORCH + HSZ + HFPORCH (last pixel in the
horizontal front porch).

HSYNC+1
\_/
<
& [HenT=0 T HCNT=HBPORCH+HSZ+HFPORCH
= | vent=o o VCNT=0
@) 14
+ o
= a
@
>
A
5
- HSZ+1 -
HBPORCH - HFPORCH
+ r—————P
N
n
>
 / Visible Display
T
O
X
g
HCNT=0 L HCNT=HBPORCH+HSZ+HFPORCH
VCNT=VBPORCH+VSZ+VFPORCH VCNT=VBPORCH+VSZ+VFPORCH

Total width = HBPORCH + (HSZ + 1) + HFPORCH

Total height = VBPORCH + (VSZ + 1) + VFPORCH

Figure 14.33. EBI TFT Size

While the Direct Drive engine is transferring frame data from internal or external memory to the TFT, the EBI can still be used for other
EBI transfers to external devices. The interleaving of such EBI transfers with transfers originating from the Direct Drive engine is con-
trolled via the INTERLEAVE field in the EBI_TFTCTRL register. Interleaving can be limited to occur only during the vertical and horizon-
tal porch intervals by setting the INTERLEAVE field to PORCH. EBI accesses outside the porch intervals while INTERLEAVE is set to



EFM32WG Reference Manual
EBI - External Bus Interface

PORCH can cause the insertion of a high number of wait states on the AHB bus. In case the TFT dot clock EBI_DCLK is relatively slow
compared to the external device access time, interleaving can also be allowed during the active interval of the TFT by setting the IN-
TERLEAVE bitfield to ONEPERDCLK or UNLIMITED. In both cases interleaving during the porch intervals is unlimited as it is when the
PORCH setting is used. If INTERLEAVE is set to ONEPERDCLK then at most 1 EBI access is inserted per EBI_DCLK period in the
active display interval at the point immediately after the pixel transfer. Wait states are inserted on the AHB bus while waiting for this
insertion point. The access time of such an interleaved transfer should be guaranteed by software to fit in the free interval between pixel
transfers as indicated in Figure 14.39 EBI TFT Pixel Timing on page 274. If INTERLEAVE is set to UNLIMITED, which is the default,
then there are no restrictions on performing EBI transactions during Direct Drive operation. Although transactions related to Direct Drive
have priority over other EBI transactions, jitter on the EBI_DCLK can be introduced in case an EBI transaction is ongoing while the
Direct Drive engine wants to insert its next transaction. In case the programmed EBI_DCLK period can not be met, the DDJIT interrupt
flag in the EBI_IF register is set and the EBI_DCLK period is stretched to accommodate the delayed pixel data.

Note: If INTERLEAVE is limited to PORCH only and zero porch sizes are programmed in the EBI_TFTHPORCH and
EBI_TFTVPORCH registers, then no slots are left open for interleaving traffic and therefore interleaving EBI accesses can never finish.

14.3.16.1 Direct Drive from Internal Memory

Any internal memory can be used as the frame source location for Direct Drive. Direct Drive display from internal memory is started by
setting the DD bitfield in the EBI_TFTCTRL register to INTERNAL. The TFT controller indicates that the pixel buffer EBI_TFTDD is
empty and needs to be filled by raising the corresponding DMA request. This DMA request is initially set and it is cleared when
EBI_TFTDD is written. It is set again once the pixel data has been transferred to the display. One DMA request is generated for each
visible pixel. The Direct Drive engine will automatically align the data written to EBI_TFTDD according to the setup and hold require-
ments with respect to EBI_DCLK and send it out to the TFT via the EBI_AD lines. Whether the EBI_TFTDD buffer is full or empty is
also signaled by the DDEMPTY interrupt flag in the EBI_IF register and by the TFTDDEMPTY status bit in the EBI_STATUS register.
Given the relatively low performance of using software polling and interrupts compared to using DMA, these non-DMA mechanisms are
only advised for very low pixel rates. If pixel data is not provided in time the EBI_DCLK will be stretched to accommodate the late pixel
data and the Direct Drive Jitter interrupt flag DDJIT in the EBI_IF register is set. The following figure shows the setup for Direct Drive
from internal memory.

Device

Memory

EBI_AD DATA
EBI_DCLK

EBI_DATAEN

EBI_VSYNC, EBI_HSYNC
EBI_TFTCSn

TFT

YYVVY

Figure 14.34. EBI TFT Direct Drive from Internal Memory

silabs.com | Building a more connected world. Rev. 1.1 | 268




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.16.2 Direct Drive from External Memory

Direct Drive can also use an external memory bank as the frame source location. The used bank is defined in the BANKSEL bitfield of
the EBI_TFTCTRL register. Direct Drive display from external memory is started by setting the DD bitfield in the EBI_TFTCTRL register
to EXTERNAL. Data is then streamed directly from the external memory to the TFT. The following figures show the setup for Direct
Drive from external memory when using non-multiplexed and multiplexed address and data lines.

Control )} External

EBI_A ADDR Memory
P Device
e DATA
EBI_AD (
p
- DATA -
EBI_DCLK
= P
EBI_DATAEN > TET
EBI_VSYNC, EBI_HSYNC >
EBI_TFTCSn
= -

Figure 14.35. EBI TFT Direct Drive from External Memory (Non-Multiplexed Address/Data)

Control>
EBI_ALE
External
> ADDR Memory
Device
> DATA
EBILAD| .
b |
p- DATA >
EBI_DCLK
= -
EBI_DATAEN > TFT
EBI_VSYNC, EBI_HSYNC >
EBI_TFTCS
_ n >

Figure 14.36. EBI TFT Direct Drive from External Memory (Multiplexed Address/Data)

The start address for the frame transfer is defined in the EBI_TFTFRAMEBASE register. The Direct Drive address is automatically in-
cremented for each visible pixel and it does therefore not depend on the programmed porch sizes. The address increment depends on
the WIDTH bitfield in the EBI_TFTCTRL register. The increment per visible pixel is 1 if the WIDTH bitfield in the EBI_TFTCTRL register
is programmed to BYTE and it is 2 if WIDTH is programmed to HALFWORD. Additionally a horizontal stride is added to the Direct Drive
address at the end of each visible line. This stride can be programmed in the HSTRIDE bitfield of the EBI_TFTSTRIDE register. The
first visible pixel always corresponds to the address defined in the EBI_TFTFRAMEBASE register. On either the vertical or horizontal
synchronization event, as defined in the FBCTRIG bitfield of the EBI_TFTCTRL register, the EBI_TFTFRAMEBASE register is copied
into an internal frame base buffer (FBC). This allows software to reprogram the EBI_TFTFRAMEBASE register based on VSYNC or
HSYNC interrupts, which in turn can be used to for example implement double buffering or scrolling schemes. The HSYNC and VSYNC
interrupts are generated at the same time as the local copy of EBI_TFTFRAMEBASE is made. If software reprograms EBI_TFTFRA-
MEBASE in the interrupt service routine, then the new value will only be used for address generation of the next line (in case FBCTRIG
equals HSYNC) or the next frame (in case FBCTRIG equals VSYNC). For example, when FBCTRIG equals HSYNC and the interrupt
service routine triggered by the HSYNC interrupt reads VCNT as 0, then a software update of EBI_TFTFRAMEBASE will take effect for
Direct Drive addresses of the line which corresponds to a VCNT value of 1. Note that the EBI_TFTSTRIDE register is not relevant in
case the FBCTRIG is set to HSYNC as the HSYNC events reloads the internal frame base copy (FBC) with EBI_TFTFRAMEBASE at
the start of each line. The Direct Drive address computation is summarized in the following figure.

silabs.com | Building a more connected world. Rev. 1.1 | 269




EFM32WG Reference Manual
EBI - External Bus Interface

I
(©]
e
(@)
o
m
>

P0,0) | P(1,0) | P20 | P@3,0) P(HSZ,0)

PO,1) | P(1,1) | P@1) | P@31) P(HSZ,1)

P02 | P(1,2) | P22 | P@32) P(HSZ,2)
HBPORCH HFPORCH
b E— Visible Display o EE—

P(0,VSZ) | P(2,VSZ) | P(2,VSZ) | P(3,VSZ) | P(HSZ,VSZ)

I
O
e
(@)
o
L
>

FBCTRIG = VSYNC:
Local frame base copy FBC gets assigned with EBI_TFTFRAMEBASE on every EBI_VSYNC stobe.

Direct Drive Address for pixel P(x,y) = FBC + (x * PSZ) + (y * ((PSZ * (HSZ + 1)) + HSTRIDE))

FBCTRIG = HSYNC:
Local frame base copy FBC gets assigned with EBI_TFTFRAMEBASE on every EBI_HSYNC stobe.

Direct Drive Address for pixel P(x,y) = FBC + (x * PSZ)

The address increment per pixel (PSZ) is 1 if the WIDTH bitfield in EBI_TFTCTRL is programmed to BYTE and 2 if the
WIDTH bitfield is programmed to HALFWORD.

Figure 14.37. EBI Direct Drive Address

Note: In case that the memory bank used for external Direct Drive is defined as 16-bit wide, then the Direct Drive address is internally
shifted one bit to the right before being output on the EBI_AD or EBI_A lines.

silabs.com | Building a more connected world. Rev. 1.1 | 270




EFM32WG Reference Manual
EBI - External Bus Interface

14.3.17 Alpha Blending and Masking

Automatic alpha blending and masking can be performed on AHB data written to or via the EBI. Alpha blending combines a foreground
color with a background color into a new blended color and is further described in 14.3.17.1 Alpha Blending. Masking is a mechanism to
suppress writes matching a specific color. It is used to preserve the background color and is further described in 14.3.17.2 Masking.
Masking, if enabled, is applied before alpha blending as shown in the following figure. Masking and alpha blending can be used for both
internal and external data transfers.

v

EBI_TFTMASK EBI_TFTPIXELO

AHB WDATA

v v

EBI_TFTALPHA EBI_TFTPIXEL1

external

Mask
Check

mask match
COLOR1SRC

COLORO COLOR1 ’

Alpha Blend

blend

mask match
»
4
EBI_TFTPIXEL
EBI_AD EBI_AD

external = (MASKBLEND == EMASK) or (MASKBLEND == EALPHA) or
(MASKBLEND == EMASKEALPHA)

blend = (MASKBLEND == IALPHA) or (MASKBLEND == EALPHA)

Figure 14.38. EBI TFT Alpha Blending and Masking

silabs.com | Building a more connected world. Rev. 1.1 | 271




EFM32WG Reference Manual

14.3.17.1 Alpha Blending

Automatic alpha blending can be performed on AHB data written to or via the EBI. Alpha blending can be enabled for either internal or
external writes by setting the MASKBLEND bitfield in the EBI_TFTCTRL register. Internal writes are writes to the internal
EBI_TFTPIXELDO register. External writes are writes to the external device attached to the bank defined in the BANKSEL bitfield of the
EBI_TFTCTRL register. Alpha blending works on two data items: a foreground Color0 = {R0, GO, B0} and a background Color1 = {R1,
G1, B1}. These data items are encoded in either 565 RGB or 555 RGB format as defined in the RGBMODE bitfield of the
EBI_TFTCTRL register. In case that the 555 RGB format is used, only the 15 least significant bits of Color0 and Color1 are used for the
alpha blending operation itself. The most significant bit of the foreground Color0 is passed on unmodified as the most significant bit of
the alpha blending result. Alpha blending is performed according to the following formula:

AlphaBlend(Color0, Color1) = (R0 G0 BO) x EBI TFTALPHA) + ((;;16 ,G1, B1) x (256 — EBI_TFTALPHA))

The 9-bit alpha blending factor is defined in the EBI_TFTALPHA register. The maximum allowed value for EBI_TFTALPHA is 256. An
alpha value of 0 corresponds to a fully transparent color, whereas an alpha value of 256 corresponds to a fully opaque color. The RGB
Color0 data is taken from either the internal write data (written to EBI_TFTPIXELO) or from the external write data (written to bank
BANKSEL). The Color0 source selection is based on the MASKBLEND bitfield of the EBI_TFTCTRL register. Internal write data is used
for MASKBLEND settings equal to IMASK, IALPHA, or IMASKIALPHA. External write data is used for MASKBLEND settings equal to
EMASK, EALPHA, or EMASKEALPHA. The RGB data for Color1 is read from either the BANKSEL memory bank or from the
EBI_TFTPIXEL1 register as defined in the COLOR1SRC bitfield of the EBI_TFTCTRL register. The alpha blended result will be written
to the BANKSEL memory bank for external writes or to the EBI_TFTPIXEL register for internal writes. For transactions involving an
external memory device, the automatic transaction translation rules as described in 14.3.11 Data Access Width apply. For example, 1
32-bit wide AHB write to a 16-bit wide external memory can be used to automatically perform 2 16-bit alpha blending operations into
external memory. Three configurations of data source and destination are supported as described next.

In-place alpha blending into external memory is performed by writing RGB data D to address A in bank BANKSEL with COLOR1SRC
set to MEM and MASKBLEND set to EMASK, EALPHA, or EMASKEALPHA. Note that in this case the EBI automatically translates the
AHB write transaction into a read-modify-write sequence for the external memory.

Memory[A] = AlphaBlend(D, Memory[A])

Alpha blending into external memory with a Color1 from register is performed by writing RGB data D to address A in bank BANKSEL
with COLOR1SRC set to PIXEL1 and MASKBLEND set to EMASK, EALPHA, or EMASKEALPHA:

Memory[A] = AlphaBlend(D, EBI_TFTPIXEL1)

Internal alpha blending into register EBI_TFTPIXEL is performed by writing RGB data D to EBI_TFTPIXELO with COLOR1SRC set to
PIXEL1 and MASKBLEND set to IMASK, IALPHA, or IMASKEALPHA. This alpha blending interface is intended for use by both the
Cortex-M4 and the DMA controller. For DMA operation three DMA requests are generated. One DMA request indicating that
EBI_TFTPIXELO requires new data, one DMA request indicating that EBI_TFTPIXEL1 requires new data, and one DMA request indi-
cating that new blended data is available in EBI_TFTPIXEL. The write into EBI_TFTPIXELO triggers the alpha blending operation. If
software wants to reprogram EBI_TFTPIXEL1, then this should be done before the EBI_TFTPIXELO write, which triggers the alpha
blending. The status of the internal alpha blending interface can also be read via the TFTPIXELOEMPTY, TFTPIXEL1EMPTY, and
TFTPIXELFULL bits in the EBI_STATUS register.

EBI_TFTPIXEL = AlphaBlend(EBI_TFTPIXELO, EBI_TFTPIXEL1)



EFM32WG Reference Manual
EBI - External Bus Interface

14.3.17.2 Masking

The masking feature can be used to suppress writes. Instead of the write data, the original background color of a pixel is kept. Masking
is supported for writes to an external device and for writes to internal register EBI_TFTPIXELO. The 16-bit data value corresponding to
the write data to be masked is defined in the EBI_TFTMASK register. Masking is always based on 16-bit data and it does not depend
on the RGB mode defined in the RGBMODE bitfield of the EBI_TFTCTRL register. For transactions involving an external memory de-
vice, the automatic transaction translation rules as described in 14.3.11 Data Access Width apply. For example, 1 32-bit wide AHB write
to a 16-bit wide external memory can be used to perform masking operations on both 16-bit transactions to the external device. Mask-
ing can for example be used when drawing an icon with rounded corners into an external frame buffer. Such an icon can be written to
the frame buffer using a 2-dimensional copy action. If the color of a pixel outside the rounded corners is set to match the value defined
in the EBI_TFTMASK register, then such a matching data transfer is suppressed. The resulting image in the frame buffer will keep its
original background around the corners of the icon.

External masking is enabled by setting the EMASK bit in the EBI_TFTCTRL register to 1. If enabled, writes to the memory bank defined
in the BANKSEL bitfield of the EBI_TFTCTRL register are suppressed in case the write data matches the value in EBI_TFTMASK.

Internal masking is enabled by setting the IMASK bit in the EBI_TFTCTRL register to 1. If enabled and EBI_TFTPIXELO is written with
data matching EBI_TFTMASK, then the background color from EBI_TFTPIXEL1 is copied into EBI_TFTPIXEL. If enabled and
EBI_TFTPIXELO is written with data not matching EBI_TFTMASK, then the color from EBI_TFTPIXELO (possibly alpha blended with
EBI_TFTPIXEL1) is written into EBI_TFTPIXEL. The three DMA requests and EBI_STATUS bits as described for internal alpha
blending also apply for internal masking.

silabs.com | Building a more connected world. Rev. 1.1 | 273




EFM32WG Reference Manual

14.3.18 Direct Drive Timing

The timing definition for operating a TFT display in Direct Drive mode depends on where the frame buffer source is located. In case
internal memory is used as source, then only the TFT timing as defined in the EBI_TFTTIMING register is relevant. In case external
memory is used as the source memory, then both the timing parameters of the TFT display and the timing parameters of the memory
bank defined in the BANKSEL bitfield of the EBI_TFTCTRL register are relevant.

The minimum dot clock, EBI_DCLK, period is defined in the DCLKPERIOD bitfield of the EBI_TFTTIMING register. This parameter has
a minimum duration of 1 cycle, which is set by HW, and writing a value n to this bitfield results in an extended duration of 1+n cycles. At
cycle 0 (and then periodically with period DCLKPERIOD + 1) the EBI_DCLK inactive edges are generated. At the cycle defined in the
TFTSTART bitfield of the EBI_TFTTIMING the TFT Direct Drive transaction is started. The TFTSTART bitfield can be used to define the
duty cycle of the EBI_DCLK. This parameter has a minimum duration of 1 cycle, which is set by HW, and writing a value n to this bitfield
results in an extended duration of 1+n cycles. After performing the required actions to produce the required TFT pixel data on the
EBI_AD lines, the TFT transaction will pass through its TFTSETUP and TFTHOLD states as indicated in the first following figure. In this
figure, the duration of the states in the TFT transaction is defined by the corresponding uppercase name above the state and it is ex-
pressed in internal clock cycles. The TFT setup and hold times are set in the TFTHOLD and TFTSETUP bitfields in the EBI_TFTTIM-
ING register. Writing a value m to one of these bitfields results in a duration of the corresponding state of m internal clock cycles. If
these parameters are set to 0, it effectively means that the state is skipped. The TFT setup and hold timing is with respect to the active
edge of EBI_DCLK as defined in the DCLKPOL bitfield in the EBI_TFTPOLARITY register. The TFT setup and hold timing applies to all
TFT signals: EBI_AD, EBI_DATAEN, EBI_VSYNC, EBI_HSYNC and EBI_TFTCSn. The active EBI_DCLK edge is generated in be-
tween the TFTSETUP and TFTHOLD states. The TFTSTART bitfield therefore impacts the position of the active EBI_DCLK edge. The
later the TFT transaction is started, the later it will transition from its TFTSETUP to TFTHOLD state. If needed, the EBI_DCLK period is
automatically stretched beyond the DCLKPERIOD to complete the TFT transaction. EBI_DCLK period stretching occurs when the TFT
transaction does not complete in the specified time, which in turn can occur because of the following reasons:

» Specified timing parameters are conflicting. This can for example happen if the TFT setup plus hold time is programmed to be longer
than the EBI_DCLK period.

» TFT transaction is delayed by an ongoing EBI transaction. This transaction interference can be controlled by setting the transaction
interleaving strategy in the INTERLEAVE bitfield of the EBI_TFTCTRL register.

» TFT transaction data is not delivered in time. For internal Direct Drive this is caused by the Cortex-M4 or DMA not delivering the
data in time. For external Direct Drive the timing parameters defining the external device read access might not allow the TFT trans-
action to complete in time.

In case the specified DCLK_PERIOD is not met, the DDJIT interrupt flag in the EBI_IF register will be set.

DCLKPERIOD DCLKPERIOD
(1,2,3,..) (1,2,3,..)
EBI_DCLK \ \
EBIAD[15:0] 7 PIXEL N X z PIXEL N+1 z
TFTSETUP | TFTHOLD TFTSETUP | TFTHOLD
0,1,2,..) 0,1,2,..) 0,1,2,..) 0,1,2,..)

Figure 14.39. EBI TFT Pixel Timing

When driving the TFT from internal memory, the TFT timing is defined in the EBI_TFTTIMING register as shown in the following figure.
Before each TFT transaction to the visible part of the display, the EBI will request new pixel data via an interrupt or DMA request. At the
time specified in the TFTSTART bitfield of the EBI_TFTTIMING register (and when pixel data has been provided), the TFT transaction
will start. For internal Direct Drive the TFT state machine will place the pixel data on the EBI_AD lines during the TFTWDATA state after
which the state machine will pass through the programmable TFTSETUP and TFTHOLD states.

TFTSTART TFTWDATA TFTSETUP TFTHOLD
(1,2,3,.) ™) 0,1,2,..) 0,1,2,..)
EBI_AD[15:0] z DATA[15:0] z

EBI_DCLK

Figure 14.40. EBI TFT Direct Drive Internal Timing

When the TFT is driven directly from an external memory, the timing definitions for the bank defined in the BANKSEL bitfield of the
EBI_TFTCTRL register and those for the TFT are both used by Direct Drive to generate transactions satisfying the requirements of both
the memory device and the TFT display. The timing definition for the external memory device should be programmed according to its
requirements independent of the TFT timing. The following figure shows an example of the Direct Drive engine accessing an external



EFM32WG Reference Manual

memory using the multiplexed 16-bit data, 16-bit address (D16A16ALE) mode. The TFTSETUP and TFTHOLD states are now en-
closed within the read transaction states of the chosen mode. The external device read transaction is started at a time as defined by
TFTSTART. The read strobe on EBI_REn is automatically extended in duration to satisfy the TFT setup and hold requirements defined
in the TFTSETUP and TFTHOLD bitfields.

TFTSTART ADDRSETUP  RDSETUP RDSTRB TFTSETUP  TFTHOLD RDHOLD
(1,2,3,.) (,2,3,.) ©,1,2,.) (1,2,3,.) ©.1,2,.) ©,1,2,.) ©1,2,.)
EBI_AD[15:0] ADDRI[16:1] z X DATA[15:0] z
EBLALE |
EBI_CSn s
EBI_REn
EBI_DCLK

Figure 14.41. EBI TFT Direct Drive External Timing

The timing parameters related to the horizontal timing are shown in the following figure. These parameters are defined as pixel or
EBI_DCLK counts. The horizontal porch widths are defined in the HBPORCH and HFPORCH bitfields of the EBI_TFTHPORCH regis-
ter. A porch which has its width parameter programmed to 0 will be skipped. The width and start position of the horizontal synchroniza-
tion pulse EBI_HSYNC is programmed via the HSYNC and HSYNCSTART bitfields in the EBI_TFTHPORCH register.

HBPORCH HSZ HFPORCH

0,1,2,..) (1,2,3,..) 0,1,2,..)
EBI_AD[15:0] HORIZONTAL BACK PORCH o X Pt X X Pusz |X HORIZONTAL FRONT PORCH
EBI_DATAEN

EBI_HSYNC
HSYNCSTART
©,1,2,..)
HSYNC

(1,2,3,..)

Figure 14.42. EBI TFT Horizontal Porch Timing

The timing parameters related to the vertical timing are shown in the following figure. These parameters are defined as line or
EBI_HSYNC counts. The vertical porch widths are defined in the VBPORCH and VFPORCH bitfields of the EBI_TFTVPORCH register.
A porch which has its width parameter programmed to 0 will be skipped. The width of the vertical synchronization pulse EBI_VSYNC is
programmed via the VSYNC bitfield in the EBI_TFTVPORCH register.

VBPORCH vsz VFPORCH
©,1,2,..) (1,2,3,..) ©,1,2,..)

LINES VERTICAL BACK PORCH o X U X X Lvsz VERTICAL FRONT PORCH
EBI_HSYNC |\ / \_/ \ - \_/ — \ /
EBI_VSYNC |

VSYNC |

(1,2,3,..)

Figure 14.43. EBI TFT Vertical Porch Timing

The active edge of the EBI_DCLK and the other TFT related signals are by default driven off the positive edge of the internal clock. The
edges of the EBI_DCLK can also be driven off the negative edge of the internal clock by setting the SHIFTDCLK bitfield in the
EBI_TFTCTRL register to 1. The Direct Drive engine then shifts the active DCLK edge 1/2 an internal cycle into the TFTHOLD state.
Effectively the length of TFTSETUP state is increased by 1/2 an internal cycle, whereas the length of the TFTHOLD state is decreased
by 1/2 an internal cycle. SHIFTDCLK should not be set if TFTHOLD is set to zero cycles. The effect of the SHIFTDCLK bitfield is shown
in the following figures for a setup using the falling EBI_DCLK clock as its active edge.



EFM32WG Reference Manual

INTERNAL CLOCK , —\_ —\_ \ /

EBI_DCLK
EBI_AD[15:0] PIXEL N

TFTSETUP TFTHOLD

0,1,2,..) 0,1,2,..)

Figure 14.44. EBI TFT Pixel Timing: EBI_DCLK driven off Positive Edge Internal Clock

INTERNAL CLOCK —\_ —\_

EBI_DCLK

EBI_AD[15:0] PIXEL N

TFTSETUP TFTSETUPHOLD TFTHOLD
0,1,2,..) (% + %) 0,1,2,..)

Figure 14.45. EBI TFT Pixel Timing: EBI_DCLK driven off Negative Edge Internal Clock

14.3.19 Control Signal Polarity

It is possible to individually configure the control signals to be active high/low by setting or clearing the appropriate bits in the EBI_PO-
LARITY register. When the ITS bitfield in the EBI_CTRL register is set to 0, the polarities defined in the EBI_POLARITY register applies
to all 4 memory banks. When ITS is set to 1 each memory bank uses an individual polarity definition. In this case register EBI_POLARI-
TY only applies to bank 0. Timing for bank n is then defined in the EBI_POLARITYn register.

The TFT control signals can also be individually configured to be active high/low by setting or clearing the appropriate bits in the
EBI_TFTPOLARITY register.

14.3.20 Pin Configuration

In order to give the EBI access to the external pins of the EFM32WG, the GPIO must be configured accordingly. The lines must be set
to Push-Pull, which is described in detail in the GPIO section.

All the EBI pins are enabled in the EBI_ROUTE register. The EBI_AD, EBI_WEn and EBI_REn pins are all enabled by the EBIPEN bit,
the EBI_CSn pins are enabled by the corresponding CSxPEN bit, the EBI_ALE pin is enabled by the ALEPEN bit , the EBI_BL pins are
enabled by the BLPEN bit, the EBI_NANDWERN and EBI_NANDRER pins are enabled by the NANDPEN bit, the TFT pins EBI_DCLK,
EBI_VSYNC and EBI_HSYNC are all enabled by the TFTPEN bit, the EBI_DATAEN pin is enabled by the DATAENPEN bit, the
EBI_CSTFT pin is enabled by the CSTFTPEN bit, the EBI_A pins are enabled by the ALB and APEN bitfields, and the EBI_ARDY pin is
enabled by the ARDYPEN bit of the EBI_ROUTE register.

For some of the EBI pins, alternative pin locations can be chosen by setting the LOCATION bitfield in the EBI_ROUTE register. These
alternative locations are specified in the datasheet.



EFM32WG Reference Manual

14.3.21 Interrupts
The TFT controller has 6 separate interrupt flags (VSYNC, HSYNC, VBPORCH, VFPORCH, DDEMPTY, DDJIT) in EBI_IF.

The VSYNC, HSYNC, VBPORCH, and VFPORCH interrupt flags indicate various synchronization points during the display of a frame.
The following figure shows the timing of the VSYNC, HSYNC, VBPORCH, and VFPORCH interrupt flags. The VSYNC and HSYNC
flags are set at the beginning of a frame and at the beginning of a line respectively. The VBPORCH and VFPORCH flags are set at the
end of the vertical back porch and at the beginning of the vertical front porch respectively (provided that the related porch is defined
with a non-zero width).

VSYNC, HSYNC «—
HSYNC ¢—— 5
HSYNC —— %:
o
m
. - - »VBPORCH
A
HSZ+1
-t -
HBPORCH - HFPORCH
——P & P
%]
>

HSYNC  / Visible Display
VSYNC, HSYNC ¢—— -
HSYNC ¢—— %)
HSYNC ¢—— %
o
<

HSYNC «—

Figure 14.46. EBI TFT Interrupts

The DDEMPTY interrupt flag indicates that the EBI_TFTDD register is empty during Direct Drive from internal memory. The DDJIT in-
terrupt flag indicates that the DCLKPERIOD is not met during Direct Drive operation.

Setting one of the interrupt flags will result in an EBI interrupt if the corresponding interrupt enable bit is set in the EBI_IEN register. All
generated interrupts from the EBI will activate the same interrupt vector when enabled.

14.3.22 DMA Request

In internal Direct Drive mode, when the DD bitfield in EBI_TFTCTRL register is INTERNAL, the TFT controller sends out a DMA request
when the pixel buffer EBI_TFTDD is empty and needs to be filled. This request is initially set and it is cleared when EBI_TFTDD is
written. It is set again once the pixel data has been transferred to the display. One DMA request is generated for each visible pixel.

The masking and alpha blending hardware uses three DMA requests related to the status of thee internal masking and alpha blending
registers EBI_TFTPIXELO, EBI_TFTPIXEL1, and EBI_TFTPIXEL. The DMA request for EBI_TFTPIXELO indicates that new data can
be written to be used for internal masking or alpha blending. This request is initially set and it is cleared when EBI_TFTPIXELO is writ-
ten. The request is set again when EBI_TFTPIXEL is read. The DMA request for EBI_TFTPIXEL1 is initially set and it is cleared when
EBI_TFTPIXEL1 is written. Only when both EBI_TFTPIXELO and EBI_TFTPIXEL1 have been written, will a EBI_TFTPIXEL read set
the DMA request for EBI_TFTPIXEL1 again. The DMA request for EBI_TFTPIXEL indicates whether new masked and/or blended data
is available for reading in EBI_TFTPIXEL or not. It is set after completion of internal masking and alpha blending in reaction to a write to
EBI_TFTPIXELDO. It is cleared when EBI_TFTPIXEL is read.



EFM32WG Reference Manual
EBI - External Bus Interface

14.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 |EBI_CTRL RW Control Register

0x004 EBI_ADDRTIMING RwW Address Timing Register
0x008 |EBI_RDTIMING RW Read Timing Register
0x00C |EBI_WRTIMING RW Write Timing Register
0x010 EBI_POLARITY RwW Polarity Register

0x014 EBI_ROUTE RwW I/0O Routing Register

0x018 EBI_ADDRTIMING1 RwW Address Timing Register 1
0x01C |EBI_RDTIMING1 RW Read Timing Register 1
0x020 |EBI_WRTIMING1 RW Write Timing Register 1
0x024 EBI_POLARITY1 RwW Polarity Register 1

0x028 EBI_ADDRTIMING2 RwW Address Timing Register 2
0x02C |EBI_RDTIMING2 RwW Read Timing Register 2
0x030 |EBI_WRTIMING2 RW Write Timing Register 2
0x034 |EBI_POLARITY2 RW Polarity Register 2

0x038 |EBI_ADDRTIMING3 RW Address Timing Register 3
0x03C |EBI_RDTIMING3 RW Read Timing Register 3
0x040 EBI_WRTIMING3 RwW Write Timing Register 3
0x044 EBI_POLARITY3 RW Polarity Register 3

0x048 EBI_PAGECTRL RwW Page Control Register
0x04C |EBI_NANDCTRL RW NAND Control Register
0x050 EBI_CMD WA1 Command Register

0x054 EBI_STATUS Status Register

0x058 EBI_ECCPARITY ECC Parity register

0x05C |EBI_TFTCTRL RW TFT Control Register
0x060 |EBI_TFTSTATUS R TFT Status Register

0x064 EBI_TFTFRAMEBASE RwW TFT Frame Base Register
0x068 |EBI_TFTSTRIDE RW TFT Stride Register

0x06C | EBI_TFTSIZE RW TFT Size Register

0x070 EBI_TFTHPORCH RwW TFT Horizontal Porch Register
0x074 EBI_TFTVPORCH RwW TFT Vertical Porch Register
0x078 |EBI_TFTTIMING RW TFT Timing Register

0x07C |EBI_TFTPOLARITY RW TFT Polarity Register
0x080 EBI_TFTDD RW TFT Direct Drive Data Register
0x084 EBI_TFTALPHA RwW TFT Alpha Blending Register
0x088 |EBI_TFTPIXELO RW TFT Pixel 0 Register

silabs.com | Building a more connected world.

Rev.1.1 | 278




EFM32WG Reference Manual
EBI - External Bus Interface

Offset Name Type Description

0x08C |EBI_TFTPIXEL1 RW TFT Pixel 1 Register

0x090 EBI_TFTPIXEL R TFT Alpha Blending Result Pixel Register
0x094 EBI_TFTMASK RW TFT Masking Register

0x098 EBI_IF R Interrupt Flag Register

0x09C |EBI_IFS WA1 Interrupt Flag Set Register

0x0A0 EBI_IFC (R)W1 Interrupt Flag Clear Register

0x0A4 EBI_IEN RwW Interrupt Enable Register

silabs.com | Building a more connected world. Rev. 1.1 | 279




EFM32WG Reference Manual
EBI - External Bus Interface

14.5 Register Description

14.5.1 EBI_CTRL - Control Register

Offset Bit Position
0000 5|8 /R/RNIQIKLI RN TR 2SI L T2 20w ~oo< oo~ o
Reset o|o o|lo|o|o|o|o|lo|o|o|o|o|o o ooooog g % g
(%) (%] ()
gzgzgzgzmw‘_ z|z|z|z
Name | £ CEESESE BB ANSYTe B8 b o
Sle s, 2BBRBRRRBS g 02222 8 S8 o ¢
<|E oo o < <|<|<|<|<|<|<|Z2|Z2|Z2|Z2|d|d|dd| = = = =
Bit Name Reset Access Description
31 ALTMAP 0 RW Alternative Address Map Enable
This field enables or disables the alternative (256 MB per bank) address map.
30 ITS 0 RwW Individual Timing Set, Line Polarity and Mode Definition Enable
This field enables or disables individual timing sets, line polarities and modes per bank.
29:28 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
27 BL3 0 RW Byte Lane Enable for bank 3
Enables or disables the Byte Lane functionality for bank 3. Ignored when ITS = 0.
26 BL2 0 RW Byte Lane Enable for bank 2
Enables or disables the Byte Lane functionality for bank 2. Ignored when ITS = 0.
25 BL1 0 RwW Byte Lane Enable for bank 1
Enables or disables the Byte Lane functionality for bank 1. Ignored when ITS = 0.
24 BL 0 RW Byte Lane Enable for bank 0
EnSains or disables the Byte Lane functionality for bank 0. Applies to all banks when ITS = 0. Applies to only bank 0 when
ITS=1.
23 ARDYTO3DIS 0 RW ARDY Timeout Disable for bank 3
Enables or disables the ARDY timeout functionality for bank 3. The timeout value is 32 internal clock cycles. Ignored when
ITS=0.
22 ARDY3EN 0 RW ARDY Enable for bank 3
Enables or disables the ARDY functionality for bank 3. Ignored when ITS = 0.
21 ARDYTO2DIS 0 RW ARDY Timeout Disable for bank 2
Enables or disables the ARDY timeout functionality for bank 2. The timeout value is 32 internal clock cycles. Ignored when
ITS=0.
20 ARDY2EN 0 RW ARDY Enable for bank 2
Enables or disables the ARDY functionality for bank 2. Ignored when ITS = 0.
19 ARDYTO1DIS 0 RW ARDY Timeout Disable for bank 1

Enables or disables the ARDY timeout functionality for bank 1. The timeout value is 32 internal clock cycles. Ignored when
ITS =0.

silabs.com | Building a more connected world. Rev. 1.1 | 280




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description
18 ARDY1EN 0 RW ARDY Enable for bank 1
Enables or disables the ARDY functionality for bank 1. Ignored when ITS = 0.

17 ARDYTODIS 0 RW ARDY Timeout Disable

Enables or disables the ARDY timeout functionality. The timeout value is 32 internal clock cycles. Applies to all banks when
ITS = 0. Applies to only bank 0 when ITS = 1.

16 ARDYEN 0 RW ARDY Enable
Enables or disables the ARDY functionality. Applies to all banks when ITS = 0. Applies to only bank 0 when ITS = 1.

15 NOIDLE3 0 RW No idle cycle insertion on bank 3.

Enables or disables idle state insertion between transfers for bank 3. Ignored when ITS = 0.

14 NOIDLE2 0 RwW No idle cycle insertion on bank 2.

Enables or disables idle state insertion between transfers for bank 2. Ignored when ITS = 0.

13 NOIDLE1 0 RW No idle cycle insertion on bank 1.

Enables or disables idle state insertion between transfers for bank 1. Ignored when ITS = 0.

12 NOIDLE 0 RW No idle cycle insertion on bank 0.

Enables or disables idle state insertion between transfers for bank 0. Applies to all banks when ITS = 0. Applies to only
bank 0 when ITS = 1.

11 BANKS3EN 0 RW Bank 3 Enable

This field enables or disables bank 3.

10 BANK2EN 0 RW Bank 2 Enable

This field enables or disables bank 2.

9 BANK1EN 0 RW Bank 1 Enable

This field enables or disables bank 1.

8 BANKOEN 0 RW Bank 0 Enable

This field enables or disables bank 0.

7:6 MODE3 0x0 RW Mode 3

This field sets the access mode the EBI will use for interfacing devices on bank 3. Ignored when ITS = 0.

Value Mode Description

0 D8A8 EBI_AD drives 8 bit data, 8 bit address, ALE not used. Extended ad-
dress bits can be enabled on EBI_A in the EBI_ROUTE register.

1 D16A16ALE EBI_AD drives 16 bit data, 16 bit address, ALE is used for address
latching. Extended address bits can be enabled on EBI_A in the
EBI_ROUTE register.

2 D8A24ALE EBI_AD drives 8 bit data, 24 bit address, ALE is used for address
latching. Extended address bits can be enabled on EBI_A in the
EBI_ROUTE register.

3 D16 EBI_AD drives 16 bit data, ALE not used. Extended address bits can
be enabled on EBI_A in the EBI_ROUTE register.

5:4 MODE2 0x0 RW Mode 2

This field sets the access mode the EBI will use for interfacing devices on bank 2. Ignored when ITS = 0.

Value Mode Description

silabs.com | Building a more connected world. Rev. 1.1 | 281




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description
0 D8AS8 EBI_AD drives 8 bit data, 8 bit address, ALE not used. Extended ad-
dress bits can be enabled on EBI_A in the EBI_ROUTE register.
1 D16A16ALE EBI_AD drives 16 bit data, 16 bit address, ALE is used for address
latching. Extended address bits can be enabled on EBI_A in the
EBI_ROUTE register.
2 D8A24ALE EBI_AD drives 8 bit data, 24 bit address, ALE is used for address
latching. Extended address bits can be enabled on EBI_A in the
EBI_ROUTE register.
3 D16 EBI_AD drives 16 bit data, ALE not used. Extended address bits can
be enabled on EBI_A in the EBI_ROUTE register.
3:2 MODE1 0x0 RW Mode 1

This field sets the access mode the EBI will use for interfacing devices on bank 1. Ignored when ITS = 0.

Value Mode Description

0 D8A8 EBI_AD drives 8 bit data, 8 bit address, ALE not used. Extended ad-
dress bits can be enabled on EBI_A in the EBI_ROUTE register.

1 D16A16ALE EBI_AD drives 16 bit data, 16 bit address, ALE is used for address
latching. Extended address bits can be enabled on EBI_A in the
EBI_ROUTE register.

2 D8A24ALE EBI_AD drives 8 bit data, 24 bit address, ALE is used for address
latching. Extended address bits can be enabled on EBI_A in the
EBI_ROUTE register.

3 D16 EBI_AD drives 16 bit data, ALE not used. Extended address bits can
be enabled on EBI_A in the EBI_ROUTE register.

1:0 MODE 0x0 RW Mode

This field sets the access mode the EBI will use for interfacing devices. Applies to all banks when ITS = 0. Applies to only

bank 0 when ITS = 1.

Value Mode Description

0 D8AS8 EBI_AD drives 8 bit data, 8 bit address, ALE not used. Extended ad-
dress bits can be enabled on EBI_A in the EBI_ROUTE register.

1 D16A16ALE EBI_AD drives 16 bit data, 16 bit address, ALE is used for address
latching. Extended address bits can be enabled on EBI_A in the
EBI_ROUTE register.

2 D8A24ALE EBI_AD drives 8 bit data, 24 bit address, ALE is used for address
latching. Extended address bits can be enabled on EBI_A in the
EBI_ROUTE register.

3 D16 EBI_AD drives 16 bit data, ALE not used. Extended address bits can

be enabled on EBI_A in the EBI_ROUTE register.

silabs.com | Building a more connected world.

Rev.1.1 | 282




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.2 EBI_ADDRTIMING - Address Timing Register

Offset Bit Position
X004 |5 I2IRIRNLRIRQYTRIZI2T R I Y 20w~ v o~ o
™ (32}
Reset o 3 3
Access 5 5
o
] )
Lu o) m
Name e T %)
L 12 o
- [m) [m]
< a a
T < <
Bit Name Reset Access Description
31:29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
28 HALFALE 0 RW Half Cycle ALE Strobe Duration Enable
Enables or disables half cycle duration of the ALE strobe in the last ADDRSETUP cycle.
27:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
9:8 ADDRHOLD 0x3 RW Address Hold Time
Sets the number of cycles the address is held after ALE is asserted.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 ADDRSETUP 0x3 RW Address Setup Time

Sets the number of cycles the address is driven onto the ADDRDAT bus before ALE is asserted. If set to 0, 1 cycle is inser-
ted by HW.

silabs.com | Building a more connected world. Rev. 1.1 | 283




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.3 EBI_RDTIMING - Read Timing Register

Offset Bit Position
%008 |5 8IRXNELRIRQN TR LL T2 2 olo~owv voa o
[T
Reset ololo g g g
Access E E E E E 5
[
a5 o
" : : =
Name ol o [ w
O W I [?2] [72]
< x| < o [a] o
oo |T x x x
Bit Name Reset Access Description
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
30 PAGEMODE 0 RwW Page Mode Access Enable
Enables or disables page mode reads.
29 PREFETCH 0 RW Prefetch Enable
Enables or disables prefetching of data from sequential address.
28 HALFRE 0 RW Half Cycle REn Strobe Duration Enable
Enables or disables half cycle duration of the REn strobe in the last RDSTRB cycle.
27:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 RDHOLD 0x3 RW Read Hold Time
Sets the number of cycles CSn is held active after the REn is deasserted. This interval is used for bus turnaround.
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:8 RDSTRB 0x3F RW Read Strobe Time
Sets the number of cycles the REn is held active. After the specified number of cycles, data is read. If set to 0, 1 cycle is
inserted by HW.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 RDSETUP 0x3 RW Read Setup Time

Sets the number of cycles the address setup before REn is asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 284




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.4 EBI_WRTIMING - Write Timing Register

Offset Bit Position
o00C 5 3R &N QRIRIIR22EeRI2d T 20w~ o0w v oo
L
Reset olo g g g
Access E E E E 5
o
2 )] m
N 3 o x 5
ame Sy T %) 0
e 74 14 [i4
s T = = =
Bit Name Reset Access Description
31:30 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
29 WBUFDIS 0 RwW Write Buffer Disable
Enables or disables the write buffer.
28 HALFWE 0 RW Half Cycle WEn Strobe Duration Enable
Enables or disables half cycle duration of the WEn strobe in the last WRSTRB cycle.
27:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 WRHOLD 0x3 RW Write Hold Time
Sets the number of cycles CSn is held active after the WEn is deasserted.
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:8 WRSTRB O0x3F RW Write Strobe Time
Sets the number of cycles the WEn is held active. If set to 0, 1 cycle is inserted by HW.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 WRSETUP 0x3 RW Write Setup Time

Sets the number of cycles the address setup before WEn is asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 285




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.5 EBI_POLARITY - Polarity Register

Offset Bit Position
0010 |58/ XN &L RIRQY TR LL T2 2olon~owv von o
Reset o|lo|lo|o|o|o
Access 5 E 5 5 5 5
o)
.|
o -
Name al>g Q ohle
S RATT oo
Jle |3 |Y wln
m<|< |2 O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 BLPOL 0 RW BL Polarity
Sets the polarity of the EBI_BLn lines.
Value Mode Description
0 ACTIVELOW BLn[1:0] are active low.
1 ACTIVEHIGH BLn[1:0] are active high.
4 ARDYPOL 0 RwW ARDY Polarity
Sets the polarity of the EBI_ARDY line.
Value Mode Description
0 ACTIVELOW ARDY is active low.
1 ACTIVEHIGH ARDY is active high.
3 ALEPOL 0 RW Address Latch Polarity
Sets the polarity of the EBI_ALE line.
Value Mode Description
0 ACTIVELOW ALE is active low.
1 ACTIVEHIGH ALE is active high.
2 WEPOL 0 RW Write Enable Polarity
Sets the polarity of the EBI_WEn and EBI_NANDWER lines.
Value Mode Description
0 ACTIVELOW WEn and NANDWER are active low.
1 ACTIVEHIGH WEn and NANDWER are active high.
1 REPOL 0 RW Read Enable Polarity
Sets the polarity of the EBI_REn and EBI_NANDRER lines.
Value Mode Description
0 ACTIVELOW REn and NANDRER are active low.

silabs.com | Building a more connected world. Rev. 1.1 | 286




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description
1 ACTIVEHIGH REn and NANDRER are active high.
0 CSPOL 0 RW Chip Select Polarity

Sets the polarity of the EBI_CSn line.

Value Mode Description
0 ACTIVELOW CSn is active low.
1 ACTIVEHIGH CSn is active high.

silabs.com | Building a more connected world. Rev. 1.1 | 287




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.6 EBI_ROUTE - I/O Routing Register

Offset Bit Position
0014 5I8RENIQRIRN TR 222 T2 T 20 o~oo oo
Reset g olo|o § g o olo|o|lo|lo|lo|lo|o
z Z E z z
Name 8 EEE o ZEEEEEEZ
S EEe i . z eI
S | 85k % 2 2 22288388
Bit Name Reset Access Description
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
30:28 LOCATION 0x0 RW 1/0 Location
Decides the location of the EBI I/O pins.
Value Mode Description
0 LOCO Location 0
1 LOC1 Location 1
2 LOC2 Location 2
27 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
26 CSTFTPEN 0 RW EBI_CSTFT Pin Enable
When set, the EBI_CSTFT pin is enabled
25 DATAENPEN 0 RW EBI_TFT Pin Enable
When set, the EBI_DATAEN pin is enabled
24 TFTPEN 0 RW EBI_TFT Pin Enable
When set, the EBI_DCLK, EBI_VSYNC and EBI_HSYNC pins are enabled
23 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
22:18 APEN 0x00 RW EBI_A Pin Enable
Selects which non-multiplexed address lines are enabled on EBI_A. The lower bound L is set to 0, 8, 16 or 24 as defined in
the ALB field.
Value Mode Description
0 AO All EBI_A pins are disabled.
5 A5 EBI_A[4:L] pins enabled.
6 A6 EBI_A[5:L] pins enabled.
7 A7 EBI_A[6:L] pins enabled.
8 A8 EBI_A[7:L] pins enabled.
9 A9 EBI_A[8:L] pins enabled.

silabs.com | Building a more connected world. Rev. 1.1 | 288




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description

10 A10 EBI_A[9:L] pins enabled.

11 A11 EBI_A[10:L] pins enabled.
12 A12 EBI_A[11:L] pins enabled.
13 A13 EBI_A[12:L] pins enabled.
14 A14 EBI_A[13:L] pins enabled.
15 A15 EBI_A[14:L] pins enabled.
16 A16 EBI_A[15:L] pins enabled.
17 A17 EBI_A[16:L] pins enabled.
18 A18 EBI_A[17:L] pins enabled.
19 A19 EBI_A[18:L] pins enabled.
20 A20 EBI_A[19:L] pins enabled.
21 A21 EBI_A[20:L] pins enabled.
22 A22 EBI_A[21:L] pins enabled.
23 A23 EBI_A[22:L] pins enabled.
24 A24 EBI_A[23:L] pins enabled.
25 A25 EBI_A[24:L] pins enabled.
26 A26 EBI_A[25:L] pins enabled.
27 A27 EBI_A[26:L] pins enabled.
28 A28 EBI_A[27:L] pins enabled.

17:16 ALB 0x0 RW Sets the lower bound for EBI_A enabling

Sets the lower bound of the EBI_A lines which can be enabled in the APEN field.

Value Mode Description

0 AO Address lines from EBI_A[0] and upwards can be enabled via APEN.

1 A8 Address lines from EBI_A[8] and upwards can be enabled via APEN.

2 A16 Address lines from EBI_A[16] and upwards can be enabled via APEN.

3 A24 Address lines from EBI_A[24] and upwards can be enabled via APEN.
15:13 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.

12 NANDPEN 0 RW NANDRE and NANDWE Pin Enable

When set, the NANDREn and NANDWER Pin pins are enabled

11:8 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
7 BLPEN 0 RW EBI_BL[1:0] Pin Enable

When set, the EBI_BL[1:0] pins are enabled

6 ARDYPEN 0 RW EBI_ARDY Pin Enable
When set, the EBI_ARDY pin is enabled

silabs.com | Building a more connected world. Rev. 1.1 | 289




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description
5 ALEPEN 0 RW EBI_ALE Pin Enable
When set, the EBI_ALE pin is enabled

4 CS3PEN 0 RW EBI_CS3 Pin Enable
When set, the EBI_CS3 pin is enabled

3 CS2PEN 0 RW EBI_CS2 Pin Enable
When set, the EBI_CS2 pin is enabled

2 CS1PEN 0 RW EBI_CS1 Pin Enable
When set, the EBI_CS1 pin is enabled

1 CSOPEN 0 RW EBI_CSO0 Pin Enable

When set, the EBI_CSO pin is enabled

0 EBIPEN 0 RW EBI Pin Enable
When set, the EBI_AD[15:0], EBI_WEn and EBI_RERn pins are enabled

14.5.7 EBI_ADDRTIMING1 - Address Timing Register 1

Offset Bit Position
x018 15 181X RNQQIIQ QIR g2 ¥ e¥t|Qloo|~|lo|jv|t|m|a|-]|o
™ ™
Reset o 3 3
Access E 5 E
o 5
Ly o) m
Name e I %)
w 4 o
- [m) [m]
< a a
T < <
Bit Name Reset Access Description
31:29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
28 HALFALE 0 RW Half Cycle ALE Strobe Duration Enable
Enables or disables half cycle duration of the ALE strobe in the last address setup cycle.
27:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
9:8 ADDRHOLD 0x3 RW Address Hold Time
Sets the number of cycles the address is held after ALE is asserted.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 ADDRSETUP 0x3 RW Address Setup Time

Sets the number of cycles the address is driven onto the ADDRDAT bus before ALE is asserted. If set to 0, 1 cycle is inser-
ted by HW.

silabs.com | Building a more connected world. Rev. 1.1 | 290




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.8 EBI_RDTIMING1 - Read Timing Register 1

Offset Bit Position
x01C |5 /8/RXIN LR IQNTRZ2T L L T2 2olon~owvvon o
[T
Reset ololo g g g
Access E E E E E 5
[
a5 o
" : : =
Name ol o [ w
O W I [?2] [72]
< x| < o [a] o
oo |T x x x
Bit Name Reset Access Description
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
30 PAGEMODE 0 RwW Page Mode Access Enable
Enables or disables page mode reads.
29 PREFETCH 0 RW Prefetch Enable
Enables or disables prefetching of data from sequential address.
28 HALFRE 0 RW Half Cycle REn Strobe Duration Enable
Enables or disables half cycle duration of the REn strobe in the last RDSTRB cycle.
27:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 RDHOLD 0x3 RW Read Hold Time
Sets the number of cycles CSn is held active after the REn is deasserted. This interval is used for bus turnaround.
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:8 RDSTRB 0x3F RW Read Strobe Time
Sets the number of cycles the REn is held active. After the specified number of cycles, data is read. If set to 0, 1 cycle is
inserted by HW.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 RDSETUP 0x3 RW Read Setup Time

Sets the number of cycles the address setup before REn is asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 291




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.9 EBI_WRTIMING1 - Write Timing Register 1

Offset Bit Position
0020 532N QRIQIIR22E|eRI 2N T 206w~ 0w oo
L
Reset olo g g g
Access E E E E 5
o
2 )] m
N 3 o x 5
ame Sy T %) 0
e 74 14 [i4
s T = = =
Bit Name Reset Access Description
31:30 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
29 WBUFDIS 0 RwW Write Buffer Disable
Enables or disables the write buffer.
28 HALFWE 0 RW Half Cycle WEn Strobe Duration Enable
Enables or disables half cycle duration of the WEn strobe in the last WRSTRB cycle.
27:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 WRHOLD 0x3 RW Write Hold Time
Sets the number of cycles CSn is held active after the WEn is deasserted.
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:8 WRSTRB O0x3F RW Write Strobe Time
Sets the number of cycles the WEn is held active. If set to 0, 1 cycle is inserted by HW.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 WRSETUP 0x3 RW Write Setup Time

Sets the number of cycles the address setup before WEn is asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 292




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.10 EBI_POLARITY1 - Polarity Register 1

Offset Bit Position
%024 158 IRIXNILRIQY TR T2 T2 N |20 (w/~oo/ v o« ~|o
Reset o|lo|lo|o|o|o
Access 5 E 5 5 5 5
o)
.|
o -
Name al>g Q ohle
S RATT oo
Jle |3 |Y wln
m<|< |2 O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 BLPOL 0 RW BL Polarity
Sets the polarity of the EBI_BLn lines.
Value Mode Description
0 ACTIVELOW BLn[1:0] are active low.
1 ACTIVEHIGH BLn[1:0] are active high.
4 ARDYPOL 0 RwW ARDY Polarity
Sets the polarity of the EBI_ARDY line.
Value Mode Description
0 ACTIVELOW ARDY is active low.
1 ACTIVEHIGH ARDY is active high.
3 ALEPOL 0 RW Address Latch Polarity
Sets the polarity of the EBI_ALE line.
Value Mode Description
0 ACTIVELOW ALE is active low.
1 ACTIVEHIGH ALE is active high.
2 WEPOL 0 RW Write Enable Polarity
Sets the polarity of the EBI_WEn and EBI_NANDWER lines.
Value Mode Description
0 ACTIVELOW WEn and NANDWER are active low.
1 ACTIVEHIGH WEn and NANDWER are active high.
1 REPOL 0 RW Read Enable Polarity
Sets the polarity of the EBI_REn and EBI_NANDRER lines.
Value Mode Description
0 ACTIVELOW REn and NANDRER are active low.

silabs.com | Building a more connected world. Rev. 1.1 | 293




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description

1 ACTIVEHIGH REn and NANDRER are active high.
0 CSPOL 0 RW Chip Select Polarity

Sets the polarity of the EBI_CSn line.

Value Mode Description

0 ACTIVELOW CSn is active low.

1 ACTIVEHIGH CSn is active high.
14.5.11 EBI_ADDRTIMING2 - Address Timing Register 2

Bit Position

%028 |58 /QRKNLRIQNTRR LRI VT2 0 o/ ~ov v o a o
™ (s2]
Reset o 3 3
Access E E
o
] )
-
Lu 0 i
Name e T %)
L 19 o
- [m) [m]
< a a
T < <
Bit Name Reset Access Description
31:29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
28 HALFALE 0 RW Half Cycle ALE Strobe Duration Enable
Enables or disables half cycle duration of the ALE strobe in the last address setup cycle.
27:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
9:8 ADDRHOLD 0x3 RW Address Hold Time
Sets the number of cycles the address is held after ALE is asserted.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 ADDRSETUP 0x3 RW Address Setup Time

Sets the number of cycles the address is driven onto the ADDRDAT bus before ALE is asserted. If set to 0, 1 cycle is inser-
ted by HW.

silabs.com | Building a more connected world.

Rev.1.1 | 294




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.12 EBI_RDTIMING2 - Read Timing Register 2

Offset Bit Position
%02 |5 8/ XN LR IQNTR22= L T2 2 olo~owv von o
[T
Reset ololo g g g
Access E E E E E 5
[
a5 o
" : : =
Name ol o [ w
O W I [?2] [72]
< x| < o [a] o
oo |T x x x
Bit Name Reset Access Description
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
30 PAGEMODE 0 RwW Page Mode Access Enable
Enables or disables page mode reads.
29 PREFETCH 0 RW Prefetch Enable
Enables or disables prefetching of data from sequential address.
28 HALFRE 0 RW Half Cycle REn Strobe Duration Enable
Enables or disables half cycle duration of the REn strobe in the last RDSTRB cycle.
27:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 RDHOLD 0x3 RW Read Hold Time
Sets the number of cycles CSn is held active after the REn is deasserted. This interval is used for bus turnaround.
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:8 RDSTRB 0x3F RW Read Strobe Time
Sets the number of cycles the REn is held active. After the specified number of cycles, data is read. If set to 0, 1 cycle is
inserted by HW.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 RDSETUP 0x3 RW Read Setup Time

Sets the number of cycles the address setup before REn is asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 295




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.13 EBI_WRTIMING2 - Write Timing Register 2

Offset Bit Position
o030 53RN QRIQIIIR22E|eRI2d T 20w~ o0w v oo
L
Reset olo g g g
Access E E E E 5
o
2 )] m
N 3 o x 5
ame Sy T %) 0
e 74 14 [i4
s T = = =
Bit Name Reset Access Description
31:30 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
29 WBUFDIS 0 RwW Write Buffer Disable
Enables or disables the write buffer.
28 HALFWE 0 RW Half Cycle WEn Strobe Duration Enable
Enables or disables half cycle duration of the WEn strobe in the last WRSTRB cycle.
27:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 WRHOLD 0x3 RW Write Hold Time
Sets the number of cycles CSn is held active after the WEn is deasserted.
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:8 WRSTRB O0x3F RW Write Strobe Time
Sets the number of cycles the WEn is held active. If set to 0, 1 cycle is inserted by HW.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 WRSETUP 0x3 RW Write Setup Time

Sets the number of cycles the address setup before WEn is asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 296




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.14 EBI_POLARITY2 - Polarity Register 2

Offset Bit Position
0034 15I8IRIXNILRIQY TR T2 T2 N2 0 (w/~oo v oo
Reset o|lo|lo|o|o|o
Access 5 E 5 5 5 5
o)
.|
o -
Name al>g Q ohle
S RATT oo
Jle |3 |Y wln
m<|< |2 O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 BLPOL 0 RW BL Polarity
Sets the polarity of the EBI_BLn lines.
Value Mode Description
0 ACTIVELOW BLn[1:0] are active low.
1 ACTIVEHIGH BLn[1:0] are active high.
4 ARDYPOL 0 RwW ARDY Polarity
Sets the polarity of the EBI_ARDY line.
Value Mode Description
0 ACTIVELOW ARDY is active low.
1 ACTIVEHIGH ARDY is active high.
3 ALEPOL 0 RW Address Latch Polarity
Sets the polarity of the EBI_ALE line.
Value Mode Description
0 ACTIVELOW ALE is active low.
1 ACTIVEHIGH ALE is active high.
2 WEPOL 0 RW Write Enable Polarity
Sets the polarity of the EBI_WEn and EBI_NANDWER lines.
Value Mode Description
0 ACTIVELOW WEn and NANDWER are active low.
1 ACTIVEHIGH WEn and NANDWER are active high.
1 REPOL 0 RW Read Enable Polarity
Sets the polarity of the EBI_REn and EBI_NANDRER lines.
Value Mode Description
0 ACTIVELOW REn and NANDRER are active low.

silabs.com | Building a more connected world. Rev. 1.1 | 297




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description
1 ACTIVEHIGH REn and NANDRER are active high.
0 CSPOL 0 RW Chip Select Polarity

Sets the polarity of the EBI_CSn line.

Value Mode Description
0 ACTIVELOW CSn is active low.
1 ACTIVEHIGH CSn is active high.

14.5.15 EBI_ADDRTIMING3 - Address Timing Register 3

Bit Position

%038 5|8 QKKNLRIQNTR2R LRI VT2 0 o/ ~ov <o a~|o
™ (s2]
Reset o 3 3
Access E E
o
] )
-
Lu 0 i
Name e T %)
L 19 o
- [m) [m]
< a a
T < <
Bit Name Reset Access Description
31:29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
28 HALFALE 0 RW Half Cycle ALE Strobe Duration Enable
Enables or disables half cycle duration of the ALE strobe in the last address setup cycle.
27:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
9:8 ADDRHOLD 0x3 RW Address Hold Time
Sets the number of cycles the address is held after ALE is asserted.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 ADDRSETUP 0x3 RW Address Setup Time

Sets the number of cycles the address is driven onto the ADDRDAT bus before ALE is asserted. If set to 0, 1 cycle is inser-
ted by HW.

silabs.com | Building a more connected world.

Rev. 1.1 | 298




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.16 EBI_RDTIMINGS3 - Read Timing Register 3

Offset Bit Position
0x03C |5 8/ XN LR IQN TR LR T2 2 olon~owv von o
[T
Reset ololo g g g
Access E E E E E 5
[
a5 o
" : : =
Name ol o [ w
O W I [?2] [72]
< x| < o [a] o
oo |T x x x
Bit Name Reset Access Description
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
30 PAGEMODE 0 RwW Page Mode Access Enable
Enables or disables page mode reads.
29 PREFETCH 0 RW Prefetch Enable
Enables or disables prefetching of data from sequential address.
28 HALFRE 0 RW Half Cycle REn Strobe Duration Enable
Enables or disables half cycle duration of the REn strobe in the last RDSTRB cycle.
27:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 RDHOLD 0x3 RW Read Hold Time
Sets the number of cycles CSn is held active after the REn is deasserted. This interval is used for bus turnaround.
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:8 RDSTRB 0x3F RW Read Strobe Time
Sets the number of cycles the REn is held active. After the specified number of cycles, data is read. If set to 0, 1 cycle is
inserted by HW.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 RDSETUP 0x3 RW Read Setup Time

Sets the number of cycles the address setup before REn is asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 299




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.17 EBI_WRTIMING3 - Write Timing Register 3

Offset Bit Position
o040 53RN QRIRIIR22EeRI 2N T 20w~ o0w v oo
L
Reset olo g g g
Access E E E E 5
o
2 )] m
N 3 o x 5
ame Sy T %) 0
e 74 14 [i4
s T = = =
Bit Name Reset Access Description
31:30 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
29 WBUFDIS 0 RwW Write Buffer Disable
Enables or disables the write buffer.
28 HALFWE 0 RW Half Cycle WEn Strobe Duration Enable
Enables or disables half cycle duration of the WEn strobe in the last WRSTRB cycle.
27:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17:16 WRHOLD 0x3 RW Write Hold Time
Sets the number of cycles CSn is held active after the WEn is deasserted.
15:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13:8 WRSTRB O0x3F RW Write Strobe Time
Sets the number of cycles the WEn is held active. If set to 0, 1 cycle is inserted by HW.
7:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 WRSETUP 0x3 RW Write Setup Time

Sets the number of cycles the address setup before WEn is asserted.

silabs.com | Building a more connected world. Rev. 1.1 | 300




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.18 EBI_POLARITY3 - Polarity Register 3

Offset Bit Position
X044 15 18I KIIQQI QN[ eEe eI ¥t lo|lo|~jo|w v o la|~|o
Reset o|lo|lo|o|o|o
Access 5 E 5 5 5 5
o)
.|
o -
Name al>g Q ohle
S RATT oo
Jle |3 |Y wln
m<|< |2 O
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 BLPOL 0 RW BL Polarity
Sets the polarity of the EBI_BLn lines.
Value Mode Description
0 ACTIVELOW BLn[1:0] are active low.
1 ACTIVEHIGH BLn[1:0] are active high.
4 ARDYPOL 0 RwW ARDY Polarity
Sets the polarity of the EBI_ARDY line.
Value Mode Description
0 ACTIVELOW ARDY is active low.
1 ACTIVEHIGH ARDY is active high.
3 ALEPOL 0 RW Address Latch Polarity
Sets the polarity of the EBI_ALE line.
Value Mode Description
0 ACTIVELOW ALE is active low.
1 ACTIVEHIGH ALE is active high.
2 WEPOL 0 RW Write Enable Polarity
Sets the polarity of the EBI_WEn and EBI_NANDWER lines.
Value Mode Description
0 ACTIVELOW WEn and NANDWER are active low.
1 ACTIVEHIGH WEn and NANDWER are active high.
1 REPOL 0 RW Read Enable Polarity
Sets the polarity of the EBI_REn and EBI_NANDRER lines.
Value Mode Description
0 ACTIVELOW REn and NANDRER are active low.

silabs.com | Building a more connected world. Rev. 1.1 | 301




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description
1 ACTIVEHIGH REn and NANDRER are active high.
0 CSPOL 0 RW Chip Select Polarity

Sets the polarity of the EBI_CSn line.

Value Mode Description
0 ACTIVELOW CSn is active low.
1 ACTIVEHIGH CSn is active high.

silabs.com | Building a more connected world. Rev. 1.1 | 302




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.19 EBI_PAGECTRL - Page Control Register

Offset Bit Position
0x048 |58 IRIRNILR IR TR ECLT2 N2 0 w/~oo/ v o a~|o
o N~ (=]
Reset g X X
Access E E E E
E
5 g
Name ot < ':,—_: w
L o o O]
L a <
X 14 Z a
Bit Name Reset Access Description
31:27 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
26:20 KEEPOPEN 0x00 RW Maximum Page Open Time.
Sets the maximum number of consecutive cycles a page can be considered open. Needs to be larger than 0 in order to be
able to benefit from RDPA timing.
19:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
10:8 RDPA 0x7 RwW Page Read Access Time
Sets the number of cycles needed for intrapage page access time. If set to 0, 1 cycle is inserted by HW.
7:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4 INCHIT 0 RwW Intrapage hit only on incremental addresses
Sets whether page hits occur on any member in a page or only on incremental addresses.
3:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
1:0 PAGELEN 0x0 RW Page Length
Sets the page length.
Value Mode Description
0 MEMBERA4 4 members in a page.
1 MEMBERS8 8 members in a page.
2 MEMBER16 16 members in a page.
3 MEMBER32 32 members in a page.

silabs.com | Building a more connected world. Rev. 1.1 | 303




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.20 EBI_NANDCTRL - NAND Control Register

Offset Bit Position
0x04C |58/ RN &QRIQN TIRIZ2E L T2YC2olo~owv voa o
Reset g o
Access E E
—
w
0
Name N4
P
< z
m w
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5:4 BANKSEL 0x0 RW NAND Flash Bank
This field sets the Memory Bank which is connected to a NAND Flash device
Value Mode Description
0 BANKO Memory bank 0 is connected to a NAND Flash device.
1 BANK1 Memory bank 1 is connected to a NAND Flash device.
2 BANK2 Memory bank 2 is connected to a NAND Flash device.
3 BANK3 Memory bank 3 is connected to a NAND Flash device.
3:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
0 EN 0 RW NAND Flash control enable

This field enables NAND Flash control for the memory bank defined in BANK.

Rev. 1.1 | 304

silabs.com | Building a more connected world.




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.21 EBI_CMD - Command Register

Offset Bit Position
0x050 2 QXL QI Q]I I e|¥If@lolo~lov|t m|la|-]|o
Reset oclo|lo
Access =2z
ne =
O
hRERE:
Name C') 'c7) 'c7)
QO |0
[OREORNG]
W W |w
Bit Name Reset Access Description
31:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
2 ECCCLEAR 0 W1 Error Correction Code Clear
Write to 1 to clear ECCPARITY.
1 ECCSTOP 0 W1 Error Correction Code Generation Stop
Write to 1 to stop ECC generation.
0 ECCSTART 0 W1 Error Correction Code Generation Start

Write to 1 to start ECC generation.

silabs.com | Building a more connected world.

Rev. 1.1 | 305




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.22 EBI_STATUS - Status Register

Offset Bit Position
0054 158 IRIXNILRIQY RS2 T2 N2 0 (w/~oo v o ~|o
Reset o o|o|o o
Access x|l x| x
> | >
& &
> dJ|s s
= o I T RTT]
Name % g
i TTRRTTRATY - -
a X | X | X O Q
a2 oo o < <
< g e Q Q
| Lo | O I
| Q - |- w <
Bit Name Reset Access Description
31:14 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
13 TFTDDEMPTY 0 R EBI_TFTDD register is empty.
Indicates that EBI_TFTDD register is empty.
12 DDACT 0 R EBI Busy with Direct Drive Transactions.
Indicates that EBI is busy with Direct Drive Transactions.
11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
10 TFTPIXELFULL 0 R EBI_TFTPIXELO is full.
Indicates that EBI_TFTPIXEL is full.
9 TFTPIXEL1EMPTY 0 R EBI_TFTPIXEL1 is empty.

Indicates that EBI_TFTPIXEL1 is empty.
8 TFTPIXELOEMPTY 0 R
Indicates that EBI_TFTPIXELO is empty.

EBI_TFTPIXELO is empty.

7:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4 ECCACT 0 R EBI ECC Generation Active.
Indicates that EBI is generating ECC.
3:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
0 AHBACT 0 R EBI Busy with AHB Transaction.

Indicates that EBI is busy with an AHB Transaction.

silabs.com | Building a more connected world.

Rev. 1.1 | 306




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.23 EBI_ECCPARITY - ECC Parity register

Offset Bit Position
x058 |5 |8IQIRRQQIIQ ] IR 2T eI 2 ¥ tQloo|~|lo|lw|¢|m|a|- o

o

o

o

o
Reset S

o

(=)

X

o
Access x

74
Name E

Q

O

w
Bit Name Reset Access Description
31:0 ECCPARITY 0x00000000 R ECC Parity Data

ECC Parity Data.

silabs.com | Building a more connected world. Rev. 1.1 | 307




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.24 EBI_TFTCTRL - TFT Control Register

Offset Bit Position
0x05C |5 8/ RN LR IQNTR22T L T2 2 olo~owv von o
Reset o g o o g olo g g
o w i a
w x| > X =
Q 0 2§ oo H
Name o) % - x|l 2 g o @
= 2 = o) 14 == 4
3 2 E AR 2 4
x = = ol z |25 = a
Bit Name Reset Access Description
31:25 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
24 RGBMODE 0 RW TFT RGB Mode
This field sets TFT RGB Mode.
Value Mode Description
0 RGB565 RGB data is 565.
1 RGB555 RGB data is 555.
23:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
21:20 BANKSEL 0x0 RwW Graphics Bank
This field sets the Memory Bank containing the Frame Buffer
Value Mode Description
0 BANKO Memory bank 0 is used for Direct Drive, Masking, and Alpha Blending.
1 BANK1 Memory bank 1 is used for Direct Drive, Masking, and Alpha Blending.
2 BANK2 Memory bank 2 is used for Direct Drive, Masking, and Alpha Blending.
3 BANK3 Memory bank 3 is used for Direct Drive, Masking, and Alpha Blending.
19:17 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
16 WIDTH 0 RW TFT Transaction Width
This field sets TFT tranaction width.
Value Mode Description
0 BYTE TFT Data is 8 bit wide.
1 HALFWORD TFT Data is 16 bit wide.
15:13 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
12 COLOR1SRC 0 RW Masking/Alpha Blending Color1 Source

This field sets the Masking/Alpha Blending Color1 Source.

silabs.com | Building a more connected world. Rev. 1.1 | 308




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description
Value Mode Description
0 MEM Masking/Alpha Blending color 1 is read from external memory.
1 PIXEL1 Masking/Alpha Blending color 1 is read from EBI_TFTPIXEL1.
11:10 INTERLEAVE 0x0 RwW Interleave Mode

This field sets the TFT Direct Drive Interleave mode.

Value Mode Description
0 UNLIMITED Allow unlimited interleaved EBI accesses per EBI_DCLK period. This
can cause jitter on the EBI_DCLK
1 ONEPERDCLK Allow 1 interleaved EBI access per EBI_DCLK period.
2 PORCH Only allow EBI accesses during TFT porches.
9 FBCTRIG 0 RW TFT Frame Base Copy Trigger

Sets the trigger on which the TFTFRAMEBASE is copied into an internal buffer. Direct Drive address generation is based

on the internal buffer.

Value Mode Description
0 VSYNC TFTFRAMEBASE is buffered on the vertical synchronization event
EBI_VSYNC.
1 HSYNC TFTFRAMEBASE is buffered on the horizontal synchronization event
EBI_HSYNC.
8 SHIFTDCLKEN 0 RW TFT EBI_DCLK Shift Enable

When this bit is set, EBI_DCLK edges are driven off the negative (instead of the positive) edge of the internal clock.
SHIFTDCLKEN is only allowed to be set to 1 if TFTHOLD in EBI_TFTTIMING is at least 1.

7:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
4:2 MASKBLEND 0x0 RW TFT Mask and Blend Mode

This field sets the Mask and Blend Mode.

Value Mode Description

0 DISABLED Masking and Blending are disabled.

1 IMASK Internal Masking is enabled.

2 IALPHA Internal Alpha Blending is enabled.

3 IMASKIALPHA Internal Masking and Alpha Blending are enabled.

5 EMASK External Masking is enabled.

6 EALPHA External Alpha Blending is enabled.

7 EMASKEALPHA External Masking and Alpha Blending are enabled.
1:0 DD 0x0 RwW TFT Direct Drive Mode

This field sets the Direct Mode.

Value Mode

Description

0 DISABLED

silabs.com | Building a more connected world.

Direct Drive is disabled.

Rev. 1.1 | 309




EFM32WG Reference Manual
EBI - External Bus Interface

Bit Name Reset Access Description
1 INTERNAL Direct Drive from internal memory enabled and started.
2 EXTERNAL Direct Drive from external memory enabled and started.

14.5.25 EBI_TFTSTATUS - TFT Status Register

Offset Bit Position
x060 |5 |8IQIRXNQQIIQ ] IR 2T I 2 ¥ tQ|loo|~lo|lw|¢|m|a|- o
g S
Reset =) S
o o
Access o o
= =
Name 5 5
> T
Bit Name Reset Access Description
31:27 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
26:16 VCNT 0x000 R Vertical Count
Contains the current line position within a frame (initial line in vertical back porch has VCNT = 0).
15:11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
10:0 HCNT 0x000 R Horizontal Count

Contains the current pixel position within a line (initial pixel in horizontal backporch has HCNT = 0).

14.5.26 EBI_TFTFRAMEBASE - TFT Frame Base Register

Offset Bit Position

0064 |53 IRRNIQIRIRINTIRZ2E|eL T2 T2 0w ~oo< oo~ o
o
o
3

Reset S
o
(e}
X
o

Access E
i
%)
<

Name ﬁ
=
<
[hd
L

Bit Name Reset Access Description

31:28 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
27:0 FRAMEBASE 0x0000000 RW Frame Base Address

Sets the frame base address.

silabs.com | Building a more connected world. Rev. 1.1 | 310




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.27 EBI_TFTSTRIDE - TFT Stride Register

Offset

Bit Position

%068 |5 8IRRNELRIQY TR L L T2 2 olo~ow vloa o
3
Reset =)
o
Access E
[
a
Name |n_:
()
I
Bit Name Reset Access Description
31:12 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
11:0 HSTRIDE 0x000 RW Horizontal Stride

Sets the horizontal stride added to the Direct Drive address at the end of each line.

14.5.28 EBI_TFTSIZE - TFT Size Register

Bit Position
006C 5|8 /R NIQILI RN TR 2SI L T2 20w ~ob < oo~ o
3 3
Reset S S
X x
o o
Access 5 E
Name % %
> T
Bit Name Reset Access Description
31:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
25:16 VSzZ 0x000 RW Vertical Size (excluding porches)
Sets the vertical size in lines. Set to required size minus 1.
15:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
9:0 HSZ 0x000 RW Horizontal Size (excluding porches)

Sets the horizontal size in pixels. Set to required size minus 1.

silabs.com | Building a more connected world.

Rev. 1.1 | 311




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.29 EBI_TFTHPORCH - TFT Horizontal Porch Register

Offset Bit Position
0070 5|8 IR|RIN|QIRITIRINIT|RIZ|2N|ele Ty e ~ oo s |o a0
o o o o
Reset = < < 2
© S S S
Access E E E E
|_
£
[y I I
Name 8 &) % I3
4 o o 4
> a a >
(%) M [ (%)
I T T T
Bit Name Reset Access Description
31:30 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
29:28 HSYNCSTART 0x0 RW HSYNC Start Delay
Sets the HSYNC start position into the horizontal back porch in DCLK cycles.
27:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
25:18 HBPORCH 0x00 RwW Horizontal Back Porch Size
Sets the horizontal back porch size in pixels.
17:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:8 HFPORCH 0x00 RW Horizontal Front Porch Size
Sets the horizontal front porch size in pixels.
7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6:0 HSYNC 0x00 RW Horizontal Synchronization Pulse Width

Sets the horizontal synchronization pulse width. Set to required width minus 1. Width is reduced in case HSYNCSTART >

0.

silabs.com | Building a more connected world.

Rev.1.1 | 312




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.30 EBI_TFTVPORCH - TFT Vertical Porch Register

Offset Bit Position
074 158 IRIXNILRIQY TR T2 T2 N2 0/w/~oov v oo
o o o
Reset < < 2
o o o
Access E E E
5 5
o hd O
Name o o Z
o a >
is) [ %)
> > >
Bit Name Reset Access Description
31:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
25:18 VBPORCH 0x00 RW Vertical Back Porch Size
Sets the Vertical back porch size in pixels.
17:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:8 VFPORCH 0x00 RW Vertical Front Porch Size
Sets the Vertical front porch size in pixels.
7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
6:0 VSYNC 0x00 RW Vertical Synchronization Pulse Width

Sets the Vertical synchronization pulse width. Set to required width minus 1.

silabs.com | Building a more connected world. Rev. 1.1 | 313




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.31 EBI_TFTTIMING - TFT Timing Register

Offset Bit Position
%078 |58/ XN LR IQNTRI22T L L T2 2 olo~owv von o
o o 3 3
Reset 3 3 ) S
o o
Access E E E E
8
a 5 & o
Name o) 5 < N
T %) 7)) X
[ [ [ =
TR TR [T (&
= = = a
Bit Name Reset Access Description
31:30 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
29:28 TFTHOLD 0x0 RW TFT Hold Time
Sets the number of internal clock cycles the RGB data is held after the active edge of EBI_DCLK.
27:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
25:24 TFTSETUP 0x0 RwW TFT Setup Time
Sets the number of internal clock cycles the RGB data is driven before the active edge of EBI_DCLK.
23 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
22:12 TFTSTART 0x000 RW TFT Direct Drive Transaction Start
Sets the starting position of the External Direct Drive Transaction relative to the DCLK inactive edge.
11 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
10:0 DCLKPERIOD 0x000 RW TFT Direct Drive Transaction (EBI_DCLK) Period

Sets the Direct Drive transaction (EBI_DCLK) period in internal cycles. Set to required cycle count minus 1.

silabs.com | Building a more connected world. Rev. 1.1 | 314




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.32 EBI_TFTPOLARITY - TFT Polarity Register

Offset Bit Position

x07C |5 8/ XIN LR IQNTRI22T L T2 2 olon~owv von o

Reset o|lo|o|o|o

Access E 5 5 5 5
J 6
o0 |a | u
ooz 0

Name OO0 |w|a |«
£ €<
0 0 <O n
S| T o|lalo

Bit Name Reset Access Description

31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-

tions.
4 VSYNCPOL 0 RW VSYNC Polarity

Sets the polarity of the EBI_VSYNC line.

Value Mode Description
0 ACTIVELOW VSYNC is active low.
1 ACTIVEHIGH VSYNC is active high.
3 HSYNCPOL 0 RW Address Latch Polarity

Sets the polarity of the EBI_HSYNC line.

Value Mode Description

0 ACTIVELOW HSYNC is active low.

1 ACTIVEHIGH HSYNC is active high.
2 DATAENPOL 0 RW TFT DATAEN Polarity

Sets the polarity of the EBI_DATAEN line.

Value Mode Description

0 ACTIVELOW DATAEN is active low.

1 ACTIVEHIGH DATAEN is active high.
1 DCLKPOL 0 RW TFT DCLK Polarity

Sets the active edge polarity of the EBI_DCLK line.

Value Mode Description
0 ACTIVEFALLING DCLK falling edge is the active edge.
1 ACTIVERISING DCLK rising edge the active edge.

0 CSPOL 0 RW TFT Chip Select Polarity

Sets the polarity of the EBI_CSTFT line.

Value Mode

Description

0 ACTIVELOW

silabs.com | Building a more connected world.

CSTFT is active low.

Rev. 1.1 | 315




EFM32WG Reference Manual
EBI - External Bus Interface

Bit

Name

Reset

ACTIVEHIGH

Access Description

CSTFT is active high.

14.5.33 EBI_TFTDD - TFT Direct Drive Data Register

Offset Bit Position
0080 |58 /R/RNIQIKLI RN TR 2SI L T2 20w ~oo< oo~ o
o
o
Reset 8
x
o
Access §
<
Name K
a
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 DATA 0x0000 RW TFT Direct Drive Data from Internal Memory

Sets the RGB value used when Direct Drive from internal memory is used (DD = INTERNAL)

14.5.34 EBI_TFTALPHA - TFT Alpha Blending Register

Offset Bit Position
0084 |5 /3/% 8 K€ RIRIS|RI2 222N 20w~ 0w onx-|o
3
Reset S
X
o
Access E
T
Name o
-
<
Bit Name Reset Access Description
31:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
8:0 ALPHA 0x000 RwW TFT Alpha Blending Factor

Sets the alpha blending factor. The maximum value is 256.

silabs.com | Building a more connected world.

Rev. 1.1 | 316




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.35 EBI_TFTPIXELO - TFT Pixel 0 Register

Offset Bit Position
0x088 |5 8RN ELRIQN TR L L T2 2 olo~owv von o
o
o
Reset =
x
o
Access E
<
Name e
a
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 DATA 0x0000 RW RGB data.

Sets the RGB data value according to the format defined in RGBMODE.

14.5.36 EBI_TFTPIXEL1 - TFT Pixel 1 Register

Offset Bit Position
008C 5|8 /R/QN|QILT RN TR22E|eLT 220w ~oo< oo~ o
o
o
Reset =
x
o
Access §
<
Name K
a
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 DATA 0x0000 RW RGB data.

Sets the RGB data value according to the format defined in RGBMODE.

silabs.com | Building a more connected world. Rev. 1.1 | 317




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.37 EBI_TFTPIXEL - TFT Alpha Blending Result Pixel Register

Offset Bit Position
%090 |58/ XNERIRQYN TR LL T2 2olon~owv von o
o
o
Reset =
x
o
Access o
<
Name K
o
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 DATA 0x0000 R Alpha Blending Result

RGB result of Alpha Blending operation according to the format defined in RGBMODE.

14.5.38 EBI_TFTMASK - TFT Masking Register

Offset

Bit Position

x094 15 3 IQQRNQQIQINIRNS =TT 2|¥tQlololm|ob|lt|m|a|~]|0o
o
o
Reset =
x
o
Access E
N
2
Name s
|_
L
|_
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
15:0 TFTMASK 0x0000 RwW TFT Mask Value

Sets the mask value. Data write transactions matching this value are suppressed.

silabs.com | Building a more connected world.

Rev. 1.1 | 318




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.39 EBL_IF - Interrupt Flag Register

Offset Bit Position
%098 |5 8RN &L RIRQYN TR LL T2 2 olo~owv von o
Reset olololo
Access ¥ | v o ol
5|5
Ly x| OO
Name El=2/o|o|z|z
S |Wia o> |>
QO QL on®n wnw
o Qo> | >|xT|>
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 DDJIT 0 R Direct Drive Jitter Interrupt Flag
Set when DCLKPERIOD is not met.
4 DDEMPTY 0 R Direct Drive Data Empty Interrupt Flag
Set when Direct Drive engine EBI_TFTDD data is empty.
3 VFPORCH 0 R Vertical Front Porch Interrupt Flag
Set at beginning of Vertical Front Porch.
2 VBPORCH 0 R Vertical Back Porch Interrupt Flag
Set at end of Vertical Back Porch.
1 HSYNC 0 R Horizontal Sync Interrupt Flag
Set at Horizontal Sync pulse.
0 VSYNC 0 R Vertical Sync Interrupt Flag

Set at Vertical Sync pulse.

silabs.com | Building a more connected world.

Rev. 1.1 | 319




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.40 EBL_IFS - Interrupt Flag Set Register

Offset Bit Position
00C 5|82 NIQILI RN TIR 22T L T2 20w ~oo< oo~ o
Reset o|lo|lo|o|o|o
Access = zzzz/2
1515
Name - % % % (é Q
A
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 DDJIT 0 W1 Direct Drive Jitter Interrupt Flag Set
Write to 1 to set Direct Drive Jitter Interrupt flag.
4 DDEMPTY 0 W1 Direct Drive Data Empty Interrupt Flag Set
Write to 1 to set Direct Drive Data Empty Interrupt flag.
3 VFPORCH 0 W1 Vertical Front Porch Interrupt Flag Set
Write to 1 to set Vertical Front Porch Interrupt flag.
2 VBPORCH 0 W1 Vertical Back Porch Interrupt Flag Set
Write to 1 to set Vertical Back Porch Interrupt flag.
1 HSYNC 0 W1 Horizontal Sync Interrupt Flag Set
Write to 1 to set Horizontal Sync interrupt flag.
0 VSYNC 0 W1 Vertical Sync Interrupt Flag Set

Write to 1 to set Vertical Sync interrupt flag.

Rev. 1.1 | 320

silabs.com | Building a more connected world.




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.41 EBI_IFC - Interrupt Flag Clear Register

Offset Bit Position
0x0A0 |5 18R IRINELIRIQNTIRIZ2T LT 2olo~owb voa o
Reset o|lo|lo|o|o|o
Access S i E E E E
rlrizz e
t I |
[CREe]
L x| | o o
Name = E OO E pd
dloltl& 2 o
o ni>|>|T|>
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 DDJIT 0 (R)w1 Direct Drive Jitter Interrupt Flag Clear
Write to 1 to clear Direct Drive Jitter Interrupt flag.
4 DDEMPTY 0 (R)W1 Direct Drive Data Empty Interrupt Flag Clear
Write to 1 to clear Direct Drive Data Empty Interrupt flag.
3 VFPORCH 0 (R)W1 Vertical Front Porch Interrupt Flag Clear
Write to 1 to clear Vertical Front Porch interrupt flag.
2 VBPORCH 0 (R)w1 Vertical Back Porch Interrupt Flag Clear
Write to 1 to clear Vertical Back Porch interrupt flag.
1 HSYNC 0 (R)W1 Horizontal Sync Interrupt Flag Clear
Write to 1 to clear Horizontal Sync interrupt flag.
0 VSYNC 0 (R)\W1  Vertical Sync Interrupt Flag Clear

Write to 1 to clear Vertical Sync interrupt flag.

silabs.com | Building a more connected world.

Rev. 1.1 | 321




EFM32WG Reference Manual
EBI - External Bus Interface

14.5.42 EBI_IEN - Interrupt Enable Register

Offset Bit Position
x0Ad 15 IR IRIRNILIRIQNTIRIZRECRIR N2 0 o/ ~olv v o a o
Reset olololo
Access 5 E 5 5 x|z
55
L x| x|o| o
Name E 200 z Z
3 oltl& 2o
aa|>|(>IT|>
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
5 DDJIT 0 RW Direct Drive Jitter Interrupt Enable

Set to enable interrupt on Direct Drive Jitter Interrupt flag.

4 DDEMPTY 0 RW

Set to enable interrupt on Direct Drive Data Empty Interrupt flag.

Direct Drive Data Empty Interrupt Enable

3 VFPORCH 0 RW Vertical Front Porch Interrupt Enable

Set to enable interrupt on beginning of Vertical Front Porch interrupt flag.

2 VBPORCH 0 RW Vertical Back Porch Interrupt Enable

Set to enable interrupt on end of Vertical Back Porch interrupt flag.

1 HSYNC 0 RW Horizontal Sync Interrupt Enable

Set to enable interrupt on Horizontal Sync interrupt flag.

0 VSYNC 0 RW Vertical Sync Interrupt Enable

Set to enable interrupt on Vertical Sync interrupt flag.

silabs.com | Building a more connected world.

Rev. 1.1 | 322




EFM32WG Reference Manual

15. USB - Universal Serial Bus Controller

Quick Facts
What?

ant USB Controller that can be used in OTG Dual
Role Device, Device and Host configurations. The
on-chip 3.3V regulator delivers up to 50 mA and can
also be used to power external components, elimi-
nating the need for an external LDO. The on-chip
regulator allows the system to run from a battery uti-
lizing the full voltage range of the EFM32 still being
compliant with the 3.3V +/- 10% USB voltage range.

The USB is a full-speed/low-speed USB 2.0 compli-
01 3@

Why?

USB provides a robust, industry-standard way to in-
terface PCs and other portable devices.

How?

The flexible and highly software-configurable archi-
tecture of the USB Controller makes it easy to imple-
ment both device- and host-capable solutions. The
on-chip OTG PHY with software controllable pull-up
and pull-down resistors, VBUS comparators and ID-
line detection reduces the number of external com-
ponents to a minimum. Third-party USB software
stacks are also available, reducing the development
time substantially. By utilizing the very low energy
consumption in EM2, the USB device will be able to
wake up and perform tasks several times a second
without violating the 2.5 mA maximum average cur-
rent during suspend.

15.1 Introduction

The USB is a full-speed/low-speed USB 2.0 compliant OTG host/device controller. The architecture is very flexible and allows the USB
to be used in On-the-go (OTG) Dual-Role Device, Device and Host-only configurations. The USB supports HNP and SRP protocols and
both OTG Revisions 1.3 and 2.0 are supported. The on-chip voltage regulator and PHY reduces the number of external components to
a minimum. A switchable external 5V supply or step-up regulator is needed for OTG Dual Role Device and Host configurations.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.2 Features

* Fully compliant with Universal Serial Bus Specification, Revision 2.0
» Supports full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) host and device
» Dedicated Internal DMA Controller
» 12 software-configurable endpoints (6 IN, 6 OUT) in addition to endpoint 0
* 2 kB endpoint memory
* Resume/Reset detection in EM2 (during suspend)
* SRP detection in EM2 (during host session off)
 Soft connect/disconnect
» Full OTG support
» Compliant with On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification, Revision 2.0
« Compliant with USB On-The-Go Supplement, Revision 1.3
» Supports Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)
* On-chip PHY
* Internal pull-up and pull-down resistors
» Voltage comparators for monitoring VBUS voltage
» A/B Device identification using ID line
» Charge/discharge of VBUS for VBUS-pulsing
* Internal 3.3 V Regulator
* Output voltage: 3.3V
» Output current: 50 mA
* Input voltage range: 4.0 - 5.5V
» Enabled automatically when input voltage applied
» Low quiescent current: 100 pA
» Dedicated input pin allows regulator to be used in OTG and host configurations
» Output pin can be used to power the EFM32 itself as well as external components
» Regulator voltage output sense feature for detecting USB plug/unplug events (also available in EM2/3)

silabs.com | Building a more connected world. Rev. 1.1 | 324




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.3 USB System Description

A block diagram of the USB is shown in the following figure.

Voltage
Regulator |————X] USB_VREGI
(3:3V)
2 KB
FIFO RAM
VREGO
Soncs ] usB_VREGO

% AHB Master
<
USB Core —g UsB_vBUs
AHE Slave w/ DMA Controller oTe ] usB_pp
PHY I P usB_bMm
————— X uss_D
| zeesiave USB System -
a (control)
<
< USB Interrupt & USB_VBUSEN
- SOF PRS ] uss_bmpPu

Figure 15.1. USB Block Diagram

The USB consists of a digital logic part, a 2 kB endpoint RAM, OTG PHY and a voltage regulator with output voltage sensor. The volt-
age regulator provides a stable 3.3 V supply for the PHY, but can also be used to power the EFM32 itself as well as external compo-
nents.

The digital logic of the USB is split into two parts: system and core.

The system part is accessed using USB registers from offset 0x000 to 0x018 and controls the voltage regulator and enabling/disabling
of the PHY and USB pins. This part is clocked by HFCORECLKysg and is accessed using an APB slave interface. The system part can
thus be accessed independently of the core part, without HFCORECLKggc running.

The core part is clocked by HFCORECLKysgc and is accessed using an AHB slave interface. This interface is used for accessing the
FIFO contents and the registers in the core part starting at offset 0x3C000. An additional master interface is used by the internal DMA
controller of the core. The core part takes care of all the USB protocol related functionality. The clock to the system part must not be
disabled when the core part is active.

There are 8 pins associated with the USB. USB_VBUS should be connected to the VBUS (5V) pin on the USB receptacle. It is connec-
ted to the voltage comparators and current sink/source in the PHY. USB_DP and USB_DM are the USB D+ and D- pins. These are the
USB data signaling pins. USB_ID is the OTG ID pin used to detect the device type (A or B). This pin can be left unconnected when not
used. USB_VREGI is the input to the voltage regulator and USB_VREGO is the regulated output. USB_VBUSEN is used to turn on and
off VBUS power when operating as host-only or OTG A-Device. USB_DMPU is used to enable/disable an external D- pull-up resistor.
This is needed for low-speed device only. USB_VBUSEN and USB_DMPU will be high-impedance until the pins are enabled from soft-
ware. Thus, if a defined level is required during start-up an external pull-up/pull-down can be used.

15.3.1 USB Initialization

silabs.com | Building a more connected world. Rev. 1.1 | 325




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

The USB requires the device to run from a 48 MHz crystal (2500 ppm or better). The core part of the USB will always run from HFCOR-
ECLKysgc which is HFCLK undivided (48 MHz). The current consumption for the rest of the device can be reduced by dividing down

HFCORECLK using the CMU_HFCORECLKDIV register. Bandwidth requirements for the specific USB application must be taken into
account when dividing down HFCORECLK.

Follow these steps to enable the USB:

1. Enable the clock to the system part by setting USB in CMU_HFCORECLKENQO.

2.1f the internal USB regulator is bypassed (by applying 3.3V on USB_VREGI and USB_VREGO externally), disable the regulator by
setting VREGDIS in USB_CTRL.

3.If the PHY is powered from VBUS using the internal regulator, the VREGO sense circuit should be enabled by setting VREGOSEN
in USB_CTRL.

4.Enable the USB PHY pins by setting PHYPEN in USB_ROUTE.

5.1f host or OTG dual-role device, set VBUSENAP in USB_CTRL to the desired value and then enable the USB_VBUSEN pin in
USB_ROUTE. Set the MODE for the pin to PUSHPULL.

6. If low-speed device, set DMPUAP in USB_CTRL to the desired value and then enable the USB_DMPU pin in USB_ROUTE. Set
the MODE for the pin to PUSHPULL.

7.Make sure HFXO is ready and selected. The core part requires the undivided HFCLK to be 48 MHz when USB is active (during
suspend/session-off a 32 kHz clock is used).

8. Enable the clock to the core part by setting USBC in CMU_HFCORECLKENO.

9. Wait for the core to come out of reset. This is easiest done by polling a core register with non-zero reset value until it reads a non-
zero value. This takes approximately 20 48-MHz cycles.

10. Start initializing the USB core as described in USB Core Description.

15.3.2 Configurations

The USB can be used as Device, OTG Dual Role Device or Host. The sections below describe the different configurations. External
ESD protection and series resistors for impedance matching are required. The voltage regulator requires a 4.7 yF external decoupling
capacitor on the input and a 1 pyF external decoupling capacitor on the output. Decoupling not related to USB is not shown in the fig-
ures.

15.3.2.1 Bus-Powered Device

A bus-powered device configuration is shown in the following figure. In this configuration, the voltage regulator powers the PHY and the
EFM32 at 3.3 V. The voltage regulator output (USB_VREGO) can also be used to power other components of the system.

In this configuration, the VREGO sense circuit should be left disabled.

USB_VREGO
USB_VREGI

Device

Standard B
(ESD Protection)

Figure 15.2. Bus-Powered Device

silabs.com | Building a more connected world. Rev. 1.1 | 326




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.3.2.2 Self-Powered Device

A self-powered device configuration is shown in the following figure. When the USB is configured as a self-powered device, the voltage
regulator is typically used to power the PHY only, although it may also be used to power other 3.3 V components. When the USB is
connected to a host, the voltage regulator is activated. Software can detect this event by enabling the VREGO Sense High (VREGOSH)
interrupt. The PHY pins can then be enabled and USB traffic can start. The VREGO Sense Low (VREGOSL) interrupt can be used to
detect when VBUS voltage disappears (for example if the USB cable is unplugged).

In this configuration, the VREGO sense circuit must be enabled.

1.8V -3.6V

USB_VREGO
USB_VREGI

Device

Standard B
(ESD Protection)

Figure 15.3. Self-Powered Device

15.3.2.3 Self-Powered Device (with Bus-Power Switch)

A self-powered device (with bus-power switch) may switch power supply to VBUS when connected to a host. This is typically useful for
extending the life of battery-powered devices and enables the use of coin-cell driven systems with low maximum peak current. The
external components required typically include 2 transistors, 2 diodes and a few resistors. See application note for details. This allows
seamless power supply switching between a battery and the voltage regulator output.

The VREGO Sense High interrupt is used to detect when VBUS becomes present. Software can then enable the external transistor
connected to USB_VREGO, effectively switching the power source. A regular GPIO pin is used to control this transistor. If necessary,
the application may have to reduce the current consumption before switching to the USB power source. If VBUS voltage is removed,
the circuit switches automatically back to the battery power supply. If necessary software must react quickly to this event and reduce
the current consumption (for example by reducing the clock frequency) to avoid excessive voltage drop. This configuration is shown in
the following figure.

silabs.com | Building a more connected world. Rev. 1.1 | 327




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

In this configuration, the VREGO sense circuit must be enabled.

1.8V -3.6V

Dual- Power
Circuit

(enable) GPIO

USB_VREGO
USB_VREGI

Device

USB_VBUS
USB_DP
USB_DM

Standard B
(ESD Protection)

Figure 15.4. Self-Powered Device (with Bus-Power Switch)

15.3.2.4 OTG Dual Role Device (5V)

An OTG Dual Role Device (5V) configuration is shown in the following figure. When 5V is available, the internal regulator can be used
to power the EFM32. An external power switch is needed to control VBUS power. For over-current detection a regular GPIO input pin
with interrupt is used. The application should turn off or limit VBUS power when over-current is detected. In OTG mode, the maximum
VBUS decoupling capacitance is 6.5 pF.

silabs.com | Building a more connected world. Rev. 1.1 | 328




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

In this configuration, the VREGO sense circuit should be left disabled.

USB_VREGO —
USB_VREGI

Power switch +
over-current detection

GPIO (over-current)

[)Ea\li(:(a USB_VBUSEN

USB_VBUS
USB_DP
USB_DM

USB_ID

Micro-AB
(ESD Protection)

Figure 15.5. OTG Dual Role Device (5V)

15.3.2.5 OTG Dual Role Device (5V Step-Up Regulator)

An OTG Dual Role Device (5V step-up regulator) configuration is shown in the following figure. When 5V is not available, an external
5V step-up regulator is needed. In this configuration, the voltage for the EFM32 must be in the range 3.0V - 3.6V. In this mode the
voltage regulator is bypassed by connecting both the input and output to the external supply. This effectively causes the PHY to be
powered directly from the external 3.0 - 3.6 V supply. The voltage regulator should be disabled when operating in this mode. For over-

current detection a regular GPIO input pin with interrupt is used. The application should turn off or limit VBUS power when over-current
is detected. In OTG mode, the maximum VBUS decoupling capacitance is 6.5 pF.

silabs.com | Building a more connected world.

Rev. 1.1 | 329




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

In this configuration, the VREGO sense circuit should be left disabled.

USB_VREGO
USB_VREGI

Power switch +
over-current detection
GPIO (over-current) - ocC i

Device USB_VBUSEN

EN Vout

USB_VBUS
USB_DP
USB_DM

USB_ID

(ESD Protection)

Figure 15.6. OTG Dual Role Device (5V Step-Up Regulator)

15.3.2.6 Host

A host configuration is shown in the following figure. In this example a 5V step-up regulator is used. If 5V is available, a power switch
can be used instead, as shown in Figure 15.5 OTG Dual Role Device (5V) on page 329. The host configuration is equal to OTG Dual
Role Device, except for the USB_ID pin which is not used and the USB connector which is a USB Standard-A Connector. In host mode,

the minimum VBUS decoupling capacitance is 96 uF.

In this configuration, the VREGO sense circuit should be left disabled.

3.0V-36V

USB_VREGI
USB_VREGO

5V step-up
GPIO (over-current)

[)(E\Ii(:fa USB_VBUSEN

USB_VBUS
USB_DP
USB_DM

Standard A
(ESD Protection)

Figure 15.7. Host

Rev. 1.1 | 330

silabs.com | Building a more connected world.




EFM32WG Reference Manual

15.3.3 PHY

The USB includes an internal full-speed/low-speed PHY with built-in pull-up/pull-down resistors, VBUS comparators and ID line state
sensing. During suspend, the PHY enters a low-power state where only the single-ended receivers are active. The PHY is disabled by
default and should be enabled by setting PHYPEN in USB_ROUTE before the USB core clock is enabled.

The PHY is powered by the internal voltage regulator output (USB_VREGO). To power the PHY directly from an external source (for
example an external 3.3 V LDO), connect both USB_VREGO and USB_VREGI to the external 3.3 V supply voltage. To stop the quies-
cent current present with the voltage regulator enabled in this configuration, disable the the regulator by setting VREGDIS in
USB_CTRL after power up. Then the regulator is effectively bypassed.

When VREGO Sense is enabled, the PHY is automatically disabled internally when the VREGO Sense output is low. This will happen if
VBUS-power disappears. The application can detect this by keeping the VREGO Sense Low Interrupt enabled. Note that PHYPEN in
USB_ROUTE will not be set to 0 in this case. Also, the PHY must always be disabled manually when there is no voltage applied to
VREGO.

15.3.4 Voltage Regulator

The voltage regulator is used to regulate the 5 V VBUS voltage down to 3.3 V which is the operating voltage for the PHY.

A decoupling capacitor is required on USB_VREGI and USB_VREGO. Note that the USB standard requires the total capacitance on
VBUS to be 1 yF minimum and 10 uF maximum for regular devices. OTG devices can have maximum 6.5 yF capacitance on VBUS.

The voltage regulator is enabled by default and can thus be used to power the EFM32 itself. Systems not using the USB should disable
the regulator by setting VREGDIS in USB_CTRL. A voltage sense circuit monitors the output voltage and can be used to detect when
the voltage regulator becomes active. This sense circuit can also be used to detect when the voltage drops (typically due to the USB
cable being unplugged). If regulator voltage monitoring is not required (i.e. it is known that the VREGO voltage is always present), the
sense circuit should be left disabled.

During suspend, the bias current for the regulator can be reduced if the current requirements in EM2/3 are low. The bias current in
EM2/3 is controlled by BIASPROGEM23 in USB_CTRL. When EM2/3 is entered, the bias current for the regulator switches to what is
specified in BIASPROGEM23 in USB_CTRL. When entering EMO again (due to USB resume/reset signaling or any other wake-up in-
terrupt) the regulator switches back to using the value specified in BIASPROGEMO01 in USB_CTRL.

15.3.5 Interrupts and PRS

Interrupts from the core and system part share a common USB interrupt line to the CPU. The interrupt flags for the system part are
grouped together in the USB_IF register. The interrupt events from the core are controlled by several core interrupt flag registers.

There are two PRS outputs from the USB: SOF and SOFSR. In Host mode, SOF toggles every time an SOF is generated. In Device
mode, SOF toggles every time an SOF token is received from the USB host or when an SOF token is missed at the start of frame. In
Host mode, SOFSR toggles every time an SOF is successfully transmitted. In Device mode, SOFSR toggles only when a valid SOF
token is received from the USB host. Both PRS outputs must be synchronized in the PRS when used (i.e. it is an asynchronous PRS
output). The edge-to-pulse converter in the PRS can be used to convert the edges into pulses if needed. The PRS outputs go to 0 in
EM2/3.

15.3.6 USB in EM2

During suspend and session-off EM2 should be used to save power and meet the average current requirements dictated by the USB
standard. Before entering EM2, HFCORECLKygsgc must be switched from 48 MHz to 32 kHz (LFXO or LFRCO). This is done using the
CMU_CMD and CMU_STATUS registers. While HFCORECLKyspgc is 32 kHz, the USB core registers (starting from offset 0x3C000)
cannot be accessed and the the internal DMA in the USB core will not be able to access the AHB bus. Upon EM2 wake-up, HFCOR-
ECLKysgc must be switched back to 48 MHz before accessing the core registers. The device always starts up from HFRCO so soft-
ware must restart HFXO and switch from HFRCO to HFXO. The USB system clock, HFCORECLKysg, must be kept enabled during
EM2. The USB system registers can be accessed immediately upon EM2 wake-up, while running from HFRCO. Follow the steps out-
lined the USB Core Description when entering EM2 during suspend and session-off.

The FIFO content is lost when entering EM2. In addition, most of the USB core registers are reset and therefore need to be backed up
in RAM.

EM3 cannot be used when the USB is active. However, EM3 can be used while waiting for the internal voltage regulator to be activated
(i.e. VBUS becomes 5V).



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4 USB Core Description

This section describes the programming requirements for the USB Core in Host and Device modes.

Important features/parameters for the core are:

* HNP- and SRP-Capable OTG (Device and Host)

* Internal DMA (Buffer Pointer Based)

» Dedicated TX FIFOS for each endpoint in device mode

» 6 IN/OUT endpoints in addition to endpoint 0 (in device mode)
* 14 host channels (in host mode)

+ Dynamic FIFO sizing

* Non-Periodic Request Queue Depth: 8

* Host Mode Periodic Request Queue Depth: 8

The core has the following limitations:
» Link Power Management (LPM) is not supported
» ADP is not supported

Portions Copyright © 2010 Synopsys, Inc. Used with permission. Synopsys and DesignWare are registered trademarks of Synopsys,
Inc.

15.4.1 Overview: Programming the Core

silabs.com | Building a more connected world. Rev. 1.1 | 332




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Each significant programming feature of the core is discussed in a separate section.
This chapter uses abbreviations for register names and their fields. For detailed information on registers, see the end of this chapter.

The application must perform a core initialization sequence. If the cable is connected during power-up, the Current Mode of Operation
bit in the Core Interrupt register (USB_GINTSTS.CURMOD) reflects the mode. The core enters Host mode when an “A” plug is connec-
ted, or Device mode when a “B” plug is connected.

This section explains the initialization of the core after power-on. The application must follow the initialization sequence irrespective of
Host or Device mode operation. All core global registers are initialized according to the core’s configuration.

1. Program the following fields in the Global AHB Configuration (USB_GAHBCFG) register.
+ DMA Mode bit
» AHB Burst Length field
* Global Interrupt Mask bit = 1
» Non-periodic TxFIFO Empty Level (can be enabled only when the core is operating in Slave mode as a host.)
» Periodic TxFIFO Empty Level (can be enabled only when the core is operating in Slave mode)
2. Program the following field in the Global Interrupt Mask (USB_GINTMSK) register:
+ USB_GINTMSK.RXFLVLMSK = 0
3. Program the following fields in USB_GUSBCFG register.
» HNP Capable bit
» SRP Capable bit
+ External HS PHY or Internal FS Serial PHY Selection bit
» Time-Out Calibration field
* USB Turnaround Time field
4.The software must unmask the following bits in the USB_GINTMSK register.
* OTG Interrupt Mask
* Mode Mismatch Interrupt Mask

5. The software can read the USB_GINTSTS.CURMOD bit to determine whether the core is operating in Host or Device mode. The
software the follows either the 15.4.1.1 Host Initialization or 15.4.1.2 Device Initialization sequence.

Note: The core is designed to be interrupt-driven. Polling interrupt mechanism is not recommended: this may result in undefined resolu-
tions.

Note: In device mode, just after Power On Reset or a Soft Reset, the USB_GINTSTS.SOF bit is set to 1 for debug purposes. This
status must be cleared and can be ignored.

silabs.com | Building a more connected world. Rev. 1.1 | 333




EFM32WG Reference Manual

15.4.1.1 Host Initialization

To initialize the core as host, the application must perform the following steps.

.Program USB_GINTMSK.PRTINT to unmask.

.Program the USB_HCFG register to select full-speed host.

.Program the USB_HPRT.PRTPWR bit to 1. This drives VBUS on the USB.

.Wait for the USB_HPRT.PRTCONNDET interrupt. This indicates that a device is connect to the port.
.Program the USB_HPRT.PRTRST bit to 1. This starts the reset process.

.Wait at least 10 ms for the reset process to complete.

.Program the USB_HPRT.PRTRST bit to 0.

.Wait for the USB_ HPRT.PRTENCHNG interrupt.

.Read the USB_HPRT.PRTSPD field to get the enumerated speed.

.Program the USB_HFIR register with a value corresponding to the selected PHY clock. At this point, the host is up and running and
the port register begins to report device disconnects, etc. The port is active with SOFs occurring down the enabled port.

11. Program the RXFSIZE register to select the size of the receive FIFO.

12. Program the NPTXFSIZE register to select the size and the start address of the Non-periodic Transmit FIFO for non-periodic trans-
actions.

13. Program the USB_HPTXFSIZ register to select the size and start address of the Periodic Transmit FIFO for periodic transactions.

O © 00N O O b WN -

-

To communicate with devices, the system software must initialize and enable at least one channel as described in 15.4.1.2 Device Initi-
alization.

15.4.1.1.1 Host Connection

The following steps explain the host connection flow:

1.When the USB Cable is plugged to the Host port, the core triggers USB_GINTSTS.CONIDSTSCHNG interrupt.

2.When the Host application detects USB_GINTSTS.CONIDSTSCHNG interrupt, the application can perform one of the following ac-
tions:

* Turn on VBUS by setting USB_HPRT.PRTPWR = 1 or
» Wait for SRP Signaling from Device to turn on VBUS.
3. The PHY indicates VBUS power-on by detecting a VBUS valid voltage level.
4.When the Host Core detects the device connection, it triggers the Host Port Interrupt (USB_GINTSTS.PRTINT) to the application.

5.When USB_GINTSTS.PRTINT is triggered, the application reads the USB_HPRT register to check if the Port Connect Detected
(USB_HPRT.PRTCONNDET) bit is set or not.

15.4.1.1.2 Host Disconnection

The following steps explain the host disconnection flow:

1.When the Device is disconnected from the USB Cable (but the cable is still connected to the USB host), the Core triggers
USB_GINTSTS.DISCONNINT (Disconnect Detected) interrupt.

Note: If the USB cable is disconnected from the Host port without removing the device, the core generates an additional interrupt -
USB_GINTSTS.CONIDSTSCHNG (Connector ID Status Change).

2. The Host application can choose to turn off the VBUS by programming USB_HPRT.PRTPWR = 0.

15.4.1.2 Device Initialization

The application must perform the following steps to initialize the core at device on, power on, or after a mode change from Host to
Device.



EFM32WG Reference Manual

1. Program the following fields in USB_DCFG register.
» Device Speed
* Non-Zero-Length Status OUT Handshake
+ Periodic Frame Interval
2.Program the USB_GINTMSK register to unmask the following interrupts.
+ USB Reset
* Enumeration Done
» Early Suspend
» USB Suspend

3. Wait for the USB_GINTSTS.USBRST interrupt, which indicates a reset has been detected on the USB and lasts for about 10 ms.
On receiving this interrupt, the application must perform the steps listed in 15.4.4.1.1 Initialization on USB Reset.

4. Wait for the USB_GINTSTS.ENUMDONE interrupt. This interrupt indicates the end of reset on the USB. On receiving this interrupt,
the application must read the USB_DSTS register to determine the enumeration speed and perform the steps listed in
15.4.4.1.2 Initialization on Enumeration Completion.

At this point, the device is ready to accept SOF packets and perform control transfers on control endpoint 0.

15.4.1.2.1 Device Connection

The device connect process varies depending on the if the VBUS is on or off when the device is connected to the USB cable.

When VBUS is on When the Device is Connected

If VBUS is on when the device is connected to the USB cable, there is no SRP from the device. The device connection flow is as fol-
lows:

1. The device triggers the USB_GINTSTS.SESSREQINT [bit 30] interrupt bit.

2.When the device application detects the USB_GINTSTS.SESSREQINT interrupt, it programs the required bits in the USB_DCFG
register.

3.When the Host drives Reset, the Device triggers USB_GINTSTS.USBRST [bit 12] on detecting the Reset. The host then follows
the USB 2.0 Enumeration sequence.

When VBUS is off When the Device is Connected

If VBUS is off when the device is connected to the USB cable, the device initiates SRP in OTG Revision 1.3 mode. The device connec-
tion flow is as follows:

1. The application initiates SRP by writing the Session Request bit in the OTG Control and Status register. The core perform data-line
pulsing followed by VBUS pulsing.

2.The host starts a new session by turning on VBUS, indicating SRP success. The core interrupts the application by setting the Ses-
sion Request Success Status Change bit in the OTG Interrupt Status register.

3. The application reads the Session Request Success bit in the OTG Control and Status register and programs the required bits in
USB_DCFG register.

4.When Host drives Reset, the Device triggers USB_GINTSTS.USBRST on detecting the Reset. The host then follows the USB 2.0
Enumeration sequence.

15.4.1.2.2 Device Disconnection

The device session ends when the USB cable is disconnected or if the VBUS is switched off by the Host.
The device disconnect flow is as follows:

1. When the USB cable is unplugged or when the VBUS is switched off by the Host, the Device core trigger USB_GINTSTS.OTGINT
[bit 2] interrupt bit.

2.When the device application detects USB_GINTSTS.OTGINT interrupt, it checks that the USB_GOTGINT.SESENDDET (Session
End Detected) bit is set to 1.

15.4.1.2.3 Device Soft Disconnection



EFM32WG Reference Manual

The application can perform a soft disconnect by setting the Soft disconnect bit (SFTDISCON) in Device Control Register (USB_DCTL).

Send/Receive USB Transfers -> Soft Disconnect -> Soft reset -> USB Device Enumeration

Sequence of operations:
1. The application configures the device to send or receive transfers.
2. The application sets the Soft disconnect bit (SFTDISCON) in the Device Control Register (USB_DCTL).
3. The application sets the Soft Reset bit (CSFTRST) in the Reset Register (USB_GRSTCTL).
4. Poll the USB_GRSTCTL register until the core clears the soft reset bit, which ensures the soft reset is completed properly.
5. Initialize the core according to the instructions in 15.4.1.2 Device Initialization.

Suspend -> Soft Disconnect -> Soft Reset -> USB Device Enumeration

Sequence of operations:
1. The core detects a USB suspend and generates a Suspend Detected interrupt.

2.The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register, the core puts the PHY in suspend
mode, and the PHY clock stops.

3. The application clears the Stop PHY Clock bit in the Power and Clock Gating Control register, and waits for the PHY clock to come
back. The core takes the PHY back to normal mode, and the PHY clock comes back.

4.The application sets the Soft disconnect bit (SFTDISCON) in Device Control Register (USB_DCTL).

5. The application sets the Soft Reset bit (CSFTRST) in the Reset Register (USB_GRSTCTL).

6. Poll the USB_GRSTCTL register until the core clears the soft reset bit, which ensures the soft reset is completed properly.
7. Initialize the core according to the instructions in 15.4.1.2 Device Initialization.

15.4.2 Modes of Operation

¢ 15.4.2.1 Overview: DMA/Slave Modes
* 15.4.2.2 DMA Mode
¢ 15.4.2.3 Slave Mode

15.4.2.1 Overview: DMA/Slave Modes

The application can operate the core in either of two modes:

* In 15.4.2.2 DMA Mode — The core fetches the data to be transmitted or updates the received data on the AHB.
* In 15.4.2.3 Slave Mode — The application initiates the data transfers for data fetch and store.

15.4.2.2 DMA Mode

In DMA Mode, the OTG host uses the AHB master Interface for transmit packet data fetch (AHB to USB) and receive data update (USB
to AHB). The AHB master uses the programmed DMA address (USB_HCx DMAADDR register in host mode and
USB_DIEPx_DMAADDR/USB_DOEPx_DMAADDR register in device mode) to access the data buffers.

15.4.2.2.1 Transfer-Level Operation

In DMA mode, the application is interrupted only after the programmed transfer size is transmitted or received (provided the core de-
tects no NAK/Timeout/Error response in Host mode, or Timeout/CRC Error in Device mode). The application must handle all transac-
tion errors. In Device mode, all the USB errors are handled by the core itself.

15.4.2.2.2 Transaction-Level Operation

This mode is similar to transfer-level operation with the programmed transfer size equal to one packet size (either maximum packet
size, or a short packet size).

15.4.2.3 Slave Mode



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

In Slave mode, the application can operate the core either in transaction-level (packet-level) operation or in pipelined transaction-level
operation.

15.4.2.3.1 Transaction-Level Operation

The application handles one data packet at a time per channel/endpoint in transaction-level operations. Based on the handshake re-
sponse received on the USB, the application determines whether to retry the transaction or proceed with the next, until the end of the
transfer. The application is interrupted on completion of every packet. The application performs transaction-level operations for a chan-
nel/endpoint for a transmission (host: OUT/device: IN) or reception (host: IN/device: OUT) as shown in the following figures.

Host Mode

For an OUT transaction, the application enables the channel and writes the data packet into the corresponding (Periodic or Non-period-
ic) transmit FIFO. The core automatically writes the channel number into the corresponding (Periodic or Non-periodic) Request Queue,
along with the last DWORD write of the packet. For an IN transaction, the application enables the channel and the core automatically
writes the channel number into the corresponding Request queue. The application must wait for the packet received interrupt, then
empty the packet from the receive FIFO.

silabs.com | Building a more connected world. Rev. 1.1 | 337




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Device Mode

For an IN transaction, the application enables the endpoint, writes the data packet into the corresponding transmit FIFO, and waits for
the packet completion interrupt from the core. For an OUT transaction, the application enables the endpoint, waits for the packet re-
ceived interrupt from the core, then empties the packet from the receive FIFO.

Note: The application has to finish writing one complete packet before switching to a different channel/endpoint FIFO. Violating this rule
results in an error.

A 4
Set up the
channel/endpoint

A

v

Write 1 packet to
the Transmit FIFO

> Get interrupt?

Rewrite packet to the Get channel/endpoint
Transmit FIFO interrupt status

YES

Retry required?

Transfer
complete?

Figure 15.8. Transmit Transaction-Level Operation in Slave Mode

silabs.com | Building a more connected world. Rev. 1.1 | 338




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Set up the
Channel / Endpoint

RXFLVL or
Ch/EP interrupt?

Read Receive
Status Queue

YES

Retry required?

NO
4

Read the packet
from the Receive
FIFO

NO
Transfer complete?

Figure 15.9. Receive Transaction-Level Operation in Slave Mode

15.4.2.3.2 Pipelined Transaction-Level Operation

The application can pipeline more than one transaction (IN or OUT) with pipelined transaction-level operation, which is analogous to
Transfer mode in DMA mode. In pipelined transaction-level operation, the application can program the core to perform multiple transac-
tions. The advantage of this mode compared to transaction-level operation is that the application is not interrupted on a packet basis.

15.4.2.3.2.1 Host Mode

For an OUT transaction, the application sets up a transfer and enables the channel. The application can write multiple packets back-to-
back for the same channel into the transmit FIFO, based on the space availability. It can also pipeline OUT transactions for multiple
channels by writing into the HCHARn register, followed by a packet write to that channel. The core writes the channel number, along
with the last DWORD write for the packet, into the Request queue and schedules transactions on the USB in the same order.

For an IN transaction, the application sets up a transfer and enables the channel, and the core writes the channel number into the Re-
quest queue. The application can schedule IN transactions on multiple channels, provided space is available in the Request queue. The
core initiates an IN token on the USB only when there is enough space to receive at least of one maximum-packet-size packet of the
channel in the top of the Request queue.

silabs.com | Building a more connected world. Rev. 1.1 | 339




EFM32WG Reference Manual

15.4.2.3.2.2 Device Mode

For an IN transaction, the application sets up a transfer and enables the endpoint. The application can write multiple packets back-to-
back for the same endpoint into the transmit FIFO, based on available space. It can also pipeline IN transactions for multiple channels
by writing into the USB_DIEPx_CTL register followed by a packet write to that endpoint. The core writes the endpoint number, along
with the last DWORD write for the packet into the Request queue. The core transmits the data in the transmit FIFO when an IN token is
received on the USB.

For an OUT transaction, the application sets up a transfer and enables the endpoint. The core receives the OUT data into the receive
FIFO, when it has available space. As the packets are received into the FIFO, the application must empty data from it.

From this point on in this chapter, the terms “Pipelined Transaction mode” and “Transfer mode” are used interchangeably.

15.4.3 Host Programming Model

Before you program the Host, read 15.4.1 Overview: Programming the Core and 15.4.2 Modes of Operation.

This section discusses the following topics:

15.4.3.1 Channel Initialization

15.4.3.2 Halting a Channel

15.4.3.3 Sending a Zero-Length Packet in Slave/DMA Modes
15.4.3.4 Handling Babble Conditions

15.4.3.5 Handling Disconnects

15.4.3.6 Host Programming Operations

* 15.4.3.6.1 Writing the Transmit FIFO in Slave Mode

* 15.4.3.6.2 Reading the Receive FIFO in Slave Mode

15.4.3.1 Channel Initialization

The application must initialize one or more channels before it can communicate with connected devices. To initialize and enable a
channel, the application must perform the following steps.

1. Program the USB_GINTMSK register to unmask the following:
2. Channel Interrupt
* Non-periodic Transmit FIFO Empty for OUT transactions (applicable for Slave mode that operates in pipelined transaction-level
with the Packet Count field programmed with more than one).
* Non-periodic Transmit FIFO Half-Empty for OUT transactions (applicable for Slave mode that operates in pipelined transaction-
level with the Packet Count field programmed with more than one).
3. Program the USB_USB_HAINTMSK register to unmask the selected channels’ interrupts.
4.Program the HCINTMSK register to unmask the transaction-related interrupts of interest given in the Host Channel Interrupt regis-
ter.

5. Program the selected channel’s USB_HCx_TSIZ register.

Program the register with the total transfer size, in bytes, and the expected number of packets, including short packets. The appli-
cation must program the PID field with the initial data PID (to be used on the first OUT transaction or to be expected from the first
IN transaction).

6. Program the selected channels’ USB_HCx_DMAADDR register(s) with the buffer start address (DMA mode only).

7.Program the USB_HCx_CHAR register of the selected channel with the device’s endpoint characteristics, such as type, speed,
direction, and so forth. (The channel can be enabled by setting the Channel Enable bit to 1 only when the application is ready to
transmit or receive any packet).

Repeat the above steps for other channels.

Note: De-allocate channel means after the transfer has completed, the channel is disabled. When the application is ready to start the
next transfer, the application re-initializes the channel by following these steps.



EFM32WG Reference Manual

15.4.3.2 Halting a Channel

The application can disable any channel by programming the USB_HCx_CHAR register with the USB_HCx_CHAR.CHDIS and
USB_HCx_CHAR.CHENA bits set to 1. This enables the host to flush the posted requests (if any) and generates a Channel Halted
interrupt. The application must wait for the USB_HCx_INT.CHHLTD interrupt before reallocating the channel for other transactions. The
host does not interrupt the transaction that has been already started on USB.

In Slave mode operation, before disabling a channel, the application must ensure that there is at least one free space available in the
Non-periodic Request Queue (when disabling a non-periodic channel) or the Periodic Request Queue (when disabling a periodic chan-
nel). The application can simply flush the posted requests when the Request queue is full (before disabling the channel), by program-
ming the USB_HCx_CHAR register with the USB_HCx_CHAR.CHDIS bit set to 1, and the USB_HCx_CHAR.CHENA bit reset to 0.

The core generates a RXFLVL interrupt when there is an entry in the queue. The application must read/ pop the USB_GRXSTSP regis-
ter to generate the Channel Halted interrupt.

To disable a channel in DMA mode operation, the application need not check for space in the Request queue. The host checks for
space in which to write the Disable request on the disabled channel’s turn during arbitration. Meanwhile, all posted requests are drop-
ped from the Request queue when the USB_HCx_CHAR.CHDIS bit is set to 1.

The application is expected to disable a channel under any of the following conditions:

1.When a USB_HCx_INT.XFERCOMPL interrupt is received during a non-periodic IN transfer or high-bandwidth interrupt IN transfer
(Slave mode only)

2.When a USB_HCx_INT.STALL, USB_HCx_INT.XACTERR, USB_HCx_INT.BBLERR, or USB_HCx_INT.DATATGLERR interrupt
is received for an IN or OUT channel (Slave mode only). For high-bandwidth interrupt INs in Slave mode, once the application has
received a DATATGLERR interrupt it must disable the channel and wait for a Channel Halted interrupt. The application must be
able to receive other interrupts (DATATGLERR, NAK, Data, XACTERR, BBLERR) for the same channel before receiving the halt.

3.When a USB_GINTSTS.DISCONNINT (Disconnect Device) interrupt is received. The application must check for the
USB_HPRT.PRTCONNSTS, because when the device directly connected to the host is disconnected, USB_HPRT.PRTCONNSTS
is reset. The software must issue a soft reset to ensure that all channels are cleared. When the device is reconnected, the host
must issue a USB Reset.

4.When the application aborts a transfer before normal completion (Slave and DMA modes).

Note: In DMA mode, keep the following guideline in mind: Channel disable must not be programmed for periodic channels. At the end
of the next frame (in the worst case), the core generates a channel halted and disables the channel automatically.

15.4.3.3 Sending a Zero-Length Packet in Slave/DMA Modes

To send a zero-length data packet, the application must initialize an OUT channel as follows.

1. Program the USB_HCx_TSIZ register of the selected channel with a correct PID, XFERSIZE = 0, and PKTCNT = 1.

2. Program the USB_HCx_CHAR register of the selected channel with CHENA = 1 and the device’s endpoint characteristics, such as
type, speed, and direction.

The application must treat a zero-length data packet as a separate transfer, and cannot combine it with a non-zero-length transfer.

15.4.3.4 Handling Babble Conditions

The core handles two cases of babble: packet babble and port babble. Packet babble occurs if the device sends more data than the
maximum packet size for the channel. Port babble occurs if the core continues to receive data from the device at EOF2 (the end of
frame 2, which is very close to SOF).

When the core detects a packet babble, it stops writing data into the Rx buffer and waits for the end of packet (EOP). When it detects
an EOP, it flushes already-written data in the Rx buffer and generates a Babble interrupt to the application.

When detects a port babble, it flushes the RxFIFO and disables the port. The core then generates a Port Disabled Interrupt
(USB_GINTSTS.PRTINT, USB_HPRT.PRTENCHNG). On receiving this interrupt, the application must determine that this is not due to
an overcurrent condition (another cause of the Port Disabled interrupt) by checking USB_HPRT.PRTOVRCURRACT, then perform a
soft reset. The core does not send any more tokens after it has detected a port babble condition.

15.4.3.5 Handling Disconnects



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

If the device is disconnected suddenly, a USB_GINTSTS.DISCONNINT interrupt is generated. When the application receives this inter-
rupt, it must issue a soft reset by programming the USB_GRSTCTL.CSFTRST bit.

15.4.3.6 Host Programming Operations

The table below provides links to the programming sequence for the different types of USB transactions.

Table 15.1. Host Programming Operations

Mode IN OUT/SETUP

Control

Slave 15.4.3.6.5 Bulk and Control IN Transac- 15.4.3.6.4 Bulk and Control OUT/SETUP
tions in Slave Mode Transactions in Slave Mode

DMA 15.4.3.6.8 Bulk and Control IN Transac- 15.4.3.6.7 Bulk and Control OUT/SETUP
tions in DMA Mode Transactions in DMA Mode

Bulk

Slave 15.4.3.6.5 Bulk and Control IN Transac- 15.4.3.6.4 Bulk and Control OUT/SETUP
tions in Slave Mode Transactions in Slave Mode

DMA 15.4.3.6.8 Bulk and Control IN Transac- 15.4.3.6.7 Bulk and Control OUT/SETUP
tions in DMA Mode Transactions in DMA Mode

Interrupt

Slave 15.4.3.6.10 Interrupt IN Transactions in 15.4.3.6.9 Interrupt OUT Transactions in
Slave Mode Slave Mode

DMA 15.4.3.6.12 Interrupt IN Transactions in 15.4.3.6.11 Interrupt OUT Transactions in
DMA Mode DMA Mode

Isochronous

Slave 15.4.3.6.14 Isochronous IN Transactions in | 15.4.3.6.13 Isochronous OUT Transactions
Slave Mode in Slave Mode

DMA 15.4.3.6.16 Isochronous IN Transactions in | 15.4.3.6.15 Isochronous OUT Transactions

DMA Mode

in DMA Mode

silabs.com | Building a more connected world.

Rev. 1.1 | 342




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.3.6.1 Writing the Transmit FIFO in Slave Mode

The following figure shows the flow diagram for writing to the transmit FIFO in Slave mode. The host automatically writes an entry (OUT
request) to the Periodic/Non-periodic Request Queue, along with the last DWORD write of a packet. The application must ensure that
at least one free space is available in the Periodic/Non-periodic Request Queue before starting to write to the transmit FIFO. The appli-
cation must always write to the transmit FIFO in DWORDs. If the packet size is non-DWORD aligned, the application must use padding.
The host determines the actual packet size based on the programmed maximum packet size and transfer size.

Read USB_GNPTXSTS /
USB_HPTXFSIZ registers
for available FIFO and
Queue spaces
A

Wait for b 4
USB_GAHBCF(i,rNPTXFEMPLVL 1 MPS or LPS
IFO space available?
USB_GAHBCFG, PTXFEMPLVL
interrupt

Write 1 packet data
to Transmit FIFO

More packets
to send?

MPS: Max Packet Size
LPS: Last Packet Size

Figure 15.10. Transmit FIFO Write Task in Slave Mode

silabs.com | Building a more connected world. Rev. 1.1 | 343




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.3.6.2 Reading the Receive FIFO in Slave Mode

The following figure shows the flow diagram for reading the receive FIFO in Slave mode. The application must ignore all packet sta-

tuses other than IN Data Packet (Ob0010).
a0

v
NO RXFLVL
Interrupt?
YES
v
Unmask RXFLVL Mask RXFLVL Unmask RXFLVL
interrupt interrupt interrupt

t v 1

Read the received Read

packet from the
Receive FIFO USB_GRXSTSP

A

NO

PKTSTS = 0b00107?

YES NO

BCNT > 0?

Figure 15.11. Receive FIFO Read Task in Slave Mode

15.4.3.6.3 Control Transactions in Slave Mode

Setup, Data, and Status stages of a control transfer must be performed as three separate transfers. Setup- Data- or Status-stage OUT
transactions are performed similarly to the bulk OUT transactions explained in 15.4.3.6.4 Bulk and Control OUT/SETUP Transactions in
Slave Mode. Data- or Status-stage IN transactions are performed similarly to the bulk IN transactions explained in 15.4.3.6.5 Bulk and
Control IN Transactions in Slave Mode. For all three stages, the application is expected to set the USB_HC1_CHAR.EPTYPE field to
Control. During the Setup stage, the application is expected to set the USB_HC1_TSIZ.PID field to SETUP.

15.4.3.6.4 Bulk and Control OUT/SETUP Transactions in Slave Mode

silabs.com | Building a more connected world. Rev. 1.1 | 344




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization. See Figure
15.10 Transmit FIFO Write Task in Slave Mode on page 343 and 15.4.3.6.2 Reading the Receive FIFO in Slave Mode for Read or
Write data to and from the FIFO in Slave mode.

A typical bulk or control OUT/SETUP pipelined transaction-level operation in Slave mode is shown in Figure 15.12 Normal Bulk/Control
OUT/SETUP and Bulk/Control IN Transactions in Slave Mode on page 346. See channel 1 (ch_1). Two bulk OUT packets are trans-
mitted. A control SETUP transaction operates the same way but has only one packet. The assumptions are:

« The application is attempting to send two maximum-packet-size packets (transfer size = 1,024 bytes).
» The Non-periodic Transmit FIFO can hold two packets (128 bytes for FS).
» The Non-periodic Request Queue depth = 4.

15.4.3.6.4.1 Normal Bulk and Control OUT/SETUP Operations

The sequence of operations in the following figure (channel 1) is as follows:

1. Initialize channel 1 as explained in 15.4.3.1 Channel Initialization.

2. Write the first packet for channel 1.

3. Along with the last DWORD write, the core writes an entry to the Non-periodic Request Queue.

4. As soon as the non-periodic queue becomes non-empty, the core attempts to send an OUT token in the current frame.
5. Write the second (last) packet for channel 1.

6. The core generates the XFERCOMPL interrupt as soon as the last transaction is completed successfully.

7.In response to the XFERCOMPL interrupt, de-allocate the channel for other transfers.

silabs.com | Building a more connected world. Rev. 1.1 | 345




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Application | AHB | Host
| init_reg(ch_1) | | |
| | init_reg(ch_2) | ¢ \
write_tx_fifo 3 4
(ch_1) 1 MPS
Y
set_ch_en
(ch_2) A ch 1
N - ch_2
write_tx_fifo P
(ch_1) ch_
v Gj 1MPS ch 2
set_ch_en
(ch_2) |
I I 3
., RXFLVL interrupt A
h 4 -1
-
set_ch_en _-
(ch_2) |
_-
_ - - ch_1
- | ch_2
_ _.
- - I A ch_2
& | ch_2
read_rx_sts
read_rx_fifo
v | XFERCOMPL interrupt |
_ ¢
set_ch_en P | |
(ch_2) e
De-allocate | |
(ch_1) |
., RXFLVL interrupt
P b
— -
— -
— -
— -
— -
A/ -
read_rx_sts . |
read_rx_fifo 1, RXFLVL interrupt ch_2

p——
p——
—
- —
d —_
4

| | read_rx_sts | }—@ R
¢4. -
Disable
(ch_2) @
Y
| | read_rx_sts

¢4. _——
De-allocate
(ch_2)

| XFERCOMPL interrupt |

_ RXFLVL interrupt

| CHHLTD interrupt

usB

| Non-Periodic Request|
Queue
Assume that this queue
can hold 4 entries.

Device

OUT-

DATAO
MPS

Figure 15.12. Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in Slave Mode

15.4.3.6.4.2 Handling Interrupts

silabs.com | Building a more connected world.

Rev. 1.1 | 346




EFM32WG Reference Manual

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in Slave mode is shown in the following
code samples.

Unmask ( NAK/ XACTERR/ STALL/ XFERCOVPL)
i f ( XFERCOWPL)
{

Reset Error Count

Mask ACK

De- al | ocat e Channel

}

else if (STALL)

{
Transfer Done = 1
Unmask CHHLTD
Di sabl e Channel

}
else if (NAK or XACTERR)
{
Rewi nd Buffer Pointers
Unmask CHHLTD
Di sabl e Channel

i f (XACTERR)
{
I ncrenent Error Count
Unmask ACK
}
el se
Reset Error Count
}
}
else if (CHHLTD)
Mask CHHLTD
if (Transfer Done or (Error_count == 3))

De- al | ocat e Channel

}
el se
{
Re-initialize Channel
}
}
else if (ACK)
{
Reset Error Count
Mask ACK
}

The application is expected to write the data packets into the transmit FIFO when space is available in the transmit FIFO and the Re-
quest queue. The application can make use of USB_GINTSTS.NPTXFEMP interrupt to find the transmit FIFO space.

The application is expected to write the requests as and when the Request queue space is available and until the XFERCOMPL inter-
rupt is received.

15.4.3.6.5 Bulk and Control IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization. See Figure
15.10 Transmit FIFO Write Task in Slave Mode on page 343 and Figure 15.11 Receive FIFO Read Task in Slave Mode on page 344
for read or write data to and from the FIFO in Slave mode.

A typical bulk or control IN pipelined transaction-level operation in Slave mode is shown in Figure 15.12 Normal Bulk/Control OUT/
SETUP and Bulk/Control IN Transactions in Slave Mode on page 346. See channel 2 (ch_2). The assumptions are:

1. The application is attempting to receive two maximum-sized packets (transfer size = 1,024 bytes).
2. The receive FIFO can contain at least one maximum-packet-size packet and two status DWORDs per packet (72 bytes for FS).
3. The Non-periodic Request Queue depth = 4.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.3.6.5.1 Normal Bulk and Control IN Operations

The sequence of operations in Figure 15.12 Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in Slave Mode on
page 346 is as follows:

1. Initialize channel 2 as explained in 15.4.3.1 Channel Initialization.

2.Set the USB_HC2_ CHAR.CHENA bit to write an IN request to the Non-periodic Request Queue.

3. The core attempts to send an IN token after completing the current OUT transaction.

4. The core generates an RXFLVL interrupt as soon as the received packet is written to the receive FIFO.

5.1n response to the RXFLVL interrupt, mask the RXFLVL interrupt and read the received packet status to determine the number of
bytes received, then read the receive FIFO accordingly. Following this, unmask the RXFLVL interrupt.

6. The core generates the RXFLVL interrupt for the transfer completion status entry in the receive FIFO.

7.The application must read and ignore the receive packet status when the receive packet status is not an IN data packet
(USB_GRXSTSR.PKTSTS != 0b0010).

8. The core generates the XFERCOMPL interrupt as soon as the receive packet status is read.

9.In response to the XFERCOMPL interrupt, disable the channel (see 15.4.3.2 Halting a Channel) and stop writing the
USB_HC2_CHAR register for further requests. The core writes a channel disable request to the non-periodic request queue as
soon as the USB_HC2_CHAR register is written.

10. The core generates the RXFLVL interrupt as soon as the halt status is written to the receive FIFO.
11.Read and ignore the receive packet status.

12. The core generates a CHHLTD interrupt as soon as the halt status is popped from the receive FIFO.
13.In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

Note: For Bulk/Control IN transfers, the application must write the requests when the Request queue space is available, and until the
XFERCOMPL interrupt is received.

15.4.3.6.5.2 Handling Interrupts

silabs.com | Building a more connected world. Rev. 1.1 | 348




EFM32WG Reference Manual

The channel-specific interrupt service routine for bulk and control IN transactions in Slave mode is shown in the following code sam-

ples.

Unmask ( XACTERR/ XFERCOWPL/ BBLERR/ STALL/ DATATGLERR)
i f (XFERCOWPL)
{

Reset Error Count

Unmask CHHLTD

Di sabl e Channel

Reset Error Count

Mask ACK

}
else if (XACTERR or BBLERR or STALL)

{
Unmask CHHLTD

Di sabl e Channel

i f (XACTERR)

{
I ncrenent Error Count
Unmask ACK

}

}
else if (CHHLTD)

Mask CHHLTD
if (Transfer Done or (Error_count == 3))

De- al | ocat e Channel

}
el se
{
Re-initialize Channel
}

}
else if (ACK)

Reset Error Count

Mask ACK
}
el se if (DATATGLERR)
{

Reset Error Count
}

15.4.3.6.6 Control Transactions in DMA Mode

Setup, Data, and Status stages of a control transfer must be performed as three separate transfers. Setup- and Data- or Status-stage
OUT transactions are performed similarly to the bulk OUT transactions explained in 15.4.3.6.7 Bulk and Control OUT/SETUP Transac-
tions in DMA Mode. Data- or Status-stage IN transactions are performed similarly to the bulk IN transactions explained in
15.4.3.6.8 Bulk and Control IN Transactions in DMA Mode. For all three stages, the application is expected to set the
USB_HC1_CHAR.EPTYPE field to Control. During the Setup stage, the application is expected to set the USB_HC1_TSIZ.PID field to

SETUP.

15.4.3.6.7 Bulk and Control OUT/SETUP Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization.

This section discusses the following topics:

¢ 15.4.3.6.7.1 Overview

* 15.4.3.6.7.2 Normal Bulk and Control OUT/SETUP Operations

* 15.4.3.6.7.3 NAK Handling with DMA
* 15.4.3.6.7.4 Handling Interrupts

15.4.3.6.7.1 Overview



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

» The application is attempting to send two maximum-packet-size packets (transfer size = 1,024 bytes).
» The Non-periodic Transmit FIFO can hold two packets (128 bytes for FS).
» The Non-periodic Request Queue depth = 4.

15.4.3.6.7.2 Normal Bulk and Control OUT/SETUP Operations

The sequence of operations in Figure 15.12 Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in Slave Mode on
page 346 is as follows:

1. Initialize and enable channel 1 as explained in 15.4.3.1 Channel Initialization.

2. The host starts fetching the first packet as soon as the channel is enabled. For DMA mode, the host uses the programmed DMA
address to fetch the packet.

3. After fetching the last DWORD of the second (last) packet, the host masks channel 1 internally for further arbitration.
4. The host generates a CHHLTD interrupt as soon as the last packet is sent.
5.In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in DMA mode is shown in 15.4.3.6.7.4 Han-
dling Interrupts.

15.4.3.6.7.3 NAK Handling with DMA

1. The Host sends a Bulk OUT Transaction.
2. The Device responds with NAK.

3.If the application has unmasked NAK, the core generates the corresponding interrupt(s) to the application. The application is not
required to service these interrupts, since the core takes care of rewinding of buffer pointers and re-initializing the Channel without
application intervention.

4.When the Device returns an ACK, the core continues with the transfer.
Optionally, the application can utilize these interrupts. If utilized by the application:

* The NAK interrupt is masked by the application.
* The core does not generate a separate interrupt when NAK is received by the Host functionality.

silabs.com | Building a more connected world. Rev. 1.1 | 350




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Application Programming Flow
1. The application programs a channel to do a bulk transfer for a particular data size in each transaction.

» Packet Data size can be up to 512 KBytes
» Zero-length data must be programmed as a separate transaction.

2. Program the transfer size register with:
» Transfer size
» Packet count

3. Program the DMA address.
4. Program the USB_HCx_CHAR to enable the channel.
5. The Interrupt handling by the application is as depicted in the flow diagram.

Note: The NAK interrupts are still generated internally. The application can mask off these interrupts from reaching it. The application
can use these interrupts optionally.

Rev. 1.1 | 351

silabs.com | Building a more connected world.




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Application AHB Host UsB Device

init_reg(ch_1)

/4/

| |
: :
init_reg(ch_2) | Non-Periodic Request |
| Queue |
. { ** | Assume that this queue can:
MPS . | hold 4 entries. |
| I
I noq I I
\I ch_1 " I
1 ch_2 ! :
MPS I
|\ Ch_1 ]
| [
I I
| | Ch_2
I I
I I
| |
| |
| ]
I I
I I
I I
| |
| |
| |
I I
I I
I I
I I I
: . :
| ] ACl )
ch_1
] ch_2
. l
1 | ch_2
I I
| | ch_2
I I
I I
! CHHLTD interrupt |
\ -

De- allocate
(ch_1)

ch_2

CHHLTD interrupt

____‘b________

Vg—
De- allocate
(ch_2)

Figure 15.13. Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in DMA Mode

15.4.3.6.7.4 Handling Interrupts

silabs.com | Building a more connected world. Rev. 1.1 | 352




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions in DMA mode is shown in the following

code samples.

Unmasked the required
USB_HAINTMSK and
USB_HCx_INTMSK status bits

Interrupt?

Read USB_HAINT to determine the
channel which caused the Interrupt
and read the corresponding
USB_HCx_INT

YES,
USB_HCx_INT.STALL =1 or

Reset USB_HCx_INT. USB_HCx_INT.XFERCOMPL =1
Err_cnt CHHLTD = 1? 1
YES, 1. Reset Err_cnt
USB_HCx_INT.XACTERR =1 2. De-allocate channel
Service based on the other interrupt
status bits namely: AHBERR,
FRMOVRERR, BBLERR and
DATATGLERR
UIEtE) RO NN 1 ) YES > ; Egjr:ir:ita?;e channel
USB_HCx_INT.ACK = 1? S .
- = 3. Reprogram Buffer pointers
NO
Err_cnt =
Err_cnt+1
1. Reprogram Buffer pointers NO
2. Re-initialize channel
YES
De-allocate
channel

Figure 15.14. Interrupt Service Routine for Bulk/Control OUT Transaction in DMA Mode

In the previous figure, the Interrupt Service Routine is not required to handle NAK responses. This is the difference of proposed flow
with respect to current flow. Similar flow is applicable for Control flow also.

The NAK status bits in USB_HCXx_INT registers are updated. The application can unmask these interrupts when it requires the core to
generate an interrupt for NAK. The NAK status is updated because during Xact_err scenarios, this status provides a means for the
application to determine whether the Xact_err occurred three times consecutively or there were NAK responses in between two
Xact_err. This provides a mechanism for the application to reset the error counter accordingly. The application must read the NAK/ACK
along with the xact_err. If NAK/ACK is not set, the Xact_err count must be incremented otherwise application must initialize the

Xact_err count to 1.

Rev. 1.1 | 353

silabs.com | Building a more connected world.




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Unnmask ( CHHLTD)
if (CHHLTD)

i f (XFERCOWL or STALL)

{
Reset Error Count (Error_count=1)
Mask ACK
De-al | ocat e Channel

}
else if (XACTERR)

if (NAK/ ACK)

{
Error_count =1
Re-initialize Channel
Rewi nd Buffer Pointers

}
el se
{
Error_count = Error_count + 1
if (Error_count == 3)
{
De al |l ocate channel
}
el se
{
Re-initialize Channel
Rewi nd Buffer Pointers
}
}
}
}
else if (ACK)
{
Reset Error Count (Error_count=1)
Mask ACK
}

As soon as the channel is enabled, the core attempts to fetch and write data packets, in multiples of the maximum packet size, to the
transmit FIFO when space is available in the transmit FIFO and the Request queue. The core stops fetching as soon as the last packet
is fetched.

15.4.3.6.8 Bulk and Control IN Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization.

A typical bulk or control IN operation in DMA mode is shown in Figure 15.13 Normal Bulk/Control OUT/SETUP and Bulk/Control IN
Transactions in DMA Mode on page 352. See channel 2 (ch_2).

The assumptions are:

1. The application is attempting to receive two maximum-packet-size packets (transfer size = 1,024 bytes).
2. The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per packet (72 bytes for FS).
3. The Non-periodic Request Queue depth = 4.

15.4.3.6.8.1 Normal Bulk and Control IN Operations

silabs.com | Building a more connected world. Rev. 1.1 | 354




EFM32WG Reference Manual

The sequence of operations in Figure 15.13 Normal Bulk/Control OUT/SETUP and Bulk/Control IN Transactions in DMA Mode on page
352 is as follows:

1. Initialize and enable channel 2 as explained in 15.4.3.1 Channel Initialization.

2.The host writes an IN request to the Request queue as soon as channel 2 receives the grant from the arbiter. (Arbitration is per-
formed in a round-robin fashion, with fairness.).

3. The host starts writing the received data to the system memory as soon as the last byte is received with no errors.
4. When the last packet is received, the host sets an internal flag to remove any extra IN requests from the Request queue.
5. The host flushes the extra requests.

6. The final request to disable channel 2 is written to the Request queue. At this point, channel 2 is internally masked for further arbi-
tration.

7.The host generates the CHHLTD interrupt as soon as the disable request comes to the top of the queue.
8.In response to the CHHLTD interrupt, de-allocate the channel for other transfers.

15.4.3.6.8.2 Handling Interrupts
The channel-specific interrupt service routine for bulk and control IN transactions in DMA mode is shown in the following flow:

Unmask ( CHHLTD)
i f (CHHLTD)

i f (XFERCOWPL or STALL or BBLERR)
{
Reset Error Count Mask ACK De-all ocate Channel
}
else if (XACTERR)

if (Error_count == 2)

De- al | ocat e Channel

}
el se
{
Unmask ACK
Unmask NAK
Unmask DATATGLERR
I ncrement Error
Count Re-initialize Channel
}
}
}
else if (ACK or NAK or DATATCGLERR)
{
Reset Error Count
Mask ACK
Mask NAK
Mask DATATGLERR
}

15.4.3.6.9 Interrupt OUT Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization. See Figure
15.10 Transmit FIFO Write Task in Slave Mode on page 343 and Figure 15.11 Receive FIFO Read Task in Slave Mode on page 344
for read or write data to and from the FIFO in Slave mode.

A typical interrupt OUT operation in Slave mode is shown in Figure 15.15 Normal Interrupt OUT/IN Transactions in Slave Mode on page
357. See channel 1 (ch_1). The assumptions are:

» The application is attempting to send one packet in every frame (up to 1 maximum packet size), starting with the odd frame (transfer
size = 1,024 bytes).

* The Periodic Transmit FIFO can hold one packet.

+ Periodic Request Queue depth = 4.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.3.6.9.1 Normal Interrupt OUT Operation

The sequence of operations in Figure 15.15 Normal Interrupt OUT/IN Transactions in Slave Mode on page 357 is as follows:

1.Initialize and enable channel 1 as explained in 15.4.3.1 Channel Initialization. The application must set the
USB_HC1_CHAR.ODDFRM bit.

2. Write the first packet for channel 1. For a high-bandwidth interrupt transfer, the application must write the subsequent packets up to
MC (maximum number of packets to be transmitted in the next frame times before switching to another channel).

3. Along with the last DWORD write of each packet, the host writes an entry to the Periodic Request Queue.
4. The host attempts to send an OUT token in the next (odd) frame.

5. The host generates an XFERCOMPL interrupt as soon as the last packet is transmitted successfully.

6. In response to the XFERCOMPL interrupt, reinitialize the channel for the next transfer.

15.4.3.6.9.2 Handling Interrupts

silabs.com | Building a more connected world. Rev. 1.1 | 356




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

The channel-specific interrupt service routine for Interrupt OUT transactions in Slave mode is shown in the following flow:

Application | AHB | Host | UsB | Device
| init_reg(ch_1) | | | | Zeriodic Request |
ueue
| | init_reg(ch_2) | ¢ \ Assume that this queue|
write_tx_fifo 3 | can hold 4 entries. |
@j (eh) 1 MPS | |
Y
set_ch_en
(ch_2) ch_1 | |
I 2 I 4 I
| | | | Odd
AW feme
| | o
’I:XFERCOMPL interrupt l’@ UT\‘I
""" | DATAO
| init_reg(ch_1) | | \ | MPS
write_tx_fifo 1MPS p 4 ACK/|
(ch_1)
!‘ RXFLVL interrupt IN. |
L -—T I
L7 1 MPS DATAO
d it
ﬁiidjijﬁfi \@ " RXFLVL interrupt | |
Ve——————— "7 T | | Ack |
| | read_rx_sts |—@ | XFERCOMPL interrupt e \>|

L ——

¢< ————————— |
| | init_reg(ch_2) | )—@ I\L'
v v cht

I
I I
I I
set_ch_en l ch_2 l l Even
(ch_2) | | \4| | frame

—
—

‘/

I

| |init_reg(ch_1)| |

n |
I
\ 4
write_tx_fifo
(ch_1) |

I |
I

Figure 15.15. Normal Interrupt OUT/IN Transactions in Slave Mode

Unnmask ( NAK/ XACTERR/ STALL/ XFERCOVPL/ FRVOVRUN)
i f (XFERCOVPL)
{

silabs.com | Building a more connected world. Rev. 1.1 | 357




EFM32WG Reference Manual

Reset Error Count
Mask ACK
De- al | ocat e Channel

}
else if (STALL or FRMOVRUN)

{
Mask ACK
Unmask CHHLTD
Di sabl e Channel
i f (STALL)
{
Transfer Done = 1
}
}
else if (NAK or XACTERR)
{

Rewi nd Buffer Pointers
Reset Error Count
Mask ACK

Unmask CHHLTD

Di sabl e Channel

}
else if (CHHLTD)

{
Mask CHHLTD
if (Transfer Done or (Error_count == 3))
De- al | ocat e Channel
}
el se
{
Re-initialize Channel (in next b_interval - 1 Frane)
}
}
else if (ACK)
{
Reset Error Count
Mask ACK
}

The application is expected to write the data packets into the transmit FIFO when the space is available in the transmit FIFO and the
Request queue up to the count specified in the MC field before switching to another channel. The application uses the
USB_GINTSTS.NPTXFEMP interrupt to find the transmit FIFO space.

15.4.3.6.10 Interrupt IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization. See Figure
15.10 Transmit FIFO Write Task in Slave Mode on page 343 and Figure 15.11 Receive FIFO Read Task in Slave Mode on page 344
for read or write data to and from the FIFO in Slave mode.

A typical interrupt-IN operation in Slave mode is shown in Figure 15.15 Normal Interrupt OUT/IN Transactions in Slave Mode on page
357. See channel 2 (ch_2). The assumptions are:

1. The application is attempting to receive one packet (up to 1 maximum packet size) in every frame, starting with odd. (transfer size
= 1,024 bytes).

2. The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per packet (1,031 bytes for FS).

3. Periodic Request Queue depth = 4.

15.4.3.6.10.1 Normal Interrupt IN Operation



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

The sequence of operations in Figure 15.15 Normal Interrupt OUT/IN Transactions in Slave Mode on page 357 (channel 2) is as fol-
lows:

1. Initialize channel 2 as explained in 15.4.3.1 Channel Initialization. The application must set the USB_HC2_ CHAR.ODDFRM bit.

2.Set the USB_HC2_CHAR.CHENA bit to write an IN request to the Periodic Request Queue. For a high-bandwidth interrupt trans-
fer, the application must write the USB_HC2_CHAR register MC (maximum number of expected packets in the next frame) times
before switching to another channel.

3. The host writes an IN request to the Periodic Request Queue for each USB_HC2_CHAR register write with a CHENA bit set.

4. The host attempts to send an IN token in the next (odd) frame.

5. As soon as the IN packet is received and written to the receive FIFO, the host generates an RXFLVL interrupt.

6.In response to the RXFLVL interrupt, read the received packet status to determine the number of bytes received, then read the
receive FIFO accordingly. The application must mask the RXFLVL interrupt before reading the receive FIFO, and unmask after
reading the entire packet.

7.The core generates the RXFLVL interrupt for the transfer completion status entry in the receive FIFO. The application must read
and ignore the receive packet status when the receive packet status is not an IN data packet (USB_GRXSTSR.PKTSTS !=
0b0010).

8. The core generates an XFERCOMPL interrupt as soon as the receive packet status is read.

9.In response to the XFERCOMPL interrupt, read the USB_HC2_TSIZ.PKTCNT field. If USB_HC2_TSIZ.PKTCNT != 0, disable the
channel (as explained in 15.4.3.2 Halting a Channel) before re-initializing the channel for the next transfer, if any). If
USB_HC2_TSIZ.PKTCNT == 0, reinitialize the channel for the next transfer. This time, the application must reset the
USB_HC2_CHAR.ODDFRM bit.

15.4.3.6.10.2 Handling Interrupts

silabs.com | Building a more connected world. Rev. 1.1 | 359




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

The channel-specific interrupt service routine for an interrupt IN transaction in Slave mode is a follows.

Unmask ( NAK/ XACTERR/ XFERCOVPL/ BBLERR/ STALL/ FRMOVRUN DATATGLERR)
i f ( XFERCOWPL)
{

Reset Error Count

Mask ACK

if (USB_HCx_TSI Z. PKTCNT == 0)

De- al | ocat e Channel

}
el se
Transfer Done = 1
Unmask CHHLTD
Di sabl e Channel
}
}
else if (STALL or FRMOVRUN or NAK or DATATGLERR or BBLERR)
{
Mask ACK
Unmask CHHLTD
Di sabl e Channel
if (STALL or BBLERR)
Reset Error Count
Transfer Done = 1
}
else if (! FRVOVRUN)
{
Reset Error Count
}
}
else if (XACTERR)
{

I ncrenent Error Count
Unmask ACK

Unmask CHHLTD

Di sabl e Channel

}
else if (CHHLTD)

{
Mask CHHLTD
if (Transfer Done or (Error_count == 3))
De- al | ocat e Channel
}
el se
{
Re-initialize Channel (in next b_interval - 1 Frane)
}
}
else if (ACK)
Reset Error Count
Mask ACK
}

The application is expected to write the requests for the same channel when the Request queue space is available up to the count
specified in the MC field before switching to another channel (if any).

15.4.3.6.11 Interrupt OUT Transactions in DMA Mode

silabs.com | Building a more connected world. Rev. 1.1 | 360




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization.

A typical interrupt OUT operation in DMA mode is shown in Figure 15.16 Normal Interrupt OUT/IN Transactions in DMA Mode on page
363. See channel 1 (ch_1). The assumptions are:

» The application is attempting to transmit one packet in every frame (up to 1 maximum packet size of 1,024 bytes).
» The Periodic Transmit FIFO can hold one packet (1 KB for FS).
+ Periodic Request Queue depth = 4.

silabs.com | Building a more connected world. Rev. 1.1 | 361




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.3.6.11.1 Normal Interrupt OUT Operation

1. Initialize and enable channel 1 as explained in 15.4.3.1 Channel Initialization.

2.The host starts fetching the first packet as soon the channel is enabled and writes the OUT request along with the last DWORD
fetch. In high-bandwidth transfers, the host continues fetching the next packet (up to the value specified in the MC field) before

switching to the next channel.
3. The host attempts to send the OUT token in the beginning of the next odd frame.
4. After successfully transmitting the packet, the host generates a CHHLTD interrupt.
5.In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

Rev. 1.1 | 362

silabs.com | Building a more connected world.




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Application | AHB | Host | uUsB | Device
| init_reg(ch_1) | | | | Zeriodic Request |
ueue
| | init_reg(ch_2) | \ Assume that this queue |
can hold 4 entries.
2 | |
1 MPS
| |
| ch 1 | |
| | 2 | 3 |
| Q/ | | odd
S R AN B (D \/____I__ _ M
| | . |
| CHHLTD interrupt ,l@ UT.
— T
- I DATAO
| init_reg(ch_1) | | \ MPS
1 MPS 3 ACK/|
| |
| |
1 MPS DATAO
I I
| | | Ack |
[ CHHLTD interrupt | \’|
v == L — — — — I« v
| |init_reg(‘ch_2)| }._® I\): : :
Y ch_1
| ch 2 \: | Even
- 4 ____ |__ _ feme
| | — |
OuT-
v
| | DATA1\>|
| | MPS
| XFERCOMPL interrupt | |

| | init_reg(ch_1) | | I
| -

Figure 15.16. Normal Interrupt OUT/IN Transactions in DMA Mode

15.4.3.6.11.2 Handling Interrupts

silabs.com | Building a more connected world. Rev. 1.1 | 363




EFM32WG Reference Manual

The following code sample shows the channel-specific ISR for an interrupt OUT transaction in DMA mode.

Unmask ( CHHLTD)
if (CHHLTD)

i f (XFERCOVPL)
{

Reset Error Count
Mask ACK
if (Transfer Done)

De- al | ocat e Channel

}

el se

{
}

}
else if (STALL)
{

Re-initialize Channel (in next b_interval - 1 Franme)

Transfer Done = 1
Reset Error Count
Mask ACK

De- al | ocat e Channel

}
else if (NAK or FRMOVRUN)

{
Mask ACK
Rewi nd Buffer Pointers
Re-initialize Channel (in next b_interval - 1 Frane)
i f (NAK)
{

Reset Error Count
}

}
el se if (XACTERR)
if (Error_count == 2)

De- al | ocat e Channel

}
el se
{
I ncrement Error Count
Rewi nd Buffer Pointers
Unmask ACK
Re-initialize Channel (in next b_interval - 1 Frane)
}
}
}
else if (ACK)
{
Reset Error Count
Mask ACK
}

As soon as the channel is enabled, the core attempts to fetch and write data packets, in maximum packet size multiples, to the transmit
FIFO when the space is available in the transmit FIFO and the Request queue. The core stops fetching as soon as the last packet is
fetched (the number of packets is determined by the MC field of the USB_HCx_CHAR register).

15.4.3.6.12 Interrupt IN Transactions in DMA Mode



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization.

A typical interrupt IN operation in DMA mode is shown in Figure 15.16 Normal Interrupt OUT/IN Transactions in DMA Mode on page
363. See channel 2 (ch_2). The assumptions are:

+ The application is attempting to receive one packet in every frame (up to 1 maximum packet size of 1,024 bytes).
» The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per packet (1,032 bytes for FS).
» Periodic Request Queue depth = 4.

15.4.3.6.12.1 Normal Interrupt IN Operation

The sequence of operations in Figure 15.16 Normal Interrupt OUT/IN Transactions in DMA Mode on page 363 (channel 2) is as follows:

1. Initialize and enable channel 2 as explained in 15.4.3.1 Channel Initialization.

2.The host writes an IN request to the Request queue as soon as the channel 2 gets the grant from the arbiter (round-robin with
fairness). In high-bandwidth transfers, the host writes consecutive writes up to MC times.

3. The host attempts to send an IN token at the beginning of the next (odd) frame.
4. As soon the packet is received and written to the receive FIFO, the host generates a CHHLTD interrupt.
5.In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

15.4.3.6.12.2 Handling Interrupts

silabs.com | Building a more connected world. Rev. 1.1 | 365




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

The channel-specific interrupt service routine for Interrupt IN transactions in DMA mode is as follows.

Unmask ( CHHLTD)

i f (CHHLTD)
i f (XFERCOWPL)
{
Reset Error Count
Mask ACK
if (Transfer Done)
De- al | ocat e Channel
}
el se
{
Re-initialize Channel (in next b_interval - 1 Frane)
}
}
else if (STALL or BBLERR)
{

Reset Error Count
Mask ACK
De- al | ocat e Channel

}
else if (NAK or DATATGLERR or FRMOVRUN)

{
Mask ACK
Re-initialize Channel (in next b_interval - 1 Frane)
if (DATATGLERR or NAK)
{

Reset Error Count
}

}
else if (XACTERR)
if (Error_count == 2)

De- al | ocat e Channel

}
el se
{
I ncrement Error Count
Unmask ACK
Re-initialize Channel (in next b_interval - 1 Frane)
}
}
}
else if (ACK)

Reset Error Count
Mask ACK

}

As soon as the channel is enabled, the core attempts to write the requests into the Request queue when the space is available up to
the count specified in the MC field.

15.4.3.6.13 Isochronous OUT Transactions in Slave Mode

silabs.com | Building a more connected world. Rev. 1.1 | 366




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization. See Figure
15.10 Transmit FIFO Write Task in Slave Mode on page 343 and Figure 15.11 Receive FIFO Read Task in Slave Mode on page 344
for read or write data to and from the FIFO in Slave mode.

A typical isochronous OUT operation in Slave mode is shown in Figure 15.17 Normal Isochronous OUT/IN Transactions in Slave Mode
on page 368. See channel 1 (ch_1). The assumptions are:

» The application is attempting to send one packet every frame (up to 1 maximum packet size), starting with an odd frame. (transfer
size = 1,024 bytes).

» The Periodic Transmit FIFO can hold one packet (1 KB).

+ Periodic Request Queue depth = 4.

15.4.3.6.13.1 Normal Isochronous OUT Operation

The sequence of operations in Figure 15.18 Normal Isochronous OUT/IN Transactions in DMA Mode on page 371 (channel 1) is as
follows:

1.Initialize and enable channel 1 as explained in 15.4.3.1 Channel Initialization. The application must set the
USB_HC1_CHAR.ODDFRM bit.

2. Write the first packet for channel 1. For a high-bandwidth isochronous transfer, the application must write the subsequent packets
up to MC (maximum number of packets to be transmitted in the next frame) times before switching to another channel.

3. Along with the last DWORD write of each packet, the host writes an entry to the Periodic Request Queue.
4.The host attempts to send the OUT token in the next frame (odd).

5. The host generates the XFERCOMPL interrupt as soon as the last packet is transmitted successfully.

6. In response to the XFERCOMPL interrupt, reinitialize the channel for the next transfer.

15.4.3.6.13.2 Handling Interrupts

silabs.com | Building a more connected world. Rev. 1.1 | 367




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

The channel-specific interrupt service routine for isochronous OUT transactions in Slave mode is shown in the following flow:

Application | AHB Host | UsB | Device
| init_reg(ch_1) | | | | Zeriodic Request |
ueue
| | init_reg(ch_2) | ¢ \ Assume that this queue|
write_tx_fifo 3 | can hold 4 entries. |
@j (ch_1) 1MPS | |
Y
set_ch_en
(ch_2) ch_1 | |
I <2 I 4 I
| | | | Odd
A e
| | v |
XFERCOMPL int t
_ ’k interrup ll@ \H
v —— DATAO
| init_reg(ch_1) | | | MPS
write_tx_fifo 4 |
(ch_1) / |
N.
- I
T DATAO
V& —
read_rx_sts
read_rx_fifo \@ l
Ye—==—"""" 7] [T | |
| | read_rx_sts |—@ N !‘ | | |
Yoo =7 | |
| |init_reg(ch_2)| )—@ I\L' | |
v v cht
set_ch_en l ch_2 l l Even
(ch_2) | | | frame

|

|
)
|

|

|

|

|

|

|

|

|

|

|

|

|

l

|

|

|

|
]|
|
S
|
|
|

|

|

|

|

—
—

‘/

I
I

| |init_reg(ch_1)| |

IN. I
Y
write_tx_fifo DATAO
(ch_1) |

I |
I

Figure 15.17. Normal Isochronous OUT/IN Transactions in Slave Mode

Unmask ( FRVOVRUN/ XFERCOVPL)
i f (XFERCOVPL)
{

silabs.com | Building a more connected world. Rev. 1.1 | 368




EFM32WG Reference Manual

De- al | ocat e Channel

}
else if ( FRMOVRUN)

{
Unmask CHHLTD

Di sabl e Channel
}
else if (CHHLTD)

Mask CHHLTD
De- al | ocat e Channel

15.4.3.6.14 Isochronous IN Transactions in Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization. See Figure
15.10 Transmit FIFO Write Task in Slave Mode on page 343 and Figure 15.11 Receive FIFO Read Task in Slave Mode on page 344
for read or write data to and from the FIFO in Slave mode.

A typical isochronous IN operation in Slave mode is shown in Figure 15.17 Normal Isochronous OUT/IN Transactions in Slave Mode on
page 368. See channel 2 (ch_2). The assumptions are:

» The application is attempting to receive one packet (up to 1 maximum packet size) in every frame starting with the next odd frame.
(transfer size = 1,024 bytes).

» The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDs per packet (1,031 bytes for FS).
+ Periodic Request Queue depth = 4.

15.4.3.6.14.1 Normal Isochronous IN Operation

The sequence of operations in Figure 15.17 Normal Isochronous OUT/IN Transactions in Slave Mode on page 368 (channel 2) is as
follows:

1. Initialize channel 2 as explained in 15.4.3.1 Channel Initialization. The application must set the USB_HC2 CHAR.ODDFRM bit.

2.Set the USB_HC2_CHAR.CHENA bit to write an IN request to the Periodic Request Queue. For a high-bandwidth isochronous
transfer, the application must write the USB_HC2_CHAR register MC (maximum number of expected packets in the next frame)
times before switching to another channel.

3. The host writes an IN request to the Periodic Request Queue for each USB_HC2_CHAR register write with the CHENA bit set.

4. The host attempts to send an IN token in the next odd frame.

5. As soon as the IN packet is received and written to the receive FIFO, the host generates an RXFLVL interrupt.

6.In response to the RXFLVL interrupt, read the received packet status to determine the number of bytes received, then read the
receive FIFO accordingly. The application must mask the RXFLVL interrupt before reading the receive FIFO, and unmask it after
reading the entire packet.

7.The core generates an RXFLVL interrupt for the transfer completion status entry in the receive FIFO. This time, the application
must read and ignore the receive packet status when the receive packet status is not an IN data packet
(USB_GRXSTSR.PKTSTS != 0b0010).

8. The core generates an XFERCOMPL interrupt as soon as the receive packet status is read.

9.In response to the XFERCOMPL interrupt, read the USB_HC2_TSIZ.PKTCNT field. If USB_HC2_TSIZ.PKTCNT != 0, disable the
channel (as explained in 15.4.3.2 Halting a Channel) before re-initializing the channel for the next transfer, if any. If
USB_HC2_TSIZ.PKTCNT == 0, reinitialize the channel for the next transfer. This time, the application must reset the
USB_HC2_CHAR.ODDFRM bit.

15.4.3.6.14.2 Handling Interrupts



EFM32WG Reference Manual

The channel-specific interrupt service routine for an isochronous IN transaction in Slave mode is as follows.

Unnmask ( XACTERR/ XFERCOVPL/ FRVMOVRUN/ BBLERR)
i f (XFERCOWPL or FRMOVRUN)

i f (XFERCOWPL and (USB_HCx_TSI Z. PKTCNT == 0))

Reset Error Count
De- al | ocat e Channel

}
el se
{
Unmask CHHLTD
Di sabl e Channel
}
}
el se if (XACTERR or BBLERR)

{

I ncrement Error Count
Unmask CHHLTD
Di sabl e Channel

}

else if (CHHLTD)

Mask CHHLTD
if (Transfer Done or (Error_count == 3))

De- al | ocat e Channel

}
el se
{
Re-initialize Channel
}

15.4.3.6.15 Isochronous OUT Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization.

A typical isochronous OUT operation in DMA mode is shown in Figure 15.18 Normal Isochronous OUT/IN Transactions in DMA Mode
on page 371. See channel 1 (ch_1). The assumptions are:

» The application is attempting to transmit one packet every frame (up to 1 maximum packet size of 1,024 bytes).
* The Periodic Transmit FIFO can hold one packet (1 KB).
+ Periodic Request Queue depth = 4.

15.4.3.6.15.1 Normal Isochronous OUT Operation

1. Initialize and enable channel 1 as explained in 15.4.3.1 Channel Initialization.

2. The host starts fetching the first packet as soon as the channel is enabled, and writes the OUT request along with the last DWORD
fetch. In high-bandwidth transfers, the host continues fetching the next packet (up to the value specified in the MC field) before
switching to the next channel.

3. The host attempts to send an OUT token in the beginning of the next (odd) frame.
4. After successfully transmitting the packet, the host generates a CHHLTD interrupt.
5.In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

15.4.3.6.15.2 Handling Interrupts



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

The channel-specific interrupt service routine for Isochronous OUT transactions in DMA mode is shown in the following flow:

Application | AHB Host | UsB | Device
| init_reg(ch_1) | | | | (F:;eriodic Request |
ueue
| | init_reg(ch_2) | \ Assume that this queue|
can hold 4 entries.
1 MPS | |
I I
| ch_1 | |
I I <2 I 3 I
| | | Odd
] I \/ _ _ | _ _ fame
| v |
\H
DATAO
MPS
I
I
n |
I
DATAO
I
I I
l< | I I
A
| |init_rega:h_2)| I_@ I\ﬂ | |
<4 ch 1 | |
| ch_2 \<: | Even
4 _ l__ _ e
I I — I
OUT.
\4
! ! DATA1\>|
| | MPS
| CHHLTD interrupt | |
=" I I I
| |init_reg(ch_1)| | I
IN.
| |
DATAO

Figure 15.18. Normal Isochronous OUT/IN Transactions in DMA Mode

Unmask ( CHHLTD)
i f (CHHLTD)
{

silabs.com | Building a more connected world. Rev. 1.1 | 371




EFM32WG Reference Manual

i f (XFERCOWPL or FRMOVRUN)
{

}

De- al | ocat e Channel

15.4.3.6.16 Isochronous IN Transactions in DMA Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the connected device, it must initialize a channel as described in 15.4.3.1 Channel Initialization.

A typical isochronous IN operation in DMA mode is shown in Figure 15.18 Normal Isochronous OUT/IN Transactions in DMA Mode on
page 371. See channel 2 (ch_2). The assumptions are:

» The application is attempting to receive one packet in every frame (up to 1 maximum packet size of 1,024 bytes).

» The receive FIFO can hold at least one maximum-packet-size packet and two status DWORDS per packet (1,031 bytes).

» Periodic Request Queue depth = 4.

15.4.3.6.16.1 Normal Isochronous IN Operation

The sequence of operations in Figure 15.18 Normal Isochronous OUT/IN Transactions in DMA Mode on page 371 (channel 2) is as
follows:

1. Initialize and enable channel 2 as explained in 15.4.3.1 Channel Initialization.

2.The host writes an IN request to the Request queue as soon as the channel 2 gets the grant from the arbiter (round-robin with
fairness). In high-bandwidth transfers, the host performs consecutive writes up to MC times.

3. The host attempts to send an IN token at the beginning of the next (odd) frame.
4. As soon the packet is received and written to the receive FIFO, the host generates a CHHLTD interrupt.
5.In response to the CHHLTD interrupt, reinitialize the channel for the next transfer.

15.4.3.6.16.2 Handling Interrupts
The channel-specific interrupt service routine for an isochronous IN transaction in DMA mode is as follows.

Unmask ( CHHLTD)

i f (CHHLTD)
{
i f (XFERCOWL or FRMOVRUN)
{
i f (XFERCOWL and (USB_HCx_TSI Z. PKTCNT == 0))
{
Reset Error Count
De- al | ocat e Channel
}
el se
De- al | ocat e Channel
}
}
el se if (XACTERR or BBLERR)
{
if (Error_count == 2)
{
De- al | ocat e Channel
}
el se
{
I ncrement Error Count
Re-enabl e Channel (in next b_interval - 1 Frame)
}
}

15.4.4 Device Programming Model



EFM32WG Reference Manual

Before you program the Device, be sure to read 15.4.1 Overview: Programming the Core and 15.4.2 Modes of Operation.

15.4.4.1 Endpoint Initialization

This section addresses the following topics:

* 15.4.4.1.1 Initialization on USB Reset

* 15.4.4.1.2 Initialization on Enumeration Completion

* 15.4.4.1.3 Initialization on SetAddress Command

* 15.4.4.1.4 Initialization on SetConfiguration/Setinterface Command
* 15.4.4.1.5 Endpoint Activation

* 15.4.4.1.6 Endpoint Deactivation

* 15.4.4.1.7 Device DMA/Slave Mode Initialization

15.4.4.1.1 Initialization on USB Reset

1. Set the NAK bit for all OUT endpoints
» USB_DOEPx_CTL.SNAK = 1 (for all OUT endpoints)
2. Unmask the following interrupt bits:
+ USB_USB_DAINTMSK.INEPO = 1 (control 0 IN endpoint)
+ USB_USB_DAINTMSK.OUTEPOQ = 1 (control 0 OUT endpoint)
+ USB_DOEPMSK.SETUP =1
+ USB_DOEPMSK.XFERCOMPL = 1
+ USB_DIEPMSK.XFERCOMPL = 1
+ USB_DIEPMSK.TIMEOUTMSK =1

3.To transmit or receive data, the device must initialize more registers as specified in 15.4.4.1.7 Device DMA/Slave Mode Initializa-
tion.

4. Set up the Data FIFO RAM for each of the FIFOs

* Program the USB_GRXFSIZ Register, to be able to receive control OUT data and setup data. At a minimum, this must be equal
to 1 max packet size of control endpoint 0 + 2 DWORDs (for the status of the control OUT data packet) + 10 DWORDs (for
setup packets).

» Program the Device IN Endpoint Transmit FIFO size register (depending on the FIFO number chosen), to be able to transmit
control IN data. At a minimum, this must be equal to 1 max packet size of control endpoint 0.

5. Program the following fields in the endpoint-specific registers for control OUT endpoint O to receive a SETUP packet
+ USB_DOEPOTSIZ.SUPCNT = 3 (to receive up to 3 back-to-back SETUP packets)
* In DMA mode, USB_DOEPODMAADDR register with a memory address to store any SETUP packets received

At this point, all initialization required to receive SETUP packets is done, except for enabling control OUT endpoint 0 in DMA mode.

15.4.4.1.2 Initialization on Enumeration Completion

1.0n the Enumeration Done interrupt (USB_GINTSTS.ENUMDONE), read the USB_DSTS register to determine the enumeration
speed.

2.Program the USB_DIEPOCTL.MPS field to set the maximum packet size. This step configures control endpoint 0. The maximum
packet size for a control endpoint depends on the enumeration speed.

3.In DMA mode, program the USB_DOEPOCTL register to enable control OUT endpoint 0, to receive a SETUP packet.
+ USB_DOEPOCTL.EPENA = 1

At this point, the device is ready to receive SOF packets and is configured to perform control transfers on control endpoint 0.

15.4.4.1.3 Initialization on SetAddress Command

This section describes what the application must do when it receives a SetAddress command in a SETUP packet.

1. Program the USB_DCFG register with the device address received in the SetAddress command.
2. Program the core to send out a status IN packet.



EFM32WG Reference Manual

15.4.4.1.4 Initialization on SetConfiguration/Setinterface Command

This section describes what the application must do when it receives a SetConfiguration or Setinterface command in a SETUP packet.

1.When a SetConfiguration command is received, the application must program the endpoint registers to configure them with the
characteristics of the valid endpoints in the new configuration.

2.When a SetInterface command is received, the application must program the endpoint registers of the endpoints affected by this
command.

3.Some endpoints that were active in the prior configuration or alternate setting are not valid in the new configuration or alternate
setting. These invalid endpoints must be deactivated.

4. For details on a particular endpoint’s activation or deactivation, see 15.4.4.1.5 Endpoint Activation and 15.4.4.1.6 Endpoint Deacti-
vation.

5.Unmask the interrupt for each active endpoint and mask the interrupts for all inactive endpoints in the USB_USB_DAINTMSK reg-
ister.

6. Set up the Data FIFO RAM for each FIFO. See 15.4.7.1 Data FIFO RAM Allocation for more detail.
7. After all required endpoints are configured, the application must program the core to send a status IN packet.

At this point, the device core is configured to receive and transmit any type of data packet.

15.4.4.1.5 Endpoint Activation

This section describes the steps required to activate a device endpoint or to configure an existing device endpoint to a new type.
1. Program the characteristics of the required endpoint into the following fields of the USB_DIEPx_CTL register (for IN or bidirectional
endpoints) or the USB_DOEPx_CTL register (for OUT or bidirectional endpoints).
* Maximum Packet Size
» USB Active Endpoint = 1
» Endpoint Start Data Toggle (for interrupt and bulk endpoints)
» Endpoint Type
* TxFIFO Number

2.0nce the endpoint is activated, the core starts decoding the tokens addressed to that endpoint and sends out a valid handshake
for each valid token received for the endpoint.

15.4.4.1.6 Endpoint Deactivation

This section describes the steps required to deactivate an existing endpoint.

1.In the endpoint to be deactivated, clear the USB Active Endpoint bit in the USB_DIEPx_CTL register (for IN or bidirectional end-
points) or the USB_DOEPx_CTL register (for OUT or bidirectional endpoints).

2.0Once the endpoint is deactivated, the core ignores tokens addressed to that endpoint, resulting in a timeout on the USB.

15.4.4.1.7 Device DMA/Slave Mode Initialization

The application must meed the following conditions to set up the device core to handle traffic.

* In Slave mode, USB_GINTMSK.NPTXFEMPMSK, and USB_GINTMSK.RXFLVLMSK must be unset.
* In DMA mode, the aforementioned interrupts must be masked.

15.4.4.1.8 Transfer Stop Process

When the core is operating as a device, use the following programing sequence if you want to stop any transfers (because of an inter-
rupt from the host, typically a reset).

15.4.4.1.8.1 Transfer Stop Programming Flow for IN Endpoints



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Sequence of operations:

1. Disable the IN endpoint by programming USB_DIEPOCTL/USB_DIEPx_CTL.EPDIS = 1.

2. Wait for the USB_DIEPx_INT.EPDISBLD interrupt, which indicates that the IN endpoint is completely disabled. When the EP-
DISBLD interrupt is asserted, the core clears the following bits:

+ USB_DIEPOCTL/USB_DIEPx_CTL.EPDIS =0
+ USB_DIEPOCTL/USB_DIEPx_CTL.EPENA =0
3.Flush the TX FIFO by programming the following bits:
+ USB_GRSTCTL.TXFFLSH = 1
* USB_GRSTCTL.TXFNUM = FIFO number specific to endpoint

4. The application can start polling till USB_GRSTCTL.TXFFLSH is cleared. When this bit is cleared, it ensures that there is no data
left in the TX FIFO.

15.4.4.1.8.2 Transfer Stop Programming Flow for OUT Endpoints

Sequence of operations:

1.Enable all OUT endpoints by setting USB_DOEPOCTL/USB_DOEPx_CTL.EPENA = 1.

2. Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core, according to the instructions in
15.4.4.2.2.5 Setting the Global OUT NAK. This ensures that data in the RX FIFO is sent to the application successfully. Set
USB_DCTL.USB_DCTL.SGOUTNAK = 1.

3. Wait for the USB_GINTSTS.GOUTNAKEFF interrupt.

4. Disable all active OUT endpoints by programming the following register bits:
+ USB_DOEPOCTL/USB_DOEPx_CTL.EPENA =1
+ USB_DOEPOCTL/USB_DOEPx_CTL.EPDIS =1
+ USB_DOEPOCTL/USB_DOEPx_CTL.SNAK =1

5. Wait for the USB_DOEPOINT/USB_DOEPx_INT.EPDISBLD interrupt for each OUT endpoint programmed in the previous step.
The USB_DOEPOINT/USB_DOEPx_INT.EPDISBLD interrupt indicates that the corresponding OUT endpoint is completely disa-
bled. When the EPDISBLD interrupt is asserted, the core clears the following bits:

+ USB_DOEPOCTL/USB_DOEPx_CTL.EPENA =0
+ USB_DOEPOCTL/USB_DOEPx_CTL.EPDIS =0

Note: The application must not flush the Rx FIFO, as the Global OUT NAK effective interrupt earlier ensures that there is no data left in
the Rx FIFO.

15.4.4.2 Device Programming Operations

silabs.com | Building a more connected world. Rev. 1.1 | 375




EFM32WG Reference Manual

USB - Universal Serial Bus Controller

The table below provides links to the programming sequence for different USB transaction types.

Table 15.2. Transaction Programming Sequences

Device Mode IN SETUP OouT
Control
Slave 15.4.4.2.3.11 Generic Non-Peri- | 15.4.4.2.1 OUT Data Transfers |15.4.4.2.2.8 Generic Non-Iso-
odic (Bulk and Control) IN Data |in Slave and DMA Modes chronous OUT Data Transfers
Transfers in DMA and Slave in DMA and Slave Modes
Mode
DMA 15.4.4.2.3.11 Generic Non-Peri- | 15.4.4.2.1 OUT Data Transfers |15.4.4.2.2.8 Generic Non-Iso-
odic (Bulk and Control) IN Data |in Slave and DMA Modes chronous OUT Data Transfers
Transfers in DMA and Slave in DMA and Slave Modes
Mode
Bulk
Slave 15.4.4.2.3.11 Generic Non-Peri- | — 15.4.4.2.2.8 Generic Non-Iso-
odic (Bulk and Control) IN Data chronous OUT Data Transfers
Transfers in DMA and Slave in DMA and Slave Modes
Mode
DMA 15.4.4.2.3.11 Generic Non-Peri- | — 15.4.4.2.2.8 Generic Non-Iso-
odic (Bulk and Control) IN Data chronous OUT Data Transfers
Transfers in DMA and Slave in DMA and Slave Modes
Mode
Interrupt
Slave 15.4.4.2.3.13 Generic Periodic | — 15.4.4.2.2.8 Generic Non-Iso-
IN (Interrupt and Isochronous) chronous OUT Data Transfers
Data Transfers and in DMA and Slave Modes and
15.4.4.2.3.14 Generic Periodic 15.4.4.2.2.10 Generic Interrupt
IN Data Transfers Using the Pe- OUT Data Transfers Using Peri-
riodic Transfer Interrupt Feature odic Transfer Interrupt Feature
DMA 15.4.4.2.3.13 Generic Periodic | — 15.4.4.2.2.8 Generic Non-Iso-
IN (Interrupt and Isochronous) chronous OUT Data Transfers
Data Transfers and in DMA and Slave Modes and
15.4.4.2.3.14 Generic Periodic 15.4.4.2.2.10 Generic Interrupt
IN Data Transfers Using the Pe- OUT Data Transfers Using Peri-
riodic Transfer Interrupt Feature odic Transfer Interrupt Feature
Isochronous
Slave 15.4.4.2.3.13 Generic Periodic | — 15.4.4.2.2.2 Control Read
IN (Interrupt and Isochronous) Transfers (SETUP, Data IN,
Data Transfers Status OUT) and
15.4.4.2.2.12 Incomplete Iso-
chronous OUT Data Transfers
in DMA and Slave Modes
DMA 15.4.4.2.3.13 Generic Periodic | — 15.4.4.2.2.2 Control Read

IN (Interrupt and Isochronous)
Data Transfers and
15.4.4.2.3.14 Generic Periodic
IN Data Transfers Using the Pe-
riodic Transfer Interrupt Feature

Transfers (SETUP, Data IN,
Status OUT) and
15.4.4.2.2.12 Incomplete Iso-
chronous OUT Data Transfers
in DMA and Slave Modes

15.4.4.2.1 OUT Data Transfers in Slave and DMA Modes

This section describes the internal data flow and application-level operations during data OUT transfers and setup transactions.

silabs.com | Building a more connected world.

Rev. 1.1 | 376




EFM32WG Reference Manual

15.4.4.2.1.1 Control Setup Transactions

This section describes how the core handles SETUP packets and the application’s sequence for handling setup transactions. To initial-
ize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before it can
communicate with the host, it must initialize an endpoint as described in 15.4.4.1 Endpoint Initialization. See 15.4.4.2.2.4 Packet Read
from FIFO in Slave Mode.

Application Requirements

1.To receive a SETUP packet, the USB_DOEPx_TSIZ.SUPCNT field in a control OUT endpoint must be programmed to a non-zero
value. When the application programs the SUPCNT field to a non-zero value, the core receives SETUP packets and writes them to
the receive FIFO, irrespective of the USB_DOEPx_CTL.NAK status and USB_DOEPx_CTL.EPENA bit setting. The SUPCNT field
is decremented every time the control endpoint receives a SETUP packet. If the SUPCNT field is not programmed to a proper val-
ue before receiving a SETUP packet, the core still receives the SETUP packet and decrements the SUPCNT field, but the applica-
tion possibly is not be able to determine the correct number of SETUP packets received in the Setup stage of a control transfer.
+ USB_DOEPx_TSIZ.SUPCNT =3

2.In DMA mode, the OUT endpoint must also be enabled, to transfer the received SETUP packet data from the internal receive FIFO
to the external memory.
+ USB_DOEPx_CTL.EPENA =1

3. The application must always allocate some extra space in the Receive Data FIFO, to be able to receive up to three SETUP packets
on a control endpoint.

* The space to be Reserved is (4 * n) + 6 DWORDSs, where n is the number of control endpoints supported by the device. Three
DWORDs are required for the first SETUP packet, 1 DWORD is required for the Setup Stage Done DWORD, and 6 DWORDs
are required to store two extra SETUP packets among all control endpoints.

+ 3 DWORDs per SETUP packet are required to store 8 bytes of SETUP data and 4 bytes of SETUP status (Setup Packet Pat-
tern). The core reserves this space in the receive data.

* FIFO to write SETUP data only, and never uses this space for data packets.

4.In Slave mode, the application must read the 2 DWORDs of the SETUP packet from the receive FIFO. In DMA mode, the core
writes the 2 DWORDs of SETUP data to the memory.

5. The application must read and discard the Setup Stage Done DWORD from the receive FIFO.

Internal Data Flow

1.When a SETUP packet is received, the core writes the received data to the receive FIFO, without checking for available space in
the receive FIFO and irrespective of the endpoint’s NAK and Stall bit settings.

» The core internally sets the IN NAK and OUT NAK bits for the control IN/OUT endpoints on which the SETUP packet was re-
ceived.

2.For every SETUP packet received on the USB, 3 DWORDs of data is written to the receive FIFO, and the SUPCNT field is decre-
mented by 1.
» The first DWORD contains control information used internally by the core
* The second DWORD contains the first 4 bytes of the SETUP command
» The third DWORD contains the last 4 bytes of the SETUP command

3.When the Setup stage changes to a Data IN/OUT stage, the core writes an entry (Setup Stage Done DWORD) to the receive
FIFO, indicating the completion of the Setup stage.

4.0n the AHB side, SETUP packets are emptied either by the DMA or the application. In DMA mode, the SETUP packets (2
DWORDs) are written to the memory location programmed in the USB_DOEPx_DMAADDR register, only if the endpoint is ena-
bled. If the endpoint is not enabled, the data remains in the receive FIFO until the enable bit is set.

5.When either the DMA or the application pops the Setup Stage Done DWORD from the receive FIFO, the core interrupts the appli-
cation with a USB_DOEPx_INT.SETUP interrupt, indicating it can process the received SETUP packet.

» The core clears the endpoint enable bit for control OUT endpoints.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Application Programming Sequence

1. Program the USB_DOEPx_TSIZ register.
+ USB_DOEPx_TSIZ.SUPCNT =3

2.In DMA mode, program the USB_DOEPx_DMAADDR register and USB_DOEPx_CTL register with the endpoint characteristics
and set the Endpoint Enable bit (USB_DOEPx_CTL.EPENA).
* Endpoint Enable =1

3.In Slave mode, wait for the USB_GINTSTS.RXFLVL interrupt and empty the data packets from the receive FIFO, as explained in
15.4.4.2.2.4 Packet Read from FIFO in Slave Mode. This step can be repeated many times.

4. Assertion of the USB_DOEPx_INT.SETUP interrupt marks a successful completion of the SETUP Data Transfer.

» On this interrupt, the application must read the USB_DOEPx_TSIZ register to determine the number of SETUP packets re-
ceived and process the last received SETUP packet.

* In DMA mode, the application must also determine if the interrupt bit USB_DOEPx_INT.BACK2BACKSETUP is set. This bit is
set if the core has received more than three back-to-back SETUP packets. If this is the case, the application must ignore the
USB_DOEPx_TSIZ.SUPCNT value and use the USB_DOEPx_DMAADDR directly to read out the last SETUP packet received.
USB_DOEPx_DMAADDR-8 provides the pointer to the last valid SETUP data.

Note: If the application has not enabled EPO before the host sends the SETUP packet, the core ACKs the SETUP packet and stores it
in the FIFO, but does not write to the memory until EPO is enabled. When the application enables the EPO (first enable) and clears the
NAK bit at the same time the Host sends DATA OUT, the DATA OUT is stored in the RxFIFO. The OTG core then writes the setup data
to the memory and disables the endpoint. Though the application expects a Transfer Complete interrupt for the Data OUT phase, this
does not occur, because the SETUP packet, rather than the DATA OUT packet, enables EPO the first time. Thus, the DATA OUT pack-
et is still in the RxFIFO until the application re-enables EPQ. The application must enable EPO one more time for the core to process the
DATA OUT packet.

The following figure charts this flow:

silabs.com | Building a more connected world. Rev. 1.1 | 378




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Wait for
USB_DOEPx_INT.SETUP

Back2Back Setup
Interrupt bit set ?

v A 4

rem_supcnt = Setup_addr =
Rd_Reg(USB_DOEPx_TSIZ) Rd_Reg(USB_DOEPx_DMA
A\ 4 v
setup_cmd[31:0] = mem[4-2 * rem_supcnt] setup_cmd[31:0] = mem[setup_addr-8]
setup_cmd[63:32] = mem[5-2 * rem_supcnt] setup_cmd[63:32] = mem[setup_addr-4]

Y

Find setup cmd type

ctr-rd/wr/2 stage

\ 4 v
setup_np_in_pkt setup_np_in_pkt rcv_out pkt
Data IN phase Sata IN phase Data OUT phase

Figure 15.19. Processing a SETUP Packet

15.4.4.2.1.2 Handling More Than Three Back-to-Back SETUP Packets

Per the USB 2.0 specification, normally, during a SETUP packet error, a host does not send more than three back-to-back SETUP
packets to the same endpoint. However, the USB 2.0 specification does not limit the number of back-to-back SETUP packets a host
can send to the same endpoint. When this condition occurs, the core generates an interrupt (USB_DOEPx_INT.BACK2BACKSETUP).
In DMA mode, the core also rewinds the DMA address for that endpoint (USB_DOEPx_DMAADDR) and overwrites the first SETUP
packet in system memory with the fourth, second with the fifth, and so on. If the BACK2BACKSETUP interrupt is asserted, the applica-
tion must read the OUT endpoint DMA register (USB_DOEPx_DMAADDR) to determine the final SETUP data in system memory.

In DMA mode, the application can mask the BACK2BACKSETUP interrupt, but after receiving the DOEPINT.SETUP interrupt, the ap-
plication can read the DOEPINT.BACK2BACKSETUP interrupt bit. In Slave mode, the application can use the USB_GINTSTS.RXFLVL
interrupt to read out the SETUP packets from the FIFO whenever the core receives the SETUP packet.

15.4.4.2.2 Control Transfers

This section describes the various types of control transfers.

silabs.com | Building a more connected world. Rev. 1.1 | 379




EFM32WG Reference Manual

15.4.4.2.2.1 Control Write Transfers (SETUP, Data OUT, Status IN)

This section describes control write transfers.

Application Programming Sequence

1. Assertion of the USB_DOEPx_INT.SETUP Packet interrupt indicates that a valid SETUP packet has been transferred to the appli-
cation. See 15.4.4.2.1 OUT Data Transfers in Slave and DMA Modes for more details. At the end of the Setup stage, the applica-
tion must reprogram the USB_DOEPx_TSIZ.SUPCNT field to 3 to receive the next SETUP packet.

2.1f the last SETUP packet received before the assertion of the SETUP interrupt indicates a data OUT phase, program the core to
perform a control OUT transfer as explained in 15.4.4.2.2.8 Generic Non-Isochronous OUT Data Transfers in DMA and Slave
Modes. In DMA mode, the application must reprogram the USB_DOEPx_DMAADDR register to receive a control OUT data packet
to a different memory location.
3.In a single OUT data transfer on control endpoint 0, the application can receive up to 64 bytes. If the application is expecting more
than 64 bytes in the Data OUT stage, the application must re-enable the endpoint to receive another 64 bytes, and must continue
to do so until it has received all the data in the Data stage.
4. Assertion of the USB_DOEPx_INT.Transfer Completed interrupt on the last data OUT transfer indicates the completion of the data
OUT phase of the control transfer.
5. 0n completion of the data OUT phase, the application must do the following.
» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT endpoint as explained in
15.4.4.2.1 OUT Data Transfers in Slave and DMA Modes.
+ USB_DOEPx_CTL.EPENA =1
» To execute the received Setup command, the application must program the required registers in the core. This step is optional,
based on the type of Setup command received.
6. For the status IN phase, the application must program the core as described in 15.4.4.2.3.11 Generic Non-Periodic (Bulk and Con-
trol) IN Data Transfers in DMA and Slave Mode to perform a data IN transfer.
7. Assertion of the USB_DIEPx_INT.XFERCOMPL interrupt indicates completion of the status IN phase of the control transfer.
8. The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected on the endpoint, marking the
completion of the control write transfer.

15.4.4.2.2.2 Control Read Transfers (SETUP, Data IN, Status OUT)

This section describes control read transfers.

Application Programming Sequence

1. Assertion of the USB_DOEPx_INT.SETUP Packet interrupt indicates that a valid SETUP packet has been transferred to the appli-
cation. See 15.4.4.2.1 OUT Data Transfers in Slave and DMA Modes for more details. At the end of the Setup stage, the applica-
tion must reprogram the USB_DOEPx_TSIZ.SUPCNT field to 3 to receive the next SETUP packet.

2.If the last SETUP packet received before the assertion of the SETUP interrupt indicates a data IN phase, program the core to per-
form a control IN transfer as explained in 15.4.4.2.3.11 Generic Non-Periodic (Bulk and Control) IN Data Transfers in DMA and
Slave Mode.

3.0n a single IN data transfer on control endpoint 0, the application can transmit up to 64 bytes. To transmit more than 64 bytes in
the Data IN stage, the application must re-enable the endpoint to transmit another 64 bytes, and must continue to do so, until it has
transmitted all the data in the Data stage.
4.The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected for every IN transfer on the end-
point.
5.The USB_DIEPx_INT.XFERCOMPL interrupt on the last IN data transfer marks the completion of the control transfer’'s Data stage.
6. To perform a data OUT transfer in the status OUT phase, the application must program the core as described in 15.4.4.2.1 OUT
Data Transfers in Slave and DMA Modes.
» The application must program the USB_DCFG.NZSTSOUTHSHK handshake field to a proper setting before transmitting an da-
ta OUT transfer for the Status stage.
* In DMA mode, the application must reprogram the USB_DOEPx_DMAADDR register to receive the control OUT data packet to
a different memory location.
7.Assertion of the USB_DOEPx_INT.XFERCOMPL interrupt indicates completion of the status OUT phase of the control transfer.
This marks the successful completion of the control read transfer.
» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT endpoint as explained in
15.4.4.2.1 OUT Data Transfers in Slave and DMA Modes.

+ USB_DOEPx_CTL.EPENA =1



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.4.2.2.3 Two-Stage Control Transfers (SETUP/Status IN)

This section describes two-stage control transfers.

Application Programming Sequence

1. Assertion of the USB_DOEPx_INT.SETUP interrupt indicates that a valid SETUP packet has been transferred to the application.
See 15.4.4.2.1 OUT Data Transfers in Slave and DMA Modes for more detail. To receive the next SETUP packet, the application
must reprogram the USB_DOEPx_TSIZ.SUPCNT field to 3 at the end of the Setup stage.

2.Decode the last SETUP packet received before the assertion of the SETUP interrupt. If the packet indicates a two-stage control
command, the application must do the following.

» To transfer a new SETUP packet in DMA mode, the application must re-enable the control OUT endpoint. See 15.4.4.2.1 OUT
Data Transfers in Slave and DMA Modes for details.

« USB_DOEPx_CTL.EPENA = 1

» Depending on the type of Setup command received, the application can be required to program registers in the core to execute
the received Setup command.

3.For the status IN phase, the application must program the core described in 15.4.4.2.3.11 Generic Non-Periodic (Bulk and Control)
IN Data Transfers in DMA and Slave Mode to perform a data IN transfer.

4. Assertion of the USB_DIEPx_INT.XFERCOMPL interrupt indicates the completion of the status IN phase of the control transfer.

5. The previous step must be repeated until the USB_DIEPx_INT.XFERCOMPL interrupt is detected on the endpoint, marking the
completion of the two-stage control transfer.

silabs.com | Building a more connected world. Rev. 1.1 | 381




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Example: Two-Stage Control Transfer
These notes refer to the following figure.

1.SETUP packet #1 is received on the USB and is written to the receive FIFO, and the core responds with an ACK handshake. This
handshake is lost and the host detects a timeout.

2.The SETUP packet in the receive FIFO results in a USB_GINTSTS.RXFLVL interrupt to the application, causing the application to
empty the receive FIFO.

3. SETUP packet #2 on the USB is written to the receive FIFO, and the core responds with an ACK handshake.

4.The SETUP packet in the receive FIFO sends the application the USB_GINTSTS.RXFLVL interrupt and the application empties
the receive FIFO.

5. After the second SETUP packet, the host sends a control IN token for the status phase. The core issues a NAK response to this
token, and writes a Setup Stage Done entry to the receive FIFO. This entry results in a USB_GINTSTS.RXFLVL interrupt to the
application, which empties the receive FIFO. After reading out the Setup Stage Done DWORD, the core asserts the
USB_DOEPx_INT.SETUP packet interrupt to the application.

6. On this interrupt, the application processes SETUP Packet #2, decodes it to be a two-stage control command, and clears the con-
trol IN NAK bit.

+ USB_DIEPx_CTL.CNAK =1

7.When the application clears the IN NAK bit, the core interrupts the application with a USB_DIEPx_INT.INTKNTXFEMP interrupt.
On this interrupt, the application enables the control IN endpoint with a USB_DIEPx_TSIZ.XFERSIZE of 0 and a
USB_DIEPx_TSIZ.PKTCNT of 1. This results in a zero-length data packet for the status IN token on the USB.

8. At the end of the status IN phase, the core interrupts the application with a USB_DIEPx_INT.XFERCOMPL interrupt.

silabs.com | Building a more connected world. Rev. 1.1 | 382




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Host Device | Application
®\ I Control IN NAK =1
setup_xact 1| r—~k>2" |\ _ _ _ _ _ _ _ I_ J _CTtro_IO_UT_NA_K =1
I ) t——>| | idle until intr
VL interrup
@D\ setup data1 /I—RXF l
setup_xact_2 I rcv_out_data
setup data2 I
P \l\ Control IN NAK = 1
setup datat RXeyy, Control OUT NAK = 1
——————— I——- "”errz,_____' —_—————
setup done p’\ A 4
idle until intr
setup data2
setup data | '?47(2&
I <’/')49 rcv_out_data
7
| -
| \ idle until intr
L1 Y rcv_out_data
I Tue inter,
Tupg
I idle until intr
status_xact_2
/NTK €—Clear IN NAK— proc_setup_pkt #2
b | Nxegy,)
(STaTyg),! EMP
I I'rupt
status_xact_2 8 bytes setu i
p_np_in_pkt
| | —sts data 1Y XFERSIZE = 0 bytes
ACK. PKTCNT =1
M EPENA = 1
XFg 0
| | Reom,

n[e,.,.
Yot | idle until intr

Figure 15.20. Two-Stage Control Transfer

15.4.4.2.2.4 Packet Read from FIFO in Slave Mode

silabs.com | Building a more connected world. Rev. 1.1 | 383




EFM32WG Reference Manual

This section describes how to read packets (OUT data and SETUP packets) from the receive FIFO in Slave mode.

1.0On catching a USB_GINTSTS.RXFLVL interrupt, the application must read the Receive Status Pop register (USB_GRXSTSP).

2.The application can mask the USB_GINTSTS.RXFLVL interrupt by writing to USB_GINTMSK.RXFLVL = 0, until it has read the
packet from the receive FIFO.

3.If the received packet's byte count is not 0, the byte count amount of data is popped from the receive Data FIFO and stored in
memory. If the received packet byte count is 0, no data is popped from the Receive Data FIFO.

4.The receive FIFO’s packet status readout indicates one of the following.

5. Global OUT NAK Pattern: PKTSTS = Global OUT NAK, BCNT = 0x000, EPNUM = Dont Care (0x0), DPID = Dont Care (0b00).
This data indicates that the global OUT NAK bit has taken effect.

a. SETUP Packet Pattern: PKTSTS = SETUP, BCNT = 0x008, EPNUM = Control EP Num, DPID = DO. This data indicates that a
SETUP packet for the specified endpoint is now available for reading from the receive FIFO.

b.Setup Stage Done Pattern: PKTSTS = Setup Stage Done, BCNT = 0x0, EPNUM = Control EPNum, DPID = Don’t Care
(0b00). This data indicates that the Setup stage for the specified endpoint has completed and the Data stage has started. After
this entry is popped from the receive FIFO, the core asserts a Setup interrupt on the specified control OUT endpoint.

c.Data OUT Packet Pattern: PKTSTS = DataOUT, BCNT = size of the Received data OUT packet, EPNUM = EPNum on which
the packet was received, DPID = Actual Data PID.

d. Data Transfer Completed Pattern: PKTSTS = Data OUT Transfer Done, BCNT = 0x0, EPNUM = OUT EP Num on which the
data transfer is complete, DPID = Dont Care (0b00). This data indicates that a OUT data transfer for the specified OUT end-
point has completed. After this entry is popped from the receive FIFO, the core asserts a Transfer Completed interrupt on the
specified OUT endpoint.

The encoding for the PKTSTS is listed in the USB register descriptions.
6. After the data payload is popped from the receive FIFO, the USB_GINTSTS.RXFLVL interrupt must be unmasked.

7.Steps 1-5 are repeated every time the application detects assertion of the interrupt line due to USB_GINTSTS.RXFLVL. Reading
an empty receive FIFO can result in undefined core behavior.

v

wait until
USB_GINTSTS.RXFLVL

v

rd_data = rd_reg(USB_RXSTSP)

rd_data.BCNT =0 rev_out_pkt()

dword_cnt =
BCNT[11:2] +
packet store mem[0:dword_cnt-1] = (BCNTI[1] | BCNTI[O])
in memory rd_rxfifo(rd_data.EPNUM,
dword_cnt)
J /

Figure 15.21. Receive FIFO Packet Read in Slave Mode

15.4.4.2.2.5 Setting the Global OUT NAK



EFM32WG Reference Manual

Internal Data Flow

1. When the application sets the Global OUT NAK (USB_DCTL.SGOUTNAK), the core stops writing data, except SETUP packets, to
the receive FIFO. Irrespective of the space availability in the receive FIFO, non-isochronous OUT tokens receive a NAK handshake
response, and the core ignores isochronous OUT data packets

2.The core writes the Global OUT NAK pattern to the receive FIFO. The application must reserve enough receive FIFO space to
write this data pattern. See 15.4.7.1 Data FIFO RAM Allocation.

3.When either the core (in DMA mode) or the application (in Slave mode) pops the Global OUT NAK pattern DWORD from the re-
ceive FIFO, the core sets the USB_GINTSTS.GOUTNAKEFF interrupt.

4. 0Once the application detects this interrupt, it can assume that the core is in Global OUT NAK mode. The application can clear this
interrupt by clearing the USB_DCTL.SGOUTNAK bit.

Application Programming Sequence

1. To stop receiving any kind of data in the receive FIFO, the application must set the Global OUT NAK bit by programming the fol-
lowing field.

+ USB_DCTL.SGOUTNAK =1

2. Wait for the assertion of the interrupt USB_GINTSTS.GOUTNAKEFF. When asserted, this interrupt indicates that the core has
stopped receiving any type of data except SETUP packets.

3.The application can receive valid OUT packets after it has set USB_DCTL.SGOUTNAK and before the core asserts the
USB_GINTSTS.GOUTNAKEFF interrupt.

4. The application can temporarily mask this interrupt by writing to the USB_GINTMSK.GOUTNAKEFFMSK bit.
+ USB_GINTMSK.GINNAKEFFMSK =0

5.Whenever the application is ready to exit the Global OUT NAK mode, it must clear the USB_DCTL.SGOUTNAK bit. This also
clears the USB_GINTSTS.GOUTNAKEFF interrupt.

+ USB_DCTL.CGOUTNAK = 1
6. If the application has masked this interrupt earlier, it must be unmasked as follows:
+ USB_GINTMSK.GOUTNAKEFFMSK =1

15.4.4.2.2.6 Disabling an OUT Endpoint

The application must use this sequence to disable an OUT endpoint that it has enabled.

Application Programming Sequence

1.Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core, as described in
15.4.4.2.2.5 Setting the Global OUT NAK.

+ USB_DCTL.SGOUTNAK =1
» Wait for the USB_GINTSTS.GOUTNAKEFF interrupt
2. Disable the required OUT endpoint by programming the following fields:
+ USB_DOEPx_CTL.EPDIS =1
* USB_DOEPx_CTL.SNAK =1

3. Wait for the USB_DOEPx_INT.EPDISBLD interrupt, which indicates that the OUT endpoint is completely disabled. When the EP-
DISBLD interrupt is asserted, the core also clears the following bits.

+ USB_DOEPx_CTL.EPDIS =0
+ USB_DOEPx_CTL.EPENA =0

4.The application must clear the Global OUT NAK bit to start receiving data from other non-disabled OUT endpoints.
+ USB_DCTL.SGOUTNAK =0

15.4.4.2.2.7 Stalling a Non-Isochronous OUT Endpoint



EFM32WG Reference Manual

This section describes how the application can stall a non-isochronous endpoint.

1. Put the core in the Global OUT NAK mode, as described in 15.4.4.2.2.5 Setting the Global OUT NAK.
2. Disable the required endpoint, as described in Section 15.4.4.2.2.6 Disabling an OUT Endpoint.
* When disabling the endpoint, instead of setting the USB_DOEPx_CTL.SNAK bit, set USB_DOEPx_CTL.STALL = 1.
» The Stall bit always takes precedence over the NAK bit.
3.When the application is ready to end the STALL handshake for the endpoint, the USB_DOEPx_CTL.STALL bit must be cleared.

4.If the application is setting or clearing a STALL for an endpoint due to a SetFeature.Endpoint Halt or ClearFeature.Endpoint Halt
command, the Stall bit must be set or cleared before the application sets up the Status stage transfer on the control endpoint.

15.4.4.2.2.8 Generic Non-lsochronous OUT Data Transfers in DMA and Slave Modes

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the host, it must initialize an endpoint as described in 15.4.4.1 Endpoint Initialization. See 15.4.4.2.2.4 Packet
Read from FIFO in Slave Mode.

This section describes a regular non-isochronous OUT data transfer (control, bulk, or interrupt).

Application Requirements

1. Before setting up an OUT transfer, the application must allocate a buffer in the memory to accommodate all data to be received as
part of the OUT transfer, then program that buffer’s size and start address (in DMA mode) in the endpoint-specific registers.

2.For OUT transfers, the Transfer Size field in the endpoint’s Transfer Size register must be a multiple of the maximum packet size of
the endpoint, adjusted to the DWORD boundary.

if (nmps[epnun] nod 4) ==
transfer size[epnunij = n * (nps[epnunj) //Dword Aligned
el se
transfer size[epnuni = n * (nps[epnuni + 4 - (nps[epnun]i nod 4)) //Non Dmord Aligned

packet count[epnumi = n
n>0

3.In DMA mode, the core stores a received data packet in the memory, always starting on a DWORD boundary. If the maximum
packet size of the endpoint is not a multiple of 4, the core inserts byte pads at end of a maximum-packet-size packet up to the end
of the DWORD.

4.0n any OUT endpoint interrupt, the application must read the endpoint’s Transfer Size register to calculate the size of the payload
in the memory. The received payload size can be less than the programmed transfer size.

» Payload size in memory = application-programmed initial transfer size — core updated final transfer size

* Number of USB packets in which this payload was received = application-programmed initial packet count — core updated final
packet count



EFM32WG Reference Manual

Internal Data Flow

1. The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers, clear the NAK bit, and enable
the endpoint to receive the data.

2.0nce the NAK bit is cleared, the core starts receiving data and writes it to the receive FIFO, as long as there is space in the receive
FIFO. For every data packet received on the USB, the data packet and its status are written to the receive FIFO. Every packet
(maximum packet size or short packet) written to the receive FIFO decrements the Packet Count field for that endpoint by 1.

» OUT data packets received with Bad Data CRC are flushed from the receive FIFO automatically.

+ After sending an ACK for the packet on the USB, the core discards non-isochronous OUT data packets that the host, which
cannot detect the ACK, re-sends. The application does not detect multiple back-to-back data OUT packets on the same end-
point with the same data PID. In this case the packet count is not decremented.

« If there is no space in the receive FIFO, isochronous or non-isochronous data packets are ignored and not written to the receive
FIFO. Additionally, non-isochronous OUT tokens receive a NAK handshake reply.

» In all the above three cases, the packet count is not decremented because no data is written to the receive FIFO.

3. When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit for that endpoint is set. Once
the NAK bit is set, the isochronous or non-isochronous data packets are ignored and not written to the receive FIFO, and non-
isochronous OUT tokens receive a NAK handshake reply.

4. After the data is written to the receive FIFO, either the application (in Slave mode) or the core’s DMA engine (in DMA mode), reads
the data from the receive FIFO and writes it to external memory, one packet at a time per endpoint.

5. At the end of every packet write on the AHB to external memory, the transfer size for the endpoint is decremented by the size of
the written packet.

6. The OUT Data Transfer Completed pattern for an OUT endpoint is written to the receive FIFO on one of the following conditions.
» The transfer size is 0 and the packet countis 0
« The last OUT data packet written to the receive FIFO is a short packet (0 <= packet size < maximum packet size)

7.When either the application or the DMA pops this entry (OUT Data Transfer Completed), a Transfer Completed interrupt is gener-
ated for the endpoint and the endpoint enable is cleared.

Application Programming Sequence

1. Program the USB_DOEPx_TSIZ register for the transfer size and the corresponding packet count. Additionally, in DMA mode, pro-
gram the USB_DOEPx_DMAADDR register.

2.Program the USB_DOEPx_CTL register with the endpoint characteristics, and set the Endpoint Enable and ClearNAK bits.
+ USB_DOEPx_CTL.EPENA =1
+ USB_DOEPx_CTL.CNAK =1

3.In Slave mode, wait for the USB_GINTSTS.RXFLVL level interrupt and empty the data packets from the receive FIFO as explained
in 15.4.4.2.2.4 Packet Read from FIFO in Slave Mode.

» This step can be repeated many times, depending on the transfer size.
4. Asserting the USB_DOEPx_INT.XFERCOMPL interrupt marks a successful completion of the non-isochronous OUT data transfer.
5.Read the USB_DOEPx_TSIZ register to determine the size of the received data payload.

Note: The XFERSIZE is not decremented for the last packet. This is as per design behavior.



EFM32WG Reference Manual

Slave Mode Bulk OUT Transaction

The following figure depicts the reception of a single bulk OUT data packet from the USB to the AHB and describes the events involved

in the process.

Host USB Device Application

init_out_ep

XFERSIZE = 512 bytes
PKTCNT =1

AN

CNAK =1

wr_reg(USB_DOEPx_CTL)

| EPENA =1
<

I
I
: @\ wr_reg(USB_DOEPx_TSIZ)
I
I

I ACK/I xact_1 @
RXFLVL interrupt idle until intr

—SEPx_cT,
@/I PKTCNT -Lé\l AK = 1 ¢

= 0— rcv_out_pkt()
I
Mpy
Intefru,o; \ 4
idle until intr

|

\ 4

on new transfer
or RxFIFO not
empty

_f
BN

Figure 15.22. Slave Mode Bulk OUT Transaction

After a SetConfiguration/Setinterface command, the application initializes all OUT endpoints by setting USB_DOEPx_CTL.CNAK = 1
and USB_DOEPx_CTL.EPENA = 1, and setting a suitable XFERSIZE and PKTCNT in the USB_DOEPx_TSIZ register.

1. Host attempts to send data (OUT token) to an endpoint.

2.When the core receives the OUT token on the USB, it stores the packet in the RxFIFO because space is available there.
3. After writing the complete packet in the RxFIFO, the core then asserts the USB_GINTSTS.RXFLVL interrupt.
4.0n receiving the PKTCNT number of USB packets, the core sets the NAK bit for this endpoint internally to prevent it from receiving

any more packets.
5. The application processes the interrupt and reads the data from the RxFIFO.

6. When the application has read all the data (equivalent to XFERSIZE), the core generates a USB_DOEPx_INT.XFERCOMPL inter-

rupt.

7. The application processes the interrupt and uses the setting of the USB_DOEPx_INT.XFERCOMPL interrupt bit to determine that

the intended transfer is complete.

15.4.4.2.2.9 Generic Isochronous OUT Data Transfer in DMA and Slave Modes

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the host, it must initialize an endpoint as described in 15.4.4.1 Endpoint Initialization. See 15.4.4.2.2.4 Packet

Read from FIFO in Slave Mode.

This section describes a regular isochronous OUT data transfer.



EFM32WG Reference Manual

Application Requirements

1. All the application requirements for non-isochronous OUT data transfers also apply to isochronous OUT data transfers

2.For isochronous OUT data transfers, the Transfer Size and Packet Count fields must always be set to the number of maximum-
packet-size packets that can be received in a single frame and no more. Isochronous OUT data transfers cannot span more than 1
frame.

* 1 <= packet count[epnum] <=3

3.In Slave mode, when isochronous OUT endpoints are supported in the device, the application must read all isochronous OUT data
packets from the receive FIFO (data and status) before the end of the periodic frame (USB_GINTSTS.EOPF interrupt). In DMA
mode, the application must guarantee enough bandwidth to allow emptying the isochronous OUT data packet from the receive
FIFO before the end of each periodic frame.

4.To receive data in the following frame, an isochronous OUT endpoint must be enabled after the USB_GINTSTS.EOPF and before
the USB_GINTSTS.SOF.

Internal Data Flow

1. The internal data flow for isochronous OUT endpoints is the same as that for non-isochronous OUT endpoints, but for a few differ-
ences.

2.When an isochronous OUT endpoint is enabled by setting the Endpoint Enable and clearing the NAK bits, the Even/Odd frame bit
must also be set appropriately. The core receives data on a isochronous OUT endpoint in a particular frame only if the following
condition is met.

+ USB_DOEPx_CTL.DPIDEOF (Even/Odd frame) = USB_DSTS.SOFFN[0]

3. When either the application or the internal DMA completely reads an isochronous OUT data packet (data and status) from the re-
ceive FIFO, the core updates the USB_DOEPx_TSIZ.RXDPIDSUPCNT (Received DPID) field with the data PID of the last isochro-
nous OUT data packet read from the receive FIFO.

Application Programming Sequence

1. Program the USB_DOEPx_TSIZ register for the transfer size and the corresponding packet count. When in DMA mode, also pro-
gram the USB_DOEPx_DMAADDR register.

2.Program the USB_DOEPx_CTL register with the endpoint characteristics and set the Endpoint Enable, ClearNAK, and Even/Odd
frame bits.

» Endpoint Enable = 1
+ CNAK =1
» Even/Odd frame = (0: Even/1: Odd)

3.In Slave mode, wait for the USB_GINTSTS.Rx StsQ level interrupt and empty the data packets from the receive FIFO as explained
in 15.4.4.2.2.4 Packet Read from FIFO in Slave Mode.

» This step can be repeated many times, depending on the transfer size.

4.The assertion of the USB_DOEPx_INT.XFERCOMPL interrupt marks the completion of the isochronous OUT data transfer. This
interrupt does not necessarily mean that the data in memory is good.

5.This interrupt can not always be detected for isochronous OUT transfers. Instead, the application can detect the
USB_GINTSTS.INCOMPLP (Incomplete Isochronous OUT data) interrupt. See 15.4.4.2.2.12 Incomplete Isochronous OUT Data
Transfers in DMA and Slave Modes, for more details

6.Read the USB_DOEPx_TSIZ register to determine the size of the received transfer and to determine the validity of the data re-
ceived in the frame. The application must treat the data received in memory as valid only if one of the following conditions is met.

» USB_DOEPx_TSIZ.RXDPID = D0 and the number of USB packets in which this payload was received = 1
+ USB_DOEPx_TSIZ.RXDPID = D1 and the number of USB packets in which this payload was received = 2
+ USB_DOEPx_TSIZ.RXDPID = D2 and the number of USB packets in which this payload was received = 3

* The number of USB packets in which this payload was received = App Programmed Initial Packet Count — Core Updated
Final Packet Count

The application can discard invalid data packets.

15.4.4.2.2.10 Generic Interrupt OUT Data Transfers Using Periodic Transfer Interrupt Feature

This section describes a regular INTR OUT data transfer with the Periodic Transfer Interrupt feature.

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the host, it must initialize an endpoint as described in 15.4.4.1 Endpoint Initialization. See 15.4.4.2.2.4 Packet
Read from FIFO in Slave Mode.



EFM32WG Reference Manual

Application Requirements

1. Before setting up a periodic OUT transfer, the application must allocate a buffer in the memory to accommodate all data to be re-
ceived as part of the OUT transfer, then program that buffer's size and start address in the endpoint-specific registers.

2.For Interrupt OUT transfers, the Transfer Size field in the endpoint’s Transfer Size register must be a multiple of the maximum
packet size of the endpoint, adjusted to the DWORD boundary. The Transfer Size programmed can span across multiple frames
based on the periodicity after which the application want to receive the USB_DOEPx_INT.XFERCOMPL interrupt

+ transfer size[epnum] = n * (mps[epnum] + 4 - (mps[epnum] mod 4))

* packet countfepnum] =n

* n > 0 (Higher value of n reduces the periodicity of the USB_DOEPx_INT.XFERCOMPL interrupt)

» 1 < packet count[epnum] < n (Higher value of n reduces the periodicity of the USB_DOEPx_INT.XFERCOMPL interrupt)

3.In DMA mode, the core stores a received data packet in the memory, always starting on a DWORD boundary. If the maximum
packet size of the endpoint is not a multiple of 4, the core inserts byte pads at end of a maximum-packet-size packet up to the end
of the DWORD. The application will not be informed about the frame number on which a specific packet has been received.

4.0n USB_DOEPx_INT.XFERCOMPL interrupt, the application must read the endpoint’s Transfer Size register to calculate the size
of the payload in the memory. The received payload size can be less than the programmed transfer size.

» Payload size in memory = application-programmed initial transfer size — core updated final transfer size.

* Number of USB packets in which this payload was received = application-programmed initial packet count — core updated final
packet count.

« If for some reason, the host stops sending tokens, there are no interrupts to the application, and the application must timeout on
its own.

5. The assertion of the USB_DOEPx_INT.XFERCOMPL interrupt marks the completion of the interrupt OUT data transfer. This inter-
rupt does not necessarily mean that the data in memory is good.

6.Read the USB_DOEPx_TSIZ register to determine the size of the received transfer and to determine the validity of the data re-
ceived in the frame.

Internal Data Flow

1. The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers, clear the NAK bit, and enable
the endpoint to receive the data.

» The application must enable the USB_DCTL.IGNRFRMNUM

2.When an interrupt OUT endpoint is enabled by setting the Endpoint Enable and clearing the NAK bits, the Even/Odd frame will be
ignored by the core.

3.0nce the NAK bit is cleared, the core starts receiving data and writes it to the receive FIFO, as long as there is space in the receive
FIFO. For every data packet received on the USB, the data packet and its status are written to the receive FIFO. Every packet
(maximum packet size or short packet) written to the receive FIFO decrements the Packet Count field for that endpoint by 1.

» OUT data packets received with Bad Data CRC or any packet error are flushed from the receive FIFO automatically.

« Interrupt packets with PID errors are not passed to application. Core discards the packet, sends ACK and does not decrement
packet count.

« If there is no space in the receive FIFO, interrupt data packets are ignored and not written to the receive FIFO. Additionally,
interrupt OUT tokens receive a NAK handshake reply.

4.When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit for that endpoint is set. Once
the NAK bit is set, the isochronous or interrupt data packets are ignored and not written to the receive FIFO, and interrupt OUT
tokens receive a NAK handshake reply.

5. After the data is written to the receive FIFO, the core’s DMA engine reads the data from the receive FIFO and writes it to external
memory, one packet at a time per endpoint.

6. At the end of every packet write on the AHB to external memory, the transfer size for the endpoint is decremented by the size of
the written packet.

7.The OUT Data Transfer Completed pattern for an OUT endpoint is written to the receive FIFO on one of the following conditions.
» The transfer size is 0 and the packet count is 0.
* The last OUT data packet written to the receive FIFO is a short packet (0 < packet size < maximum packet size)

8. When either the application or the DMA pops this entry (OUT Data Transfer Completed), a Transfer Completed interrupt is gener-
ated for the endpoint and the endpoint enable is cleared.

15.4.4.2.2.11 Generic Isochronous OUT Data Transfers Using Periodic Transfer Interrupt Feature



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

This section describes a regular isochronous OUT data transfer with the Periodic Transfer Interrupt feature.

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the host, it must initialize an endpoint as described in 15.4.4.1 Endpoint Initialization. For packet writes in Slave
mode, see 15.4.4.2.2.4 Packet Read from FIFO in Slave Mode.

silabs.com | Building a more connected world. Rev. 1.1 | 391




EFM32WG Reference Manual

Application Requirements

1. Before setting up ISOC OUT transfers spanned across multiple frames, the application must allocate buffer in the memory to ac-
commodate all data to be received as part of the OUT transfers, then program that buffer’s size and start address in the endpoint-
specific registers.

» The application must mask the USB_GINTSTS.INCOMPLP (Incomplete ISO OUT).
» The application must enable the USB_DCTL.IGNRFRMNUM

2.For ISOC transfers, the Transfer Size field in the USB_DOEPx_TSIZ.XFERSIZE register must be a multiple of the maximum pack-
et size of the endpoint, adjusted to the DWORD boundary. The Transfer Size programmed can span across multiple frames based
on the periodicity after which the application wants to receive the USB_DOEPx_INT.XFERCOMPL interrupt

« transfer size[epnum] = n * (mps[epnum] + 4 - (mps[epnum] mod 4))

* packet countfepnum] =n

* n > 0 (Higher value of n reduces the periodicity of the USB_DOEPx_INT.XFERCOMPL interrupt)

» 1 =< packet count[epnum] =< n (Higher value of n reduces the periodicity of the USB_DOEPx_INT.XFERCOMPL interrupt).

3.In DMA mode, the core stores a received data packet in the memory, always starting on a DWORD boundary. If the maximum
packet size of the endpoint is not a multiple of 4, the core inserts byte pads at end of a maximum-packet-size packet up to the end

of the DWORD. The application will not be informed about the frame number and the PID value on which a specific OUT packet
has been received.

4.The assertion of the USB_DOEPx_INT.XFERCOMPL interrupt marks the completion of the isochronous OUT data transfer. This
interrupt does not necessarily mean that the data in memory is good.
* On USB_DOEPx_INT.XFERCOMPL, the application must read the endpoint’s Transfer Size register to calculate the size of the
payload in the memory.
» Payload size in memory = application-programmed initial transfer size - core updated final transfer size
* Number of USB packets in which this payload was received = application-programmed initial packet count — core updated final
packet count.

« If for some reason, the host stop sending tokens, there will be no interrupt to the application, and the application must timeout
on its own.

5. The assertion of the USB_DOEPx_INT.XFERCOMPL can also mark a packet drop on USB due to unavailability of space in the

RxFifo or due to any packet errors.

* The application must read the USB_DOEPx_INT.PKTDRPSTS (USB_DOEPx_INT.Bit[11] is now used as the
USB_DOEPx_INT.PKTDRPSTS) register to differentiate whether the USB_DOEPx_INT.XFERCOMPL was generated due to
the normal end of transfer or due to dropped packets. In case of packets being dropped on the USB due to unavailability of
space in the RxFifo or due to any packet errors the endpoint enable bit is cleared.

* In case of packet drop on the USB application must re-enable the endpoint after recalculating the values
USB_DOEPx_TSIZ.XFERSIZE and USB_DOEPx_TSIZ.PKTCNT.
» Payload size in memory = application-programmed initial transfer size - core updated final transfer size

* Number of USB packets in which this payload was received = application-programmed initial packet count - core updated final
packet count.

Note: Due to application latencies it is possible that DOEPINT.XFERCOMPL interrupt is generated without DOEPINT.PKTDRPSTS be-
ing set, This scenario is possible only if back-to-back packets are dropped for consecutive frames and the PKTDRPSTS is merged, but
the XFERSIZE and PktCnt values for the endpoint are nonzero. In this case, the application must proceed further by programming the
PKTCNT and XFERSIZE register for the next frame, as it would if PKTDRPSTS were being set.

The following figure gives the application flow for Isochronous OUT Periodic Transfer Interrupt feature.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Initialize variables.
Allocate a buffer in the System Memory for multiple
transfers. The buffer size must be a multiple of MaxPktSize

Y

Program the DMA address
USB_DOEPx_DMA = START Address of the Data Memory

Program XFER_SIZE register Re-compute XFERSIZE
USB_DOEPx_TSI.ZXFERSIZE = XferSize Spanning across multiple Xfers and PKTCNT
USB_DOEPx_TSI.Z .PKTCNT= Program PktCnt for multiple Xfers 4+

Program the Global INT STS
GINTMSK.INCOMPLPMSK = 0 // Mask IncompISOCOUT Interrupt

A 4

Program EP Citrl register to start the xfer
USB_DOEPx_CTL.CNAK =1
USB_DOEPx_CTL.EPENA = 1
USB_DOEPx_CTL.SNAK =0
USB_DOEPx_CTL.EPDIS =0

A 4

Wait for USB_DOEPx_INT.XFERCOMPL
interrupt and report error if timeout expires

Received short packet ISOC OUT PktDrop

Received short packet

End of transfer [

Figure 15.23. ISOC OUT Application Flow for Periodic Transfer Interrupt Feature

15.4.4.2.2.12 Incomplete Isochronous OUT Data Transfers in DMA and Slave Modes

silabs.com | Building a more connected world. Rev. 1.1 | 393




EFM32WG Reference Manual

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the host, it must initialize an endpoint as described in 15.4.4.1 Endpoint Initialization. See 15.4.4.2.2.4 Packet
Read from FIFO in Slave Mode.

This section describes the application programming sequence when isochronous OUT data packets are dropped inside the core.

Internal Data Flow

1. For isochronous OUT endpoints, the USB_DOEPx_INT.XFERCOMPL interrupt possibly is not always asserted. If the core drops
isochronous OUT data packets, the application could fail to detect the USB_DOEPx_INT.XFERCOMPL interrupt under the follow-
ing circumstances.

* When the receive FIFO cannot accommodate the complete ISO OUT data packet, the core drops the received ISO OUT data.
* When the isochronous OUT data packet is received with CRC errors.

* When the isochronous OUT token received by the core is corrupted.

* When the application is very slow in reading the data from the receive FIFO.

2.When the core detects an end of periodic frame before transfer completion to all isochronous OUT endpoints, it asserts the
USB_GINTSTS.INCOMPLP (Incomplete Isochronous OUT data) interrupt, indicating that a USB_DOEPx_INT.XFERCOMPL inter-
rupt is not asserted on at least one of the isochronous OUT endpoints. At this point, the endpoint with the incomplete transfer re-
mains enabled, but no active transfers remains in progress on this endpoint on the USB.

3. This step is applicable only if the core is operating in slave mode. Application Programming Sequence

4. This step is applicable only if the core is operating in slave mode. Asserting the USB_GINTSTS.INCOMPLP (Incomplete Isochro-
nous OUT data) interrupt indicates that in the current frame, at least one isochronous OUT endpoint has an incomplete transfer.

5. If this occurs because isochronous OUT data is not completely emptied from the endpoint, the application must ensure that the
DMA or the application empties all isochronous OUT data (data and status) from the receive FIFO before proceeding.

* When all data is emptied from the receive FIFO, the application can detect the USB_DOEPx_INT.XFERCOMPL interrupt. In this
case, the application must re-enable the endpoint to receive isochronous OUT data in the next frame, as described in
15.4.4.2.2.2 Control Read Transfers (SETUP, Data IN, Status OUT).

6. When it receives a USB_GINTSTS.incomplete Isochronous OUT data interrupt, the application must read the control registers of
all isochronous OUT endpoints (USB_DOEPx_CTL) to determine which endpoints had an incomplete transfer in the current frame.
An endpoint transfer is incomplete if both the following conditions are met.

+ USB_DOEPx_CTL.DPIDEOF (Even/Odd frame) = USB_DSTS.SOFFN[O0]
« USB_DOEPx_CTL.EPENA (Endpoint Enable) = 1

7. The previous step must be performed before the USB_GINTSTS.SOF interrupt is detected, to ensure that the current frame num-
ber is not changed.

8. For isochronous OUT endpoints with incomplete transfers, the application must discard the data in the memory and disable the
endpoint by setting the USB_DOEPx_CTL.EPDIS (Endpoint Disable) bit.

9. Wait for the USB_DOEPx_INT.EPDIS (Endpoint Disabled) interrupt and enable the endpoint to receive new data in the next frame
as explained in 15.4.4.2.2.2 Control Read Transfers (SETUP, Data IN, Status OUT).

» Because the core can take some time to disable the endpoint, the application possibly is not able to receive the data in the next
frame after receiving bad isochronous data.

15.4.4.2.3 IN Data Transfers in Slave and DMA Modes



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

This section describes the internal data flow and application-level operations during IN data transfers.

* 15.4.4.2.3.1 Packet Write in Slave Mode

* 15.4.4.2.3.2 Setting Global Non-Periodic IN Endpoint NAK

* 15.4.4.2.3.3 Setting IN Endpoint NAK

* 15.4.4.2.3.4 IN Endpoint Disable

* 15.4.4.2.3.5 Bulk IN Stall

* 15.4.4.2.2.12 Incomplete Isochronous OUT Data Transfers in DMA and Slave Modes

* 15.4.4.2.2.7 Stalling a Non-Isochronous OUT Endpoint

* 15.4.4.2.3.8 Worst-Case Response Time

* 15.4.4.2.3.9 Choosing the Value of USB_GUSBCFG.USBTRDTIM

* 15.4.4.2.3.10 Handling Babble Conditions

* 15.4.4.2.3.11 Generic Non-Periodic (Bulk and Control) IN Data Transfers in DMA and Slave Mode
* 15.4.4.2.3.12 Examples

* 15.4.4.2.3.13 Generic Periodic IN (Interrupt and Isochronous) Data Transfers

* 15.4.4.2.3.14 Generic Periodic IN Data Transfers Using the Periodic Transfer Interrupt Feature

15.4.4.2.3.1 Packet Write in Slave Mode

This section describes how the application writes data packets to the endpoint FIFO in Slave mode.

1. The application can either choose polling or interrupt mode.

* In polling mode, application monitors the status of the endpoint transmit data FIFO, by reading the USB_DIEPx_TXFSTS regis-
ter, to determine, if there is enough space in the data FIFO.

* In interrupt mode, application waits for the USB_DIEPx_INT.TXFEMP interrupt and then reads the USB_DIEPx_TXFSTS regis-
ter, to determine, if there is enough space in the data FIFO.

» To write a single non-zero length data packet, there must be space to write the entire packet is the data FIFO.
» For writing zero length packet, application must not look for FIFO space.

2. Using one of the above mentioned methods, when the application determines that there is enough space to write a transmit packet,
the application must first write into the endpoint control register, before writing the data into the data FIFO. The application, typically
must do a read modify write on the USB_DIEPx_CTL, to avoid modifying the contents of the register, except for setting the End-
point Enable bit.

The application can write multiple packets for the same endpoint, into the transmit FIFO, if space is available. For periodic IN endpoints,
application must write packets only for one frame. It can write packets for the next periodic transaction, only after getting transfer com-
plete for the previous transaction.

15.4.4.2.3.2 Setting Global Non-Periodic IN Endpoint NAK

Internal Data Flow

1. When the application sets the Global Non-periodic IN NAK bit (USB_DCTL.SGNPINNAK), the core stops transmitting data on the
non-periodic endpoint, irrespective of data availability in the Non-periodic Transmit FIFO.

2. Non-isochronous IN tokens receive a NAK handshake reply
3. The core asserts the USB_GINTSTS.GINNAKEFF interrupt in response to the USB_DCTL.SGNPINNAK bit.

4. Once the application detects this interrupt, it can assume that the core is in the Global Non-periodic IN NAK mode. The application
can clear this interrupt by clearing the USB_DCTL.SGNPINNAK bit.

silabs.com | Building a more connected world. Rev. 1.1 | 395




EFM32WG Reference Manual

Application Programming Sequence

1. To stop transmitting any data on non-periodic IN endpoints, the application must set the USB_DCTL.SGNPINNAK bit. To set this
bit, the following field must be programmed

+ USB_DCTL.SGNPINNAK = 1

2. Wait for the assertion of the USB_GINTSTS.GINNAKEFF interrupt. This interrupt indicates the core has stopped transmitting data
on the non-periodic endpoints.

3. The core can transmit valid non-periodic IN data after the application has set the USB_DCTL.SGNPINNAK bit, but before the as-
sertion of the USB_GINTSTS.GINNAKEFF interrupt.

4. The application can optionally mask this interrupt temporarily by writing to the USB_GINTMSK.GINNAKEFFMSK bit.
+ USB_GINTMSK.GINNAKEFFMSK =0

5.To exit Global Non-periodic IN NAK mode, the application must clear the USB_DCTL.SGNPINNAK. This also clears the
USB_GINTSTS.GINNAKEFF interrupt.

+ USB_DCTL.SGNPINNAK = 1
6. If the application has masked this interrupt earlier, it must be unmasked as follows:
+ USB_GINTMSK.GINNAKEFFMSK = 1

15.4.4.2.3.3 Setting IN Endpoint NAK

Internal Data Flow

1.When the application sets the IN NAK for a particular endpoint, the core stops transmitting data on the endpoint, irrespective of
data availability in the endpoint’s transmit FIFO.

2. Non-isochronous IN tokens receive a NAK handshake reply
+ Isochronous IN tokens receive a zero-data-length packet reply

3. The core asserts the USB_DIEPx_INT.INEPNAKEFF (IN NAK Effective) interrupt in response to the USB_DIEPx_CTL.SNAK (Set
NAK) bit.

4.0nce this interrupt is seen by the application, the application can assume that the endpoint is in IN NAK mode. This interrupt can
be cleared by the application by setting the USB_DIEPx_CTL. Clear NAK bit.

Application Programming Sequence

1. To stop transmitting any data on a particular IN endpoint, the application must set the IN NAK bit. To set this bit, the following field
must be programmed.

- USB_DIEPx_CTL.SNAK = 1

2. Wait for assertion of the USB_DIEPx_INT.INEPNAKEFF (NAK Effective) interrupt. This interrupt indicates the core has stopped
transmitting data on the endpoint.

3. The core can transmit valid IN data on the endpoint after the application has set the NAK bit, but before the assertion of the NAK
Effective interrupt.

4. The application can mask this interrupt temporarily by writing to the USB_DIEPMSK.INEPNAKEFFMSK (NAK Effective) bit.
+ USB_DIEPMSK.INEPNAKEFFMSK (NAK Effective) = 0

5.To exit Endpoint NAK mode, the application must clear the USB_DIEPx_CTL.NAK status. This also clears the
USB_DIEPx_INT.INEPNAKEFF (NAK Effective) interrupt.

» USB_DIEPx_CTL.CNAK =1
6. If the application masked this interrupt earlier, it must be unmasked as follows:
+ USB_DIEPMSK.INEPNAKEFFMSK (NAK Effective) = 1

15.4.4.2.3.4 IN Endpoint Disable



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Use the following sequence to disable a specific IN endpoint (periodic/non-periodic) that has been previously enabled.

Application Programming Sequence:

1.In Slave mode, the application must stop writing data on the AHB, for the IN endpoint to be disabled.
2. The application must set the endpoint in NAK mode. See 15.4.4.2.3.3 Setting IN Endpoint NAK.
+ USB_DIEPx_CTL.SNAK =1
3. Wait for USB_DIEPx_INT.INEPNAKEFF (NAK Effective) interrupt.
4. Set the following bits in the USB_DIEPx_CTL register for the endpoint that must be disabled.
+ USB_DIEPx_CTL.EPDIS (Endpoint Disable) = 1

+ USB_DIEPx_CTL.SNAK =1
5. Assertion of USB_DIEPx_INT.EPDISBLD (Endpoint Disabled) interrupt indicates that the core has completely disabled the speci-
fied endpoint. Along with the assertion of the interrupt, the core also clears the following bits.

+ USB_DIEPx_CTL.EPENA =0
+ USB_DIEPx_CTL.EPDIS =0
6. The application must read the USB_DIEPx_TSIZ register for the periodic IN EP, to calculate how much data on the endpoint was
transmitted on the USB.
7. The application must flush the data in the Endpoint transmit FIFO, by setting the following fields in the USB_GRSTCTL register.

+ USB_GRSTCTL.TXFNUM = Endpoint Transmit FIFO Number

* USB_GRSTCTL.TXFFLSH =1
The application must poll the USB_GRSTCTL register, until the TXFFLSH bit is cleared by the core, which indicates the end of flush
operation. To transmit new data on this endpoint, the application can re-enable the endpoint at a later point.

15.4.4.2.3.5 Bulk IN Stall

Rev. 1.1 | 397

silabs.com | Building a more connected world.




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

These notes refer to the following figure.

1. The application has scheduled an IN transfer on receiving the USB_DIEPx_INT.INTKNTXFEMP (IN Token Received When TxFI-

FO Empty) interrupt.

2.When the transfer is in progress, the application must force a STALL on the endpoint. This could be because the application has
received a SetFeature.Endpoint Halt command. The application sets the Stall bit, disables the endpoint and waits for the
USB_DIEPx_INT.EPDISBLD (Endpoint Disabled) interrupt. This generates STALL handshakes for the endpoint on the USB.

3. On receiving the interrupt, the application flushes the Non-periodic Transmit FIFO and clears the USB_DCTL.SGNPINNAK (Global

IN NP NAK) bit.

4.0n receiving the ClearFeature.Endpoint Halt command, the application clears the Stall bit.
5. The endpoint behaves normally and the application can re-enable the endpoint for new transfers

Host UsSB Device

interrupt

n |
N N::\_)LWTKNTXFEMP_)

Application —
XFERSIZE = 1025 bytes
PKTCNT =3
EPENA =1
idle until intr —

A

' ™
| setup_np_in_pkt ﬂ)
—IN. xact_1 data rdy
I _____ B do_in_xfer
xact_1 of 2 Nlijr;lt-;(rtfstﬂp_b setup_np_in_pkt
L __ ]~ xact 2 data rdy_
ACK- A4 -
I > I
I\ I I—EPDisabIed interrupt-p»| e:ecthsS;illle' —@
IN\> — '
xact_2 of 2 I N ’I I ¢
A—STAL
I I I flush_nper_tx_fifo; /@
Ir Global IN NP Nak
CIrG
I I I @
I\/N\J I wait for host / app to
L— STALL /I I clear stall
o O
1< clr stall
I« | [
|- |
o
—N— I
NAK
le— /'\-)I\/NTKN
F—nl | itemge
IN\> Nterryp; — do_in_xfer
new xact :
I
[}

Figure 15.24. Bulk IN Stall

silabs.com | Building a more connected world.

Rev. 1.1 | 398




EFM32WG Reference Manual

15.4.4.2.3.6 Incomplete Isochronous IN Data Transfers

This section describes what the application must do on an incomplete isochronous IN data transfer.

Internal Data Flow

1. An isochronous IN transfer is treated as incomplete in one of the following conditions.

a. The core receives a corrupted isochronous IN token on at least one isochronous IN endpoint. In this case, the application de-
tects a USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt.

b. The application or DMA is slow to write the complete data payload to the transmit FIFO and an IN token is received before the
complete data payload is written to the FIFO. In this case, the application detects a USB_DIEPx_INT.INTKNTXFEMP (IN To-
ken Received When TxFIFO Empty) interrupt. The application can ignore this interrupt, as it eventually results in a
USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt at the end of periodic frame.

i. The core transmits a zero-length data packet on the USB in response to the received IN token.

2.1n either of the aforementioned cases, in Slave mode, the application must stop writing the data payload to the transmit FIFO as
soon as possible.

3. The application must set the NAK bit and the disable bit for the endpoint. In DMA mode, the core automatically stops fetching the
data payload when the endpoint disable bit is set.

4. The core disables the endpoint, clears the disable bit, and asserts the Endpoint Disable interrupt for the endpoint.

Application Programming Sequence

1. The application can ignore the USB_DIEPx_INT.INTKNTXFEMP (IN Token Received When TxFIFO empty) interrupt on any iso-
chronous IN endpoint, as it eventually results in a USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt.

2. Assertion of the USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt indicates an incomplete isochro-
nous IN transfer on at least one of the isochronous IN endpoints.

3. The application must read the Endpoint Control register for all isochronous IN endpoints to detect endpoints with incomplete IN
data transfers.
4.In Slave mode, the application must stop writing data to the Periodic Transmit FIFOs associated with these endpoints on the AHB.
5.1n both modes of operation, program the following fields in the USB_DIEPx_CTL register to disable the endpoint.
+ USB_DIEPx_CTL.SNAK = 1
+ USB_DIEPx_CTL.EPDIS (Endpoint Disable) = 1
6. The USB_DIEPx_INT.EPDISBLD (Endpoint Disabled) interrupt’s assertion indicates that the core has disabled the endpoint.

At this point, the application must flush the data in the associated transmit FIFO or overwrite the existing data in the FIFO by
enabling the endpoint for a new transfer in the next frame. To flush the data, the application must use the USB_GRSTCTL reg-
ister.

15.4.4.2.3.7 Stalling Non-Isochronous IN Endpoints

This section describes how the application can stall a non-isochronous endpoint.

Application Programming Sequence

1. Disable the IN endpoint to be stalled. Set the Stall bit as well.

2.USB_DIEPx_CTL.EPDIS (Endpoint Disable) = 1, when the endpoint is already enabled.
+ USB_DIEPx_CTL.STALL =1
« The Stall bit always takes precedence over the NAK bit

3. Assertion of the USB_DIEPx_INT.EPDISBLD (Endpoint Disabled) interrupt indicates to the application that the core has disabled
the specified endpoint.

4. The application must flush the Non-periodic or Periodic Transmit FIFO, depending on the endpoint type. In case of a non-periodic
endpoint, the application must re-enable the other non-periodic endpoints, which do not need to be stalled, to transmit data.

5. Whenever the application is ready to end the STALL handshake for the endpoint, the USB_DIEPx_CTL.STALL bit must be cleared.

6. If the application sets or clears a STALL for an endpoint due to a SetFeature.Endpoint Halt command or ClearFeature.Endpoint
Halt command, the Stall bit must be set or cleared before the application sets up the Status stage transfer on the control endpoint.



EFM32WG Reference Manual

Special Case: Stalling the Control IN/OUT Endpoint

The core must stall IN/OUT tokens if, during the Data stage of a control transfer, the host sends more IN/OUT tokens than are specified
in the SETUP packet. In this case, the application must to enable USB_DIEPx_INT.INTKNTXFEMP and
USB_DOEPx_INT.OUTTKNEPDIS interrupts during the Data stage of the control transfer, after the core has transferred the amount of
data specified in the SETUP packet. Then, when the application receives this interrupt, it must set the STALL bit in the corresponding
endpoint control register, and clear this interrupt.

15.4.4.2.3.8 Worst-Case Response Time

When the acts as a device, there is a worst case response time for any tokens that follow an isochronous OUT. This worst case re-
sponse time depends on the AHB clock frequency.

The core registers are in the AHB domain, and the core does not accept another token before updating these register values. The worst
case is for any token following an isochronous OUT, because for an isochronous transaction, there is no handshake and the next token
could come sooner. This worst case value is 7 PHY clocks in FS mode.

If this worst case condition occurs, the core responds to bulk/interrupt tokens with a NAK and drops isochronous and SETUP tokens.
The host interprets this as a timeout condition for SETUP and retries the SETUP packet. For isochronous transfers, the INCOMPISOIN
and INCOMPLP interrupts inform the application that isochronous IN/OUT packets were dropped.

15.4.4.2.3.9 Choosing the Value of USB_GUSBCFG.USBTRDTIM

The value in USB_GUSBCFG.USBTRDTIM is the time it takes for the MAC, in terms of PHY clocks after it has received an IN token, to
get the FIFO status, and thus the first data from PFC (Packet FIFO Controller) block. This time involves the synchronization delay be-
tween the PHY and AHB clocks. This delay is 5 clocks.

Once the MAC receives an IN token, this information (token received) is synchronized to the AHB clock by the PFC (the PFC runs on
the AHB clock). The PFC then reads the data from the SPRAM and writes it into the dual clock source buffer. The MAC then reads the
data out of the source buffer (4 deep).

If the AHB is running at a higher frequency than the PHY (in Low-speed mode), the application can use a smaller value for
USB_GUSBCFG.USBTRDTIM. The following figure explains the 5-clock delay. This diagram has the following signals:

» tkn_rcvd: Token received information from MAC to PFC

» dynced_tkn_rcvd: Doubled sync tkn_rcvd, from pclk to hclk domain
» spr_read: Read to SPRAM

* spr_addr: Address to SPRAM

» spr_rdata: Read data from SPRAM

» srcbuf_push: Push to the source buffer

» srcbuf_rdata: Read data from the source buffer. Data seen by MAC

The application can use the following formula to calculate the value of USB_GUSBCFG.USBTRDTIM:
4 x AHB Clock + 1 PHY Clock = (2 clock sync + 1 clock memory address + 1 clock memory data from sync RAM) + (1 PHY Clock (next PHY clock |

15.4.4.2.3.10 Handling Babble Conditions

If receives a packet that is larger than the maximum packet size for that endpoint, the core stops writing data to the Rx buffer and waits
for the end of packet (EOP). When the core detects the EOP, it flushes the packet in the Rx buffer and does not send any response to
the host.

If the core continues to receive data at the EOF2 (the end of frame 2, which is very close to SOF), the core generates an early_suspend
interrupt (USB_GINTSTS.ERLYSUSP). On receiving this interrupt, the application must check the erratic_error status bit
(USB_DSTS.ERRTICERR). If this bit is set, the application must take it as a long babble and perform a soft reset.

15.4.4.2.3.11 Generic Non-Periodic (Bulk and Control) IN Data Transfers in DMA and Slave Mode

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the host, it must initialize an endpoint as described in 15.4.4.1 Endpoint Initialization. For packet writes in Slave
mode, see 15.4.4.2.3.1 Packet Write in Slave Mode.



EFM32WG Reference Manual

Application Requirements

1. Before setting up an IN transfer, the application must ensure that all data to be transmitted as part of the IN transfer is part of a
single buffer, and must program the size of that buffer and its start address (in DMA mode) to the endpoint-specific registers.

2.For IN transfers, the Transfer Size field in the Endpoint Transfer Size register denotes a payload that constitutes multiple maxi-
mum-packet-size packets and a single short packet. This short packet is transmitted at the end of the transfer.

» To transmit a few maximum-packet-size packets and a short packet at the end of the transfer:
» Transfer size[epnum] = n * mps[epnum] + sp (where n is an integer >= 0, and 0 <= sp < mps[epnum])
* If (sp > 0), then packet countfepnum] = n + 1. Otherwise, packet countfepnum] = n
a. To transmit a single zero-length data packet:
» Transfer size[epnum] =0
» Packet count[fepnum] =1

b. To transmit a few maximum-packet-size packets and a zero-length data packet at the end of the transfer, the application must
split the transfer in two parts. The first sends maximum-packet-size data packets and the second sends the zero-length data
packet alone.

c. First transfer: transfer size[epnum] = n * mps[epnum]; packet count = n;
d. Second transfer: transfer size[epnum] = 0; packet count = 1;
3.In DMA mode, the core fetches an IN data packet from the memory, always starting at a DWORD boundary. If the maximum pack-

et size of the IN endpoint is not a multiple of 4, the application must arrange the data in the memory with pads inserted at the end
of a maximum-packet-size packet so that a new packet always starts on a DWORD boundary.

4.0nce an endpoint is enabled for data transfers, the core updates the Transfer Size register. At the end of IN transfer, which ended
with a Endpoint Disabled interrupt, the application must read the Transfer Size register to determine how much data posted in the
transmit FIFO was already sent on the USB.

5. Data fetched into transmit FIFO = Application-programmed initial transfer size — core-updated final transfer size
+ Data transmitted on USB = (application-programmed initial packet count — Core updated final packet count) * mps[epnum]
+ Data yet to be transmitted on USB = (Application-programmed initial transfer size — data transmitted on USB)

Internal Data Flow

1. The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers and enable the endpoint to
transmit the data.

2.In Slave mode, the application must also write the required data to the transmit FIFO for the endpoint. In DMA mode, the core
fetches the data from memory according to the application setting for the endpoint.

3. Every time a packet is written into the transmit FIFO, either by the core’s internal DMA (in DMA mode) or the application (in Slave
Mode), the transfer size for that endpoint is decremented by the packet size. The data is fetched from the memory (DMA/Applica-
tion), until the transfer size for the endpoint becomes 0. After writing the data into the FIFO, the “number of packets in FIFO” count
is incremented (this is a 3-bit count, internally maintained by the core for each IN endpoint transmit FIFO. The maximum number of
packets maintained by the core at any time in an IN endpoint FIFO is eight). For zero-length packets, a separate flag is set for each
FIFO, without any data in the FIFO.

4.0nce the data is written to the transmit FIFO, the core reads it out upon receiving an IN token. For every non-isochronous IN data
packet transmitted with an ACK handshake, the packet count for the endpoint is decremented by one, until the packet count is
zero. The packet count is not decremented on a TIMEOUT.

5.For zero length packets (indicated by an internal zero length flag), the core sends out a zero-length packet for the IN token and
decrements the Packet Count field.

6. If there is no data in the FIFO for a received IN token and the packet count field for that endpoint is zero, the core generates a IN
Tkn Revd When FIFO Empty Interrupt for the endpoint, provided the endpoint NAK bit is not set. The core responds with a NAK
handshake for non-isochronous endpoints on the USB.

7.For Control IN endpoint, if there is a TIMEOUT condition, the USB_DIEPx_INT.TIMEOUT interrupt is generated.

8. When the transfer size is 0 and the packet count is 0, the transfer complete interrupt for the endpoint is generated and the endpoint
enable is cleared.

Application Programming Sequence

1. Program the USB_DIEPx_TSIZ register with the transfer size and corresponding packet count. In DMA mode, also program the
USB_DIEPx_DMAADDR register.

2.Program the USB_DIEPx_CTL register with the endpoint characteristics and set the CNAK and Endpoint Enable bits.

3.In slave mode when transmitting non-zero length data packet, the application must poll the USB_DIEPx_TXFSTS register (where x

is the FIFO number associated with that endpoint) to determine whether there is enough space in the data FIFO. The application
can optionally use USB_DIEPx_INT.TXFEMP before writing the data.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.4.2.3.12 Examples

Slave Mode Bulk IN Transaction
These notes refer to the following figure.

1. The host attempts to read data (IN token) from an endpoint.
2.0n receiving the IN token on the USB, the core returns a NAK handshake, because no data is available in the transmit FIFO.

3.To indicate to the application that there was no data to send, the core generates a USB_DIEPx_INT.INTKNTXFEMP (IN Token
Received When TxFIFO Empty) interrupt.

4. When data is ready, the application sets up the USB_DIEPx_TSIZ register with the Transfer Size and Packet Count fields.
5. The application writes one maximum packet size or less of data to the Non-periodic TxFIFO.

6. The host reattempts the IN token.

7.Because data is now ready in the FIFO, the core now responds with the data and the host ACKs it.

8.Because the XFERSIZE is now zero, the intended transfer is complete. The device core generates a USB_DIEPx_INT.XFER-
COMPL interrupt.

9. The application processes the interrupt and uses the setting of the USB_DIEPx_INT.XFERCOMPL interrupt bit to determine that
the intended transfer is complete.

Host UsB Device Application

s %
| NAK IN—— 3 INTKNTXFEMP

—p| | idle until intr

l" interrupt
o |
I J I I wait for —
L] xfer XFERSIZE = 512 bytes
PKTCNT =1
l\/N\J I EENA =1
L/NAK/I I Q)\ Yes
. | |
I . I I wr_reg(ep.DIEPTSIZn)
L]
| | | v
I I -I— _____ setup_np_in_pkt
xact_1 <« + T
VR I |
| 7 |
I InTkn =0
0 Timeout =0
e I | XferComp = 1
K
I I I Mermyp )] idle until intr

Figure 15.25. Slave Mode Bulk IN Transaction

silabs.com | Building a more connected world. Rev. 1.1 | 402




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Slave Mode Bulk IN Transfer (Pipelined Transaction)
These notes refer to the following figure.

1. The host attempts to read data (IN token) from an endpoint.
2.0n receiving the IN token on the USB, the core returns a NAK handshake, because no data is available in the transmit FIFO.

3.To indicate that there was no data to send, the core generates an USB_DIEPx_INT.INTKNTXFEMP (In Token Received When
TxFIFO Empty) interrupt.

4.When data is ready, the application sets up the USB_DIEPx_TSIZ register with the transfer size and packet count.
5. The application writes one maximum packet size or less of data to the Non-periodic TxFIFO.

6. The host reattempts the IN token.

7.Because data is now ready in the FIFO, the core responds with the data, and the host ACKs it.

8.When the TxFIFO level falls below the halfway mark, the core generates a USB_GINTSTS.NPTXFEMP (NonPeriodic TxFIFO
Empty) interrupt. This triggers the application to start writing additional data packets to the FIFO.

9. A data packet for the second transaction is ready in the TxFIFO.
10. A data packet for third transaction is ready in the TxFIFO while the data for the second packet is being sent on the bus.
11. The second data packet is sent to the host.
12. The last short packet is sent to the host.

13.Because the last packet is sent and XFERSIZE is now zero, the intended transfer is complete. The core generates a
USB_DIEPx_INT.XFERCOMPL interrupt.

14. The application processes the interrupt and uses the setting of the USB_DIEPx_INT.XFERCOMPL interrupt bit to determine that
the intended transfer is complete

silabs.com | Building a more connected world. Rev. 1.1 | 403




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Host uUsB Device Application —
G)/I\ | XFERSIZE = 1025 bytes
IN. PKTCNT =3
EPENA =1
I NAK: I INTKNTXFEMP idle until intr —
|4/ I I interrupt
[ )
[ ]
I . I I ®\ wr_reg(xfer_size_reg)
I I setup_np_in_pkt
xact_1 I
xact_1of 3
\ 4
setup_np_in_pkt
xact_2
xact_2 of 3 Y
setup_np_in_pkt
xact_3
xact_2
InTkn=0
XaCt_3 of 3 Timeout=0
ACK =0
XferComp = 1

o | e T
erupt | | idle until intr

Figure 15.26. Slave Mode Bulk IN Transfer (Pipelined Transaction)

silabs.com | Building a more connected world. Rev. 1.1 | 404




EFM32WG Reference Manual

Slave Mode Bulk IN Two-Endpoint Transfer

These notes refer to the following figure.

1.
2.

3.

4.
5.
6.

7.

8.
9.
10.
. The host repeats its attempt to read data (IN token) from endpoint 2.
12.
13.

11

14.
15.
16.
17.
18.

19.

20.
21.
22.

23.

The host attempts to read data (IN token) from endpoint 1.

On receiving the IN token on the USB, the core returns a NAK handshake, because no data is available in the transmit FIFO for
endpoint 1, and generates a USB_DIEP1_INT.INTKNTXFEMP (In Token Received When TxFIFO Empty) interrupt.

The application processes the interrupt and initializes USB_DIEP1_TSIZ register with the Transfer Size and Packet Count fields.
The application starts writing the transaction data to the transmit FIFO.

The application writes one maximum packet size or less of data for endpoint 1 to the Non-periodic TxFIFO.
Meanwhile, the host attempts to read data (IN token) from endpoint 2.

On receiving the IN token on the USB, the core returns a NAK handshake, because no data is available in the transmit FIFO for
endpoint 2, and the core generates a USB_DIEP2_INT.INTKNTXFEMP (In Token Received When TxFIFO Empty) interrupt.

Because the application has completed writing the packet for endpoint 1, it initializes the USB_DIEP2_TSIZ register with the Trans-
fer Size and Packet Count fields. The application starts writing the transaction data into the transmit FIFO for endpoint 2.

The host repeats its attempt to read data (IN token) from endpoint 1.
Because data is now ready in the TxFIFO, the core returns the data, which the host ACKs.
Meanwhile, the application has initialized the data for the next two packets in the TxFIFO (ep2.xact1 and ep1.xact2, in order).

Because endpoint 2’s data is ready, the core responds with the data (ep2.xact_1), which the host ACKs.

Meanwhile, the application has initialized the data for the next two packets in the TxFIFO (ep2.xact2 and ep1.xact3, in order). The
application has finished initializing data for the two endpoints involved in this scenario.

The host repeats its attempt to read data (IN token) from endpoint 1.

Because data is now ready in the FIFO, the core responds with the data, which the host ACKs.
The host repeats its attempt to read data (IN token) from endpoint 2.

With data now ready in the FIFO, the core responds with the data, which the host ACKs.

With the last packet for endpoint 2 sent and its XFERSIZE now zero, the intended transfer is complete. The core generates a
USB_DIEP2_INT.XFERCOMPL interrupt for this endpoint.

The application processes the interrupt and uses the setting of the USB_DIEP2_INT.XFERCOMPL interrupt bit to determine that
the intended transfer on endpoint 2 is complete.

The host repeats its attempt to read data (IN token) from endpoint 1 (last transaction).
With data now ready in the FIFO, the core responds with the data, which the host ACKs.

Because the last endpoint one packet has been sent and XFERSIZE is now zero, the intended transfer is complete. The core gen-
erates a USB_DIEP1_INT.XFERCOMPL interrupt for this endpoint.

The application processes the interrupt and uses the setting of the USB_DIEP1_INT.XFERCOMPL interrupt bit to determine that
the intended transfer on endpoint 1 is complete.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

EP_NUM 1 register set EP_NUM 2 register set

XferSize = 1025 bytes XferSize = 522 bytes
. .. PktCnt =3 PktCnt = 2
Host | usB | Device Application/] gpena =1 EPEna = 1
In, g ep1,InTkn i i
, ep1 ol ) | | idle until
. ep 2 drvr
@/I\ NAK— "V IxF Emp intr | intr P

| | _
idle until
I I ep?2 InTknTXFEmMP intr———/-) i
IN, ep2 IN, ep2 02

Y
wr_reg(ep1, DIEPTSIZn)

N | | wr_reg(ep2, DIEPTSIZn)
In, ep1 I epl.xact_1 |« I/@ Y

b ep1. setup_np_in_pkt

@ Y

| J __ — 1| ep1.setup_np_in_pkt
——Ack ep1.xact_2 v
IN, ep2. I ep1.xact 1 |€ -I» —————— N————— — ep2. setup_np_in_pkt

m 512 bytes :
.\EACK\J | 4
|

IN
» €p1 ep2 . xact_2 —t —————— N———— — — ep2. setup_np_in_pkt

ep1 . xact_2

512 bytes W |
| ‘
ACK\)' epl.xact_3 |« —| —

I IN, ep2 ep1 . xact_2

I
®@ |
@ I v xfer_complete = 1
I 'i A idle until
I
I
I

T«

ep1. setup_np_in_pkt

10 bytes

I\ACK
I I

A -
g intr

n, ep1

’ ,{xfer_complete =1

idle until
intr

ep1,Xfer

Comp intr

23

Figure 15.27. Slave Mode Bulk IN Two-Endpoint Transfer

15.4.4.2.3.13 Generic Periodic IN (Interrupt and Isochronous) Data Transfers

To initialize the core after power-on reset, the application must follow the sequence in 15.4.1 Overview: Programming the Core. Before
it can communicate with the host, it must initialize an endpoint as described in 15.4.4.1 Endpoint Initialization. For packet writes in Slave
mode, see 15.4.4.2.3.1 Packet Write in Slave Mode.

silabs.com | Building a more connected world. Rev. 1.1 | 406




EFM32WG Reference Manual

Application Requirements

1. Application requirements 1, 2, 3, and 4 of 15.4.4.2.3.11 Generic Non-Periodic (Bulk and Control) IN Data Transfers in DMA and
Slave Mode also apply to periodic IN data transfers, except for a slight modification of Requirement 2.

* The application can only transmit multiples of maximum-packet-size data packets or multiples of maximum-packet-size packets,
plus a short packet at the end. To transmit a few maximum-packet-size packets and a short packet at the end of the transfer,
the following conditions must be met.

« transfer size[epnum] = n * mps[epnum] + sp(where n is an integer # 0, and 0 >= sp < mps[epnum])
* If (sp > 0), packet count[epnum] = n + 10therwise, packet count[epnum] = n;
* mc[epnum] = packet count[epnum]

» The application cannot transmit a zero-length data packet at the end of transfer. It can transmit a single zero-length data packet
by it self. To transmit a single zero-length data packet,

* transfer size[epnum] =0
* packet countfepnum] =1
* mc[epnum] = packet count[epnum]

2. The application can only schedule data transfers 1 frame at a time.

+ (USB_DIEPx_TSIZMC - 1) * USB_DIEPx CTL.MPS =< USB_DIEPx TSIZ.XFERSIZE =< USB_DIEPx TSIZ.MC *
USB_DIEPx_CTL.MPS

+ USB_DIEPx_TSIZ.PKTCNT = USB_DIEPx_TSIZ.MC

» If USB_DIEPx_TSIZ.XFERSIZE < USB_DIEPx_TSIZ.MC * USB_DIEPx_CTL.MPS, the last data packet of the transfer is a short
packet.

3. This step is not applicable for isochronous data transfers, only for interrupt transfers. The application can schedule data transfers
for multiple frames, only if multiples of max packet sizes (up to 3 packets), must be transmitted every frame. This is can be done,
only when the core is operating in DMA mode. This is not a recommended mode though.

« ((n*USB_DIEPx_TSIZ.MC) - 1)*USB_DIEPx_CTL.MPS <= USB_DIEPx_TSIZ.XFERSIZE <=
n*USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS

* USB_DIEPx_TSIZ.PKTCNT = n*USB_DIEPx_TSIZ.MC
* nis the number of frames for which the data transfers are scheduled
Data Transmitted per frame in this case would be USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS, in all the frames except the last

one. In the frame “n”, the data transmitted would be (USB_DIEPx_TSIZ. XFERSIZE -
(n-1)*USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS)

4. For Periodic IN endpoints, the data must always be prefetched 1 frame ahead for transmission in the next frame. This can be done,
by enabling the Periodic IN endpoint 1 frame ahead of the frame in which the data transfer is scheduled.

5.The complete data to be transmitted in the frame must be written into the transmit FIFO (either by the application or the DMA),
before the Periodic IN token is received. Even when 1 DWORD of the data to be transmitted per frame is missing in the transmit
FIFO when the Periodic IN token is received, the core behaves as when the FIFO was empty. When the transmit FIFO is empty,
6. A zero data length packet would be transmitted on the USB for ISO IN endpoints
* A NAK handshake would be transmitted on the USB for INTR IN endpoints

7.For a High Bandwidth IN endpoint with three packets in a frame, the application can program the endpoint FIFO size to be
2*max_pkt_size and have the third packet load in after the first packet has been transmitted on the USB.



EFM32WG Reference Manual

Internal Data Flow

1. The application must set the Transfer Size and Packet Count fields in the endpoint-specific registers and enable the endpoint to
transmit the data.

2.In Slave mode, the application must also write the required data to the associated transmit FIFO for the endpoint. In DMA mode,
the core fetches the data for the endpoint from memory, according to the application setting.

3. Every time either the core’s internal DMA (in DMA mode) or the application (in Slave mode) writes a packet to the transmit FIFO,
the transfer size for that endpoint is decremented by the packet size. The data is fetched from DMA or application memory until the
transfer size for the endpoint becomes 0.

4.When an IN token is received for an periodic endpoint, the core transmits the data in the FIFO, if available. If the complete data
payload (complete packet) for the frame is not present in the FIFO, then the core generates an IN Token Received When TxFIFO
Empty Interrupt for the endpoint.

» A zero-length data packet is transmitted on the USB for isochronous IN endpoints
* A NAK handshake is transmitted on the USB for interrupt IN endpoints
5. The packet count for the endpoint is decremented by 1 under the following conditions:
» For isochronous endpoints, when a zero- or non-zero-length data packet is transmitted
» For interrupt endpoints, when an ACK handshake is transmitted

* When the transfer size and packet count are both 0, the Transfer Completed interrupt for the endpoint is generated and the
endpoint enable is cleared.

6. At the “Periodic frame Interval” (controlled by USB_DCFG.PERFRINT), when the core finds non-empty any of the isochronous IN
endpoint FIFOs scheduled for the current frame non-empty, the core generates a USB_GINTSTS.INCOMPISOIN interrupt.

Application Programming Sequence (Transfer Per Frame)

1. Program the USB_DIEPx_TSIZ register. In DMA mode, also program the USB_DIEPx_DMAADDR register.

2.Program the USB_DIEPx_CTL register with the endpoint characteristics and set the CNAK and Endpoint Enable bits.

3.In Slave mode, write the data to be transmitted in the next frame to the transmit FIFO.

4. Asserting the USB_DIEPx_INT.INTKNTXFEMP (In Token Received When TxFifo Empty) interrupt indicates that either the DMA or
application has not yet written all data to be transmitted to the transmit FIFO.

5.1f the interrupt endpoint is already enabled when this interrupt is detected, ignore the interrupt. If it is not enabled, enable the end-
point so that the data can be transmitted on the next IN token attempt.
« If the isochronous endpoint is already enabled when this interrupt is detected, see 15.4.4.2.3.6 Incomplete Isochronous IN Data

Transfers for more details.

6. The core handles timeouts internally on interrupt IN endpoints programmed as periodic endpoints without application intervention.

The application, thus, never detects a USB_DIEPx_INT.TIMEOUT interrupt for periodic interrupt IN endpoints.

7.Asserting the USB_DIEPx_INT.XFERCOMPL interrupt with no USB_DIEPx_INT.INTKNTXFEMP (In Token Received When TxFifo
Empty) interrupt indicates the successful completion of an isochronous IN transfer. A read to the USB_DIEPx_TSIZ register must
indicate transfer size = 0 and packet count = 0, indicating all data is transmitted on the USB.

8. Asserting the USB_DIEPx_INT.XFERCOMPL interrupt, with or without the USB_DIEPx_INT.INTKNTXFEMP (In Token Received
When TxFifo Empty) interrupt, indicates the successful completion of an interrupt IN transfer. A read to the USB_DIEPx_TSIZ reg-
ister must indicate transfer size = 0 and packet count = 0, indicating all data is transmitted on the USB.

9. Asserting the USB_GINTSTS.INCOMPISOIN (Incomplete Isochronous IN Transfer) interrupt with none of the aforementioned inter-
rupts indicates the core did not receive at least 1 periodic IN token in the current frame.

10. For isochronous IN endpoints, see 15.4.4.2.3.6 Incomplete Isochronous IN Data Transfers, for more details.



EFM32WG Reference Manual

15.4.4.2.3.14 Generic Periodic IN Data Transfers Using the Periodic Transfer Interrupt Feature
This section describes a typical Periodic IN (ISOC / INTR) data transfer with the Periodic Transfer Interrupt feature.

1. Before setting up an IN transfer, the application must ensure that all data to be transmitted as part of the IN transfer is part of a
single buffer, and must program the size of that buffer and its start address (in DMA mode) to the endpoint-specific registers.

2.For IN transfers, the Transfer Size field in the Endpoint Transfer Size register denotes a payload that constitutes multiple maxi-
mum-packet-size packets and a single short packet. This short packet is transmitted at the end of the transfer.

a. To transmit a few maximum-packet-size packets and a short packet at the end of the transfer:

» Transfer size[epnum] = n * mps[epnum] + sp (where n is an integer > 0, and 0 < sp < mps[epnum]. A higher value of n
reduces the periodicity of the USB_DOEPx_INT.XFERCOMPL interrupt)

« If (sp > 0), then packet count[epnum] = n + 1. Otherwise, packet count[epnum] = n
b. To transmit a single zero-length data packet:

» Transfer size[epnum] = 0

» Packet count[epnum] = 1

c. To transmit a few maximum-packet-size packets and a zero-length data packet at the end of the transfer, the application must
split the transfer in two parts. The first sends maximum-packet-size data packets and the second sends the zero-length data
packet alone.

* First transfer: transfer size[epnum] = n * mps[epnum]; packet count = n;
» Second transfer: transfer size[epnum] = 0; packet count = 1;

d. The application can only transmit multiples of maximum-packet-size data packets or multiples of maximum-packet-size pack-
ets, plus a short packet at the end. To transmit a few maximum-packet-size packets and a short packet at the end of the trans-
fer, the following conditions must be met.

« transfer size[epnum] = n * mps[epnum] + sp (where n is an integer > 0, and 0 < sp < mps[epnum])
» If (sp > 0), packet countfepnum] = n + 1 Otherwise, packet count[epnum] = n;
* mc[epnum] = number of packets to be sent out in a frame.

e. The application cannot transmit a zero-length data packet at the end of transfer. It can transmit a single zero-length data pack-
et by itself. To transmit a single zero-length data packet,

* transfer size[epnum] =0
» packet count[epnum] =1
* mc[epnum] = packet count[epnum]
3.In DMA mode, the core fetches an IN data packet from the memory, always starting at a DWORD boundary. If the maximum pack-

et size of the IN endpoint is not a multiple of 4, the application must arrange the data in the memory with pads inserted at the end
of a maximum-packet-size packet so that a new packet always starts on a DWORD boundary.

4.0nce an endpoint is enabled for data transfers, the core updates the Transfer Size register. At the end of IN transfer, which ended
with a Endpoint Disabled interrupt, the application must read the Transfer Size register to determine how much data posted in the
transmit FIFO was already sent on the USB.

+ Data fetched into transmit FIFO = Application-programmed initial transfer size - core-updated final transfer size
+ Data transmitted on USB = (application-programmed initial packet count - Core updated final packet count) * mps[epnum]
+ Data yet to be transmitted on USB = (Application-programmed initial transfer size - data transmitted on USB)

5. The application can schedule data transfers for multiple frames, only if multiples of max packet sizes (up to 3 packets), must be
transmitted every frame. This is can be done, only when the core is operating in DMA mode.

« ((n*USB_DIEPx_TSIZ.MC) - 1)*USB_DIEPx_CTL.MPS <= USB_DIEPx_TSIZ.XFERSIZE <=
n*USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS

« USB_DIEPx_TSIZ.PKTCNT = n*USB_DIEPx_TSIZ.MC

* n is the number of frames for which the data transfers are scheduled. Data Transmitted per frame in this case is
USB_DIEPx_TSIZ.MC*USB_DIEPx_CTL.MPS in all frames except the last one. In frame n, the data transmitted is
(USB_DIEPx_TSIZ.XFERSIZE — (n — 1) * USB_DIEPx_TSIZ.MC * USB_DIEPx_CTL.MPS)

6. For Periodic IN endpoints, the data must always be prefetched 1 frame ahead for transmission in the next frame. This can be done,
by enabling the Periodic IN endpoint 1 frame ahead of the frame in which the data transfer is scheduled.

7.The complete data to be transmitted in the frame must be written into the transmit FIFO, before the Periodic IN token is received.
Even when 1 DWORD of the data to be transmitted per frame is missing in the transmit FIFO when the Periodic IN token is re-
ceived, the core behaves as when the FIFO was empty. When the transmit FIFO is empty,

» A zero data length packet would be transmitted on the USB for ISOC IN endpoints
* A NAK handshake would be transmitted on the USB for INTR IN endpoints
» USB_DIEPx_TSIZ.PKTCNT is not decremented in this case.

8. For a High Bandwidth IN endpoint with three packets in a frame, the application can program the endpoint FIFO size to be 2 *
max_pkt_size and have the third packet load in after the first packet has been transmitted on the USB.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Requirements For XferSize and PktCnt programming:

1. The Packet Size has to be MaxPktSize for all frames except for the
last packet, which can be a short packet
2. Short packets are not allowed in between transfers
3. The core will read packets from system memory only from DWORD-
aligned addresses.
4. If MaxPktSize is not DWORD aligned, the application must insert
ol ; pads at the end of the packet so that new packets are always
Intialize variables. DWORD aligned.
5. Thresholding in not supported for the Periodic Transfer Interrupt

Allocate a buffer in the System Memory. XferBuffer size
should be multiple ot MaxPktSize.

l Enhancement.
Program the DMA address
DIEPDMA = START Address of the Data Memory
Program Xfer_Size register
USB_DIEPx_TSIZ.XFERSIZE = XferSize spanning across multiple Xfers
USB_DIEPx_TSIZ.PKTCNT = Program PktCnt for multiple Xfers
USB_DIEPx_TSIZ.MC = Max Number of Packets in a frame
Program the Global INT STS
USB_GINTMSK.INCOMPLSOCINMSK = 0b0 // Mask IncompISOCIN Interrupt
Program EP Citrl register to start the xfer
USB_DIEPx_CTL.CNAK = 0b1
USB_DIEPx_CTL.TXFNUM = tx_fifo_num
USB_DIEPx_CTL.EPENA = 0b1
USB_DIEPx_CTL.SNAK = 0b0
USB_DIEPx_CTL.EPDIS = 0b0
v
Wait for USB_DOEPX_INT XFERCOMPL interrupt and
report an error if timeout expires.
If USB_DIEPx_TSIZ
XFERSIZE != 0 or YES
USB_DIEPx_TSIZ l
PKTCNT !=0

NO Check for error scenario.

If no error scenario, set report error.

De-allocate Data
Ram Memory

Figure 15.28. Periodic IN Application Flow for Periodic Transfer Interrupt Feature

15.4.5 OTG Revision 1.3 Programming Model
This section describes the OTG programming model when the core is configured to support OTG Revision 1.3 of the specification.

The core is an OTG device supporting HNP and SRP. When the core is connected to an “A” plug, it is referred to as an A-device. When
the core is connected to a “B” plug it is referred to as a B-device. In Host mode, the core turns off Vbus to conserve power. SRP is a
method by which the B-device signals the A-device to turn on Vbus power. A device must perform both data-line pulsing and Vbus
pulsing, but a host can detect either data-line pulsing or Vbus pulsing for SRP. HNP is a method by which the B-device negotiates and
switches to host role. In Negotiated mode after HNP, the B-device suspends the bus and reverts to the device role.

silabs.com | Building a more connected world. Rev. 1.1 | 410




EFM32WG Reference Manual

15.4.5.1 A-Device Session Request Protocol

The application must set the SRP-Capable bit in the Core USB Configuration register. This enables the core to detect SRP as an A-
device.

1. To save power, the application suspends and turns off port power when the bus is idle by writing the Port Suspend and Port Power
bits in the Host Port Control and Status register.

2.PHY indicates port power off by detecting that VBUS voltage level is no longer valid.

3. The device must detect SEO for at least 2 ms to start SRP when Vbus power is off.

4.To initiate SRP, the device turns on its data line pull-up resistor for 5 to 10 ms. The core detects data-line pulsing.
5. The device drives Vbus above the A-device session valid (2.0 V minimum) for Vbus pulsing.

The core interrupts the application on detecting SRP. The Session Request Detected bit is set in Global Interrupt Status register
(USB_GINTSTS.SESSREQINT).

6. The application must service the Session Request Detected interrupt and turn on the Port Power bit by writing the Port Power bit in
the Host Port Control and Status register. The PHY indicates port power-on by detecting a valid VBUS level.

7.When the USB is powered, the device connects, completing the SRP process.

15.4.5.2 B-Device Session Request Protocol

The application must set the SRP-Capable bit in the Core USB Configuration register. This enables the core to initiate SRP as a B-
device. SRP is a means by which the core can request a new session from the host.

1.To save power, the host suspends and turns off port power when the bus is idle. PHY indicates port power off by detecting a not
valid VBUS level.

The core sets the Early Suspend bit in the Core Interrupt register after 3 ms of bus idleness. Following this, the core sets the USB
Suspend bit in the Core Interrupt register.

The PHY indicates the end of the B-device session by detecting a VBUS level below session valid.
2.PHY to enables the VBUS discharge function to speed up Vbus discharge.

3.The PHY indicates the session’s end by detecting a session end voltage level on VBUS. This is the initial condition for SRP. The
core requires 2 ms of SEQ before initiating SRP.

The application must wait until Vbus discharges to 0.2 V after USB_GOTGCTL.BSESVLD is deasserted. This discharge time can
be obtained from the datasheet.

4. The application initiates SRP by writing the Session Request bit in the OTG Control and Status register. The core perform data-line
pulsing followed by Vbus pulsing.

5. The host detects SRP from either the data-line or Vbus pulsing, and turns on Vbus. The PHY indicates Vbus power-on by detecting
a valid VBUS level.

6. The core performs Vbus pulsing.
The host starts a new session by turning on Vbus, indicating SRP success. The core interrupts the application by setting the Ses-

sion Request Success Status Change bit in the OTG Interrupt Status register. The application reads the Session Request Success
bit in the OTG Control and Status register.

7.When the USB is powered, the core connects, completing the SRP process.



EFM32WG Reference Manual

15.4.5.3 A-Device Host Negotiation Protocol

HNP switches the USB host role from the A-device to the B-device. The application must set the HNP-Capable bit in the Core USB
Configuration register to enable the core to perform HNP as an A#device.

1. The core sends the B-device a SetFeature b_hnp_enable descriptor to enable HNP support. The B-device’s ACK response indi-
cates that the B-device supports HNP. The application must set Host Set HNP Enable bit in the OTG Control and Status register to
indicate to the core that the B-device supports HNP.

2.When it has finished using the bus, the application suspends by writing the Port Suspend bit in the Host Port Control and Status
register.

3. When the B-device observes a USB suspend, it disconnects, indicating the initial condition for HNP. The B-device initiates HNP
only when it must switch to the host role; otherwise, the bus continues to be suspended.

The core sets the Host Negotiation Detected interrupt in the OTG Interrupt Status register, indicating the start of HNP.

The PHY turns off the D+ and D- pulldown resistors to indicate a device role. The PHY enable the D + pull-up resistor indicates a
connect for B-device.

The application must read the Current Mode bit in the OTG Control and Status register to determine Device mode operation.
4. The B-device detects the connection, issues a USB reset, and enumerates the core for data traffic.
5. The B-device continues the host role, initiating traffic, and suspends the bus when done.

The core sets the Early Suspend bit in the Core Interrupt register after 3 ms of bus idleness. Following this, the core sets the USB
Suspend bit in the Core Interrupt register.

6. In Negotiated mode, the core detects the suspend, disconnects, and switches back to the host role. The core turns on the D+ and
D- pulldown resistors to indicate its assumption of the host role.

7.The core sets the Connector ID Status Change interrupt in the OTG Interrupt Status register. The application must read the con-
nector ID status in the OTG Control and Status register to determine the core’s operation as an A-device. This indicates the com-
pletion of HNP to the application. The application must read the Current Mode bit in the OTG Control and Status register to deter-
mine Host mode operation.

8. The B-device connects, completing the HNP process.

15.4.5.4 B-Device Host Negotiation Protocol

HNP switches the USB host role from B-device to A-device. The application must set the HNP-Capable bit in the Core USB Configura-
tion register to enable the core to perform HNP as a B-device.

1. The A-device sends the SetFeature b_hnp_enable descriptor to enable HNP support. The core’s ACK response indicates that it
supports HNP. The application must set the Device HNP Enable bit in the OTG Control and Status register to indicate HNP sup-
port.

The application sets the HNP Request bit in the OTG Control and Status register to indicate to the core to initiate HNP.

2.When it has finished using the bus, the A-device suspends by writing the Port Suspend bit in the Host Port Control and Status
register.

» The core sets the Early Suspend bit in the Core Interrupt register after 3 ms of bus idleness. Following this, the core sets the
USB Suspend bit in the Core Interrupt register.

» The core disconnects and the A-device detects SEO on the bus, indicating HNP. The core enables the D+ and D- pulldown re-
sistors to indicate its assumption of the host role. The A-device responds by activating its D+ pull-up resistor within 3 ms of
detecting SEOQ. The core detects this as a connect.

» The core sets the Host Negotiation Success Status Change interrupt in the OTG Interrupt Status register, indicating the HNP
status. The application must read the Host Negotiation Success bit in the OTG Control and Status register to determine host
negotiation success. The application must read the Current Mode bit in the Core Interrupt register (USB_GINTSTS) to deter-
mine Host mode operation.

3. The application sets the reset bit (USB_HPRT.PRTRST) and the core issues a USB reset and enumerates the A-device for data
traffic

4. The core continues the host role of initiating traffic, and when done, suspends the bus by writing the Port Suspend bit in the Host
Port Control and Status register.

5.In Negotiated mode, when the A-device detects a suspend, it disconnects and switches back to the host role. The core disables the
D+ and D- pulldown resistors to indicate the assumption of the device role.

6. The application must read the Current Mode bit in the Core Interrupt (USB_GINTSTS) register to determine the Host mode opera-
tion.

7. The core connects, completing the HNP process.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.6 OTG Revision 2.0 Programming Model

OTG Revision 2.0 supports the new Attach Detection Protocol (ADP). This protocol enables a local device (an OTG device or Embed-
ded Host) to detect when a remote device is attached or detached.

Note: ADP is not supported by the core.

In addition to ADP, OTG Revision 2.0 also supports enhanced SRP and HNP, which are described in the following sections:

* 15.4.6.1 OTG Revision 2.0 Session Request Protocol
* 15.4.6.2 OTG Revision 2.0 Host Negotiation Protocol

Note: VBUS pulsing is not supported in OTG Revision 2.0 mode.

silabs.com | Building a more connected world. Rev. 1.1 | 413




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.6.1 OTG Revision 2.0 Session Request Protocol

When the core is behaving as an A-device, it can power off VBUS when no session is active until the B-device initiates a SRP. The
SRP detection is handled by the core.

The following figure illustrates the programming steps that need to be performed by A-device’s application (core as A-device) when B-
device initiates a SRP to establish a connection.

Host mode (PHY
not driving VBUS)

v

|

|

|

|

' Program USB_GINTMSK.
: (Unmask OTGINT,
|

|

|

|

|

MODEMIS,
SESSREQINT)

If host's application decides to | NO Interrupt?

turn on VBUS voluntarily, |
then the application need |
not wait for SRP from | YES
device |

\ 4
Read USB_GINTSTS

NO

YES

Host Initialization Steps. Refer to the Host
Initialization section of this chapter for
L——» more information.
(In this step the OTG FSM is in a_host
state.)

Note

If MODEMIS interrupt is detected during this
process, it means that the

connector has been plugged out or )
interchanged. This can be confirmed by Host Transactions
reading USB_GINTSTS.CONIDSTSCHNG.

Figure 15.29. SRP Detection by Core When Operating as A-Device

The following figure illustrates the steps that need to be performed by B-device’s application (core as B-device) in order to establishing
a connection with A-device by signaling a SRP.

silabs.com | Building a more connected world. Rev. 1.1 | 414




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Device (OTG
FSM in b_idle state)

A 4

1. Program USB_GINTMSK
(unmask OTGINT)
2. Read USB_GOTGCTL

YES

(This indicates that VBUS is
already being driven and
hence there is no need for a
USB_GOTGCTL. SRP)

BSESVLD =1 ?

NO

USB_GOTGCTL.

Set USB_GOTGCTL. SESREQSCS =17

SESREQ =1
A\ 4
NO Device Initialization Steps. For more
Interrupt? information, see Device Initialization — «—
section of this chapter.
YES

A\ 4

Read USB_GINTSTS

Device Transactions

USB_GINTSTS.
OTGINT =1?

Read USB_GOTGINT

USB_GOTGINT.
SESREQSUCSTSCHNG = 1?2

1. Read USB_GOTGCTL.
2. Clear USB_GOTGINT.SESREQSUCSTSCHNG by
writing a 1.

Figure 15.30. SRP Initiation by the Core When Acting as a B-Device

silabs.com | Building a more connected world. Rev. 1.1 | 415




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Note: The programming flow illustrated in the previous figure is similar to OTG revision 1.3. This is because the presence or absence of
VBUS pulsing is transparent to the application.

silabs.com | Building a more connected world. Rev. 1.1 | 416




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.6.2 OTG Revision 2.0 Host Negotiation Protocol

When the core is operating as A-device, the application must execute a GetStatus() operation to the Bdevice with a frequency of
THOST_REQ_POLL to determine the state of the host request flag in the B-device. If the host request flag is set in B-device it must
program the core to change its role within THOST_REQ_SUSP.

The following figure shows the programming steps that need to be performed by A-device’s application (core as A-device) in order to
change its role to device. In this figure, the A-device performs a role change, becomes a B-device and then reverts back to host (A-
device) mode of operation.

silabs.com | Building a more connected world. Rev. 1.1 | 417




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

A-Device as USB Host

Host to Device to Host

Host mode
(Send SetFeature Command to enable
b_hnp_enable feature in HNP capable

devices. HNP polling mechanism is also

involved. This is done when OTG FSM
is in a_host state)

Program
USB_GOTGCTL.HSTSETHNPEN = 1

|

Program USB_HPRT.PRTSUSP = 1
Unmask USB_GINTSTS.OTGINT

YES

Read USB_GINTSTS

USB_GINTSTS.
OTGINT =1?

Read USB_GINTSTS.CURMOD ‘

Remain as Host (The host's
application can take a call
whether to switch off VBUS or
not)

USB_GINTSTS.
CURMOD = 0?

A-Device as USB Device

(o)

Y
1. Unmask USB_GINTSTS.ERLYSUSP.
2. Device Initialization Steps. For more
information, see the Device Initialization
section of this chapter.

]

Read USB_GINTSTS
Check that CURMOD = 0

Start of Device
transactions Yy
Host Initialization Steps. For more
information, see the Host Initialization

section of this chapter.

End of Device
transactions

Host Mode

NO Transactions

YES

Read USB_GINTSTS

USB_GINTSTS.
ERLYSUSP =17

NO

YES
Read USB_GINTSTS

USB_GINTSTS.
USBSUSP =17

Application starts
200 ms timer

Interrupt
within
200 ms?

Read USB_GINTSTS

SB_GINTSTS.WKUPINT =

or
USB_GINTSTS.RESETDET?

Figure 15.31. HNP When the Core is an A-Device

The following figure shows the programming steps that need to be performed by B-device’s application (core as B-device) in order to
change its role to Host. In this figure, the B-device performs a role change, becomes a Host and then reverts back to Device mode of

operation.

silabs.com | Building a more connected world.

Rev.1.1 | 418




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Read USB_GOTGINT

USB_GOTGINT.
HSTNEGSUCSTSCHNG = 1

YES
Clear USB_GOTGINT.
HSTNEGSUCSTSCHNG
Read USB_GOTGCTL

USB_GOTGCTL.
ISTNEGSUCS =172

NO

Device mode (Receive
SetFeature Command and OTG
FSMis in b_peripheral state)

1. Program USB_GOTGCTL.DEVSETHNPEN = 1
2. Program USB_GOTGCTL.HNPREQ = 1

Start of Host
End of Host
transactions
Host Initialization.

Set USB_HPRT.PRTSUSP = 1. (USB_HPRT.PRTPWR should
Unmask GINTSTS.OTGINT. not be programmed)

NO . X
Remain as Device

Read USB_GINTSTS.
Check that CURMOD = 1.

USB_GINTSTS.
ERLYSUSP =1?

YES Program
USB_HPRT.PRTRES = 1 for
a predefined time.

Does B-Device
want to remain
host ?

Host Initialization Steps
(USB_HPRT.PRTPWR should not be
programmed). For more information, see the
Host Initialization section in this chapter.

l

The application
should ensure that

this process happens
within 200 ms

Read USB_GINTSTS

USB_GINTSTS.
DISCONNINT =172

USB_GINTSTS.
USBSUSP = 17

Read USB_GINTSTS.CURMOD and ensure
itis 0. Device Initialization Steps. For more
information, see the Device Initialization
section in this chapter.

Device Mode
Transactions

YES
Read USB_GINTSTS

USB_GINTSTS.
OTGINT =1?

Figure 15.32. HNP When the Core is a B-Device

Note: During HNP process where the B-device is going to assume the role of a host, the B-device application needs to ensure that a
USB reset process is programmed (in USB_HPRT register) within 150 ms (TB_ACON_BSEOQ) of getting a USB_HPRT.PRTCONNDET

interrupt.

Rev.1.1 | 419

silabs.com | Building a more connected world.




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.7 FIFO RAM Allocation

15.4.7.1 Data FIFO RAM Allocation

External RAM must be allocated among different FIFOs in the core before any transactions can start. The application must follow this
procedure every time it changes core FIFO RAM allocation.

The application must allocate data RAM per FIFO based on the AHB’s operating frequency, the PHY Clock frequency, the available
AHB bandwidth, and the performance required on the USB. Based on the above mentioned criteria, the application must provide a table
as described below with RAM sizes for each FIFO in each mode.

The core shares a single FIFO RAM between transmit FIFO(s) and receive FIFO.
In DMA mode—The FIFO RAM is also used for storing the some register information.

The Device mode Endpoint DMA address registers (USB_DIEPODMAADDR, USB_DOEPODMAADDR, USB_DIEPx_DMAADDR,
USB_DOEPx_DMAADDR) and Host mode Channel DMA registers (USB_HCx_DMAADDR) are stored in the FIFO RAM.

» This register information are stored at the end of the FIFO RAM after the space allocated for receive and Transmit FIFO. These
register space must also be taken into account when calculating the total FIFO depth of the core as explained in the following sec-
tions.

The registers USB_DIEPx_DMAADDR/USB_DOEPx_DMAADDR are maintained in RAM.
The following rules apply while calculating how much RAM space must be allocated to store these registers.
Host Mode:

+ Slave mode only: No space needed.
* DMA mode: One location per channel.

Device Mode:

» Slave mode only: No space needed.
* DMA mode: One location per end point direction.

silabs.com | Building a more connected world. Rev. 1.1 | 420




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.7.1.1 Device Mode

15.4.7.1.1.1 Tx FIFO Operation
When allocating data RAM for FIFOs in Device mode keep in mind these factors:

1. Receive FIFO RAM allocation:

* RAM for SETUP Packets: 4 * n + 6 locations must be Reserved in the receive FIFO to receive up to n SETUP packets on con-
trol endpoints, where n is the number of control endpoints the device core supports. The core does not use these locations,
which are Reserved for SETUP packets, to write any other data.

* One location for Global OUT NAK

« Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (Largest Packet Size /
4) + 1 must be allotted to receive packets. If a high-bandwidth endpoint is enabled, or multiple isochronous endpoints are ena-
bled, then at least two (Largest Packet Size / 4) + 1 spaces must be allotted to receive back-to-back packets. Typically, two
(Largest Packet Size / 4) + 1 spaces are recommended so that when the previous packet is being transferred to AHB, the USB
can receive the subsequent packet. If AHB latency is high, you must allocate enough space to receive multiple packets. This is
critical to prevent dropping any isochronous packets.

+ Along with each endpoint's last packet, transfer complete status information is also pushed to the FIFO. Typically, one location
for each OUT endpoint is recommended.

2. Transmit FIFO RAM Allocation: The minimum RAM space required for each IN Endpoint Transmit FIFO is the maximum packet
size for that particular IN endpoint. More space allocated in the transmit IN Endpoint FIFO results in a better performance on the

USB and can hide latencies on the AHB.

Table 15.3. Device Mode FIFO RAM Sizes

FIFO Name Data RAM Size

Receive data FIFO rx_fifo_size. This must include RAM for setup packets, OUT end-
point control information and data OUT packets, as mentioned
earlier.

Transmit FIFO 0 tx_fifo_size[0]

Transmit FIFO 1 tx_fifo_size[1]

Transmit FIFO 2 tx_fifo_size[2]

Transmit FIFO i tx_fifo_sizeli]

With this information, the following registers must be programmed as follows:

1.Receive FIFO Size Register (USB_GRXFSIZ)
+ USB_GRXFSIZ.Receive FIFO Depth = rx_fifo_size;
2.Device IN Endpoint Transmit FIFOO Size Register (USB_GNPTXFSIZ)
* USB_GNPTXFSIZ.non-periodic Transmit FIFO Depth = tx_fifo_size[0];
* USB_GNPTXFSIZ.non-periodic Transmit RAM Start Address = rx_fifo_size;
3. Device IN Endpoint Transmit FIFO#1 Size Register (USB_DIEPTXF1)
+ USB_DIEPTXF1. Transmit RAM Start Address = USB_GNPTXFSIZ.FIFOO Transmit RAM Start Address + tx_fifo_size[0];
4. Device IN Endpoint Transmit FIFO#2 Size Register (USB_DIEPTXF2)
+ USB_DIEPTXF2.Transmit RAM Start Address = USB_DIEPTXF1.Transmit RAM Start Address + tx_fifo_size[1];
5. Device IN Endpoint Transmit FIFO#i Size Register (USB_DIEPTXFi)
+ USB_DIEPTXFm.Transmit RAM Start Address = USB_DIEPTXFi-1.Transmit RAM Start Address + tx_fifo_size[i-1];
6. The transmit FIFOs and receive FIFO must be flushed after the RAM allocation is done, for the proper functioning of the FIFOs.
+ USB_GRSTCTL.TXFNUM = 0x10
*+ USB_GRSTCTL.TXFFLSH =1
+ USB_GRSTCTL.RXFFLSH =1

The application must wait until the TXFFLSH bit and the RXFFLSH bits are cleared before performing any operation on the core.

silabs.com | Building a more connected world. Rev. 1.1 | 421




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.7.1.2 Host Mode

Considerations for allocating data RAM for Host Mode FIFOs are listed here:

Receive FIFO RAM Allocation

Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (Largest Packet Size / 4) + 2
must be allotted to receive packets. If a high-bandwidth channel is enabled, or multiple isochronous channels are enabled, then at least
two (Largest Packet Size / 4) + 2 spaces must be allotted to receive back-to-back packets. Typically, two (Largest Packet Size / 4) + 2
spaces are recommended so that when the previous packet is being transferred to AHB, the USB can receive the subsequent packet. If
AHB latency is high, you must allocate enough space to receive multiple packets.

Along with each host channel’s last packet, information on transfer complete status and channel halted is also pushed to the FIFO. So
two locations must be allocated for this.

For handling NAK in DMA mode, the application must determine the number of Control/Bulk OUT endpoint data that must fit into the
TX_FIFO at the same instant. Based on this, one location each is required for Control/Bulk OUT endpoints.

For example, when the host addresses one Control OUT endpoint and three Bulk OUT endpoints, and all these must fit into the non-
periodic TX_FIFO at the same time, then four extra locations are required in the RX FIFO to store the rewind status information for each
of these endpoints.

Transmit FIFO RAM Allocation

The minimum amount of RAM required for the Host Non-periodic Transmit FIFO is the largest maximum packet size among all suppor-
ted non-periodic OUT channels.

More space allocated in the Transmit Non-periodic FIFO results in better performance on the USB and can hide AHB latencies. Typical-
ly, two Largest Packet Sizes’ worth of space is recommended, so that when the current packet is under transfer to the USB, the AHB
can get the next packet. If the AHB latency is large, then you must allocate enough space to buffer multiple packets.

The minimum amount of RAM required for Host periodic Transmit FIFO is the largest maximum packet size among all supported peri-
odic OUT channels. If there is at lease one High Bandwidth Isochronous OUT endpoint, then the space must be at least two times the
maximum packet size of that channel.

silabs.com | Building a more connected world. Rev. 1.1 | 422




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.7.1.2.1 Internal Register Storage Space Allocation

When operating in DMA mode, the DMA address register for each host channel (USB_HCx_DMAADDR) is stored in the FIFO RAM.
One location for each channel must be reserved for this.

Table 15.4. Host Mode FIFO RAM Sizes

FIFO Name Data RAM Size

Receive Data FIFO rx_fifo_size
Non-periodic Transmit FIFO tx_fifo_size[0]
IN Endpoint Transmit FIFO tx_fifo_size[1]

With this information, the following registers must be programmed:
1. Receive FIFO Size Register (USB_GRXFSIZ)
* USB_GRXFSIZ.RXFDEP = rx_fifo_size;
2. Non-periodic Transmit FIFO Size Register (USB_GNPTXFSIZ)
+ USB_GNPTXFSIZ.NPTXFDEP = tx_fifo_size[0];
+ USB_GNPTXFSIZ.NPTXFSTADDR = rx_fifo_size;
3. Host Periodic Transmit FIFO Size Register (USB_HPTXFSIZ)
+ USB_HPTXFSIZ.PTXFSIZE = tx_fifo_size[1];
+ USB_HPTXFSIZ.PTXFSTADDR = USB_GNPTXFSIZ.NPTXFSTADDR + tx_fifo_size[0];
4.The transmit FIFOs and receive FIFO must be flushed after RAM allocation for proper FIFO function.
* USB_GRSTCTL.TXFNUM = 0x10
+ USB_GRSTCTL.TXFFLSH =1
+ USB_GRSTCTL.RXFFLSH =1

The application must wait until the TXFFLSH bit and the RXFFLSH bits are cleared before performing any operation on the core.

15.4.7.1.3 Summary of Guidelines for Choosing Data FIFO RAM Depth in Host Mode

15.4.7.1.3.1 RXFIFO Size

The RX FIFO size must be equal to at least twice the largest value of MPS size used. The recommended minimum RXFIFO depth =
((largest packet size/4)*2)+2. (+2) is required by the core for the status quadlets internally.

15.4.7.1.3.2 Non Periodic TX FIFO Size

This should be equal to at least twice the largest value of MPS size used. The recommended minimum non-periodic TXFIFO depth =
((largest packet size/4)*2).

15.4.7.1.3.3 Periodic TX FIFO Size

The recommended size for Periodic TXFIFO is sum total of (MPS*MC)/4 for all the channels.

Note: In the above recommendations, always round off the MPS value to the nearest multiple of 4. For example, if the largest value of
MPS=125, use the rounded-off value, which is 128.

silabs.com | Building a more connected world. Rev. 1.1 | 423




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.7.1.4 Calculating the Total FIFO Size
The RxFIFO is shared between the host and device. The Host TxFIFOs are also shared with Device IN endpoint TxFIFOs 0 through n.

There are three ways to calculate the total FIFO size.

Method 1
Use this method if you are using the following conditions:

* Minimum FIFO depth allocation
* The FIFO must equal at least one MaxPacketSize (MPS).

Device RxFIFO =

* (4 * number of control endpoints + 6) + ((largest USB packet used / 4) + 1 for status information) + (2 * number of OUT endpoints) +
1 for Global NAK

Note: Include the Control OUT endpoint in the number of OUT endpoints.

Host RxFIFO =
» Slave mode

Minimum requirement: (largest USB packet used / 4) + 1 for status information + 1 transfer complete
* DMA mode

(largest USB packet used / 4) + 1 for status information + 1 transfer complete + 1 location each bulk/ control out endpoint for han-
dling NAK scenario

Host Non-Periodic TxFIFO =
* largest non-periodic USB packet used / 4

Host Periodic TxFIFO =
» Sum total of (MPS*MC)/4 of all periodic channels or 1500 locations, whichever is lower.

Device IN Endpoint TxFIFOs (a separate FIFO is allocated to each IN endpoint) =
* IN Endpoints Max packet Size / 4

silabs.com | Building a more connected world. Rev. 1.1 | 424




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Method 2

Use this method if you are using the recommended minimum FIFO depth allocation with support for high-bandwidth endpoints. This
FIFO allocation enables the core to transfer a packet on the USB while the previous (next) packet is simultaneously transferred to the
AHB. This FIFO allocation improves the core’s performance.

Device RxFIFO =

* (4 * number of control endpoints + 6) + 2 * ((largest USB packet used / 4) + 1) +(2 * number of OUT endpoints) + 1
Host RxFIFO =

+ Slave mode

2 * ((largest USB packet used /4) + 1 + 1)
* DMA mode

2 * ((largest USB packet used / 4) + 1 + 1) + 1 location each bulk/control out endpoint for handling NAK scenario
Host Non-Periodic TxFIFO =
» 2 * (largest non-periodic USB packet used / 4)
Host Periodic TxFIFO =
» Sum total of (MPS*MC)/4 for all periodic channels or 1500 location, whichever is lower.

Device IN Endpoint-Specific TXFIFOs (a separate FIFO is allocated to each endpoint) =
» 2 * (max_pkt_size for the endpoint) / 4.

// DVA node

OIG Total RAM = (Device RxFIFO or Host RxFIFO choose the | argest one) +((Host Non-Periodic TxFlIFO + Host peiod
ic TxFI FO) or

(Device IN Endpoi nt TxFI FO #0 + #1 + #2 + #n)); choose the |argest one +

(1 location per Host channel or 1 |ocation per Device Endpoint direction; choose

the | argest one)

/]Sl ave npde

OIG Total RAM = (Device RxFIFO or Host RxFIFG choose the |argest one) +

((Host Non-Periodic TxFI FO + Host pei odi c TxFI FO) or

(Device IN Endpoi nt TxFIFO #0 + #1 + #2 + #n)); choose the |argest one

silabs.com | Building a more connected world. Rev. 1.1 | 425




EFM32WG Reference Manual

Method 3

Use this method if you are using the recommended FIFO depth allocation that supports high-bandwidth endpoints and high AHB laten-
cy.

Note:
» x = (AHB latency + time to transfer largest packet on AHB) / time to transfer largest packet on USB.

» The value of x is an integer. Any fractional value is rounded to the nearest integer. For example: x =20 ms / 17,039 ms = 1.17 ms =
2 ms.

Device RxFIFO =
* (4 * number of control endpoints + 6) + (x + 1) * ((largest USB packet used / 4) + 1)+ (2 * number of OUT endpoints) + 1

Note: Include the Control OUT endpoint in the number of OUT endpoints.

Host RxFIFO =
» Slave mode

(x+ 1) * ((largest USB packet used / 4) + 1 + 1)
* DMA mode

(x + 1) * ((largest USB packet used / 4) + 1 + 1) + 1 location each bulk/control out endpoint for handling NAK scenario
Host Non-Periodic TxFIFO =
* (x+ 1) * (largest non-periodic USB packet used / 4)
Host Periodic TxFIFO =
e (x+1) * (Sum total of (MPS*MC)/4 of all periodic channels or 1500 locations, whichever is lower).
Device IN Endpoint-Specific TxFIFOs (a separate FIFO is allocated to each endpoint) =

* (x+1)*(max_pkt_size for the endpoint)/4

// DVA node

OIG Total RAM = (Device RxFI FO or Host RxFI FO choose the | argest one) +

((Host Non-Periodic TxFI FO + Host periodi c TxFI FO) OR

(Devi ce I N Endpoi nt TxFI FO #0 + #1 + #2 + #n); choose the | argest one) +

(1 location per Host channel or 1 |ocation per Device Endpoint direction; choose the |argest one)
// Sl ave npde

OIG Total RAM = (Device RxFlIFO or Host RxFIFO, choose the |argest one) +

((Host Non-Periodic TxFI FO + Host periodic TxFI FO) OR

(Devi ce I N Endpoi nt TxFI FO #0 + #1 + #2 + #n); choose the | argest one)

15.4.7.2 Dynamic FIFO Allocation

The application can change the RAM allocation for each FIFO during the operation of the core.

15.4.7.2.1 Host Mode

In Host mode, before changing FIFO data RAM allocation, the application must determine the following.

All channels are disabled

» All FIFOs are empty

Once these conditions are met, the application can reallocate FIFO data RAM as explained in 15.4.7.1 Data FIFO RAM Allocation.

After reallocating the FIFO data RAM, the application must flush all FIFOs in the core using the USB_GRSTCTL.TXFFLSH (TxFIFO
Flush) and USB_GRSTCTL.RXFFLSH (RxFIFO Flush) fields. Flushing is required to reset the pointers in the FIFOs for proper FIFO
operation after reallocation. For more information on flushing FIFOs, see 15.4.7.2.3 Flushing TxFIFOs in the Core and 15.4.7.2.4 Flush-
ing RxFIFOs in the Core.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.7.2.2 Device Mode
In Device mode, before changing FIFO data RAM allocation, the application must determine the following.

» Al IN and OUT endpoints are disabled

* NAK mode is enabled in the core on all IN endpoints
* Global OUT NAK mode is enabled in the core

» All FIFOs are empty

Once these conditions are met, the application can reallocate FIFO data RAM as explained in 15.4.7.1 Data FIFO RAM Allocation.
When NAK mode is enabled in the core, the core responds with a NAK handshake on all tokens received on the USB, except for SET-
UP packets.

After the reallocating the FIFO data RAM, the application must flush all FIFOs in the core using the USB_GRSTCTL.TXFFLSH (TxFIFO
Flush) and USB_GRSTCTL.RXFFLSH (RxFIFO Flush) fields. Flushing is required to reset the pointers in the FIFOs for proper FIFO
operation after reallocation. For more information on flushing FIFOs, see 15.4.7.2.3 Flushing TxFIFOs in the Core and 15.4.7.2.4 Flush-
ing RxFIFOs in the Core.

15.4.7.2.3 Flushing TxFIFOs in the Core
The application can flush all TxFIFOs in the core using USB_GRSTCTL.TXFFLSH as follows:

1. Check that USB_GINTSTS.GINNAKEFF=0. If this bit is cleared then set USB_DCTL.SGNPINNAK=1.
2. Wait for USB_GINTSTS.GINNAKEFF=1, which indicates the NAK setting has taken effect to all IN endpoints.
3.Poll USB_GRSTCTL.AHBIDLE until it is 1.

AHBIdle = H indicates that the core is not writing anything to the FIFO.
4.Check that USB_GRSTCTL.TXFFLSH =0. If it is 0, then write the TxFIFO number you want to flush to USB_GRSTCTL.TXFNUM.
5.Set USB_GRSTCTL.TXFFLSH=1and wait for it to clear.
6. Set the USB_DCTL.GCNPINNAK bit.

silabs.com | Building a more connected world. Rev. 1.1 | 427




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.7.2.4 Flushing RxFIFOs in the Core
The application can flush all RxFIFOs in the core using USB_GRSTCTL.RXFFLSH as follows:

1. Check the status of the USB_GINTSTS.GOUTNAKEFF bit. If it has been cleared, then set USB_DCTL.SGOUTNAK=1. Else, clear
USB_GINTSTS.GOUTNAKEFF.

NAK Effective interrupt = 1 indicates that the core is not writing to FIFO.
2. Wait for USB_GINTSTS.GOUTNAKEFF=1, which indicates the NAK setting has taken effect to all OUT endpoints.
3. Poll the USB_GRSTCTL.AHBIDLE until it is 1.

AHBIDLE = 1 indicates that the core is not reading anything from the FIFO.
4.Set USB_GRSTCTL.RXFFLSH=1 and wait for it to clear.

5.Set the USB_DCTL.GCOUTNAK bit.

Wait for interrupt

Read USB_GINTSTS

Clear interrupt

A

Clear interrupt

h

Read USB_GOTGCTL
Generate OTG software
interrupt

YES

oTG
interrupt?

A 4

NO

Host /
Device common
interrupt ?

YES N Generate gobal
7 software interrupt

’7

RTL
in Device

YES

mode?
A 4 A 4
Generate host global YES TOStI D:evictle YES Generate device global
ftware interrupt i diobs . cba software interrupt
S0 terrupt 2 terrupt 2
NO NO
A4
A 4
Read USB_HPR'I_" YES e B
Generate port-specific ~ ¢—— | Read USB_DAINT
. nterrupt ?
software interrupt.
NO
A 4
v Read USB_DIEPx_INT
i YES | —
Read USB_HAINT ‘ INendpoint Generate IN-endpoint-
interrupt ? B A
specific software interrupt.
NO
A4 A 4

Read USB_HCx_INT
Generate channel-specific
software interrupt.

Read USB_DOEPx_INT
Generate OUT-endpoint-
specific software interrupt.

Figure 15.33. Core Interrupt Handler

silabs.com | Building a more connected world.

Rev.1.1 | 428




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.8 Suspend/Resume and SRP
This chapter describes different methods of saving power when the USB is suspended. This chapter discusses the following topics:

* 15.4.8.1 Placing PHY in Low Power Mode Without Entering Suspend
* 15.4.8.1.1 When the Core is in Host Mode
* 15.4.8.1.2 When the Core is in Device Mode
* 15.4.8.2 Suspend
* 15.4.8.2.1 Using EM2
* 15.4.8.2.1.1 Overview of the EM2 Programming Model
* 15.4.8.2.1.2 EM2 When the Core is in Host Mode
* 15.4.8.2.1.3 EM2 When the Core is in Device Mode
* 15.4.8.2.2 Using Clock Gating in EMO/EM1
* 15.4.8.2.2.1 Internal Clock Gating when the Core is in Host Mode
* 15.4.8.2.2.2 Internal Clock Gating when the Core is in Device Mode

15.4.8.1 Placing PHY in Low Power Mode Without Entering Suspend

The core can place the PHY in low power mode (the differential receiver is disabled) without entering suspend.

15.4.8.1.1 When the Core is in Host Mode

Programming Flow for the Host Core to Put PHY in Low Power Mode

1. To turn off port power, perform write operation to set the following bits in the USB_HPRT register:
+ USB_HPRT.PRTPWR = 0;
+ USB_HPRT.PRTENA = 0;
2.To put PHY in low power mode, perform read-modify-write operation to set the following bits in the USB_PCGCCTL register:
+ USB_PCGCCTL.STOPPCLK =1
+ USB_PCGCCTL.GATEHCLK =0

Programming Flow for the Host Core to Make PHY Exit Low Power Mode

If your device is non-SRP capable, the host must implement polling to detect the device connection by turning on the port and exiting
PHY low power mode periodically and checking for connect.

1.To turn on port power, perform write operation to set the following bits in the USB_HPRT register:
* USB_HPRT.PRTPWR =1
* USB_HPRT.PRTENA =0
2.To exit PHY low power mode, perform read-modify-write operation to set the following bits in the USB_PCGCCTL register:
+ USB_PCGCCTL.STOPPCLK =0
+ USB_PCGCCTL.STOPHCLK =0
3. Wait for the USB_HPRT Port Connect Detected (PRTCONNDET) bit to be set and do the enumeration of the device.

If your device is SRP-capable, when the device initiates SRP request, the Host core asynchronously detects SRP and the PHY exits
low power mode.

1. Wait for Session Request from the device, or New Session Detected Interrupt (SESSREQINT) in the USB_GINTSTS register.
2.To turn on port power, perform write operation to set the following bits in the USB_HPRT register:

* USB_HPRT.PRTPWR =1

* USB_HPRT.PRTENA =0
3. Wait for the USB_HPRT Port Connect Detected (PRTCONNDET) bit to be set and do the enumeration of Device.

silabs.com | Building a more connected world. Rev. 1.1 | 429




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.8.1.2 When the Core is in Device Mode
To make PHY enter low power mode, complete the following steps:

1. Ensure that the following signals are set as follows:
* VBUS voltage level must be below the session valid level (VBUS is not active)
+ DP/DM must be SEO
2. From the application, perform read-modify-write operation to set USB_PCGCCTL.STOPPCLK = 1.

15.4.8.2 Suspend
When the core is in Suspend, the following power conservation options are available to use:

* 15.4.8.2.1 Using EM2 — You can enter EM2, turning off power (and reseting) parts of the core
» 15.4.8.2.2 Using Clock Gating in EMO/EM1 — You can choose gate the AHB clock to some parts of the core

This section discusses methods of conserving power by using one of the above methods.

15.4.8.2.1 Using EM2

15.4.8.2.1.1 Overview of the EM2 Programming Model

When the USB is suspended or the session is not valid, the PHY is driven into Suspend mode, stopping the PHY clock to reduce power
consumption in the PHY and the core. To further reduce power consumption, the core also supports AHB clock gating and using EM2.

The following sections show the procedures you must follow to use EM2 while in suspend/session-off.

During EM2, the clock to the core must be switched to one of the 32 kHz sources (LFRCO or LFXO). This core needs this clock to
detect Resume and SRP events.

silabs.com | Building a more connected world. Rev. 1.1 | 430




EFM32WG Reference Manual

15.4.8.2.1.2 EM2 When the Core is in Host Mode

Host Mode Suspend in EM2
Sequence of operations:

1. Back up the essential registers of the core. Read and store the following core registers:
* USB_GINTMSK  +« USB_DAINTMSK

- USB_GOTGCTL - USB_DIEPMSK

- USB_GAHBCFG -+ USB_DOEPMSK

- USB_GUSBCFG -+ USB_DIEPx_CTL

- USB_GRXFSIZ  +USB_DIEPx_TSIZ

- USB_GNPTXFSIZ + USB_DIEPx_DMAADDR
- USB_DCFG - USB_PCGCCTL

- USB_DCTL - USB_DIEPTXFn

2. The application sets the Port Suspend bit in the Host Port CSR, and the core drives a USB suspend.
3. The application sets the Power Clamp bit in the Power and Clock Gating Control register.
4.The application sets the Reset to Power-Down Modules bit in the Power and Clock Gating Control register.

5. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register, the core suspends the PHY and the
PHY clock stops. If USB_HCFG.ENA32KHZS is set, switch the USBC clock to 32 kHz.

6. Enter EM2.

Host Mode Resume in EM2
Sequence of operations:

1. The resume event starts by the application waking up from EM2 (on an interrupt)

2. Switch USBC clock back to 48 MHz.

3. The application clears the Stop PHY Clock bit and the core takes the PHY back to normal mode. The PHY clock starts up.
4. The application clears the Power Clamp bit. The core starts driving Resume signaling on the USB.

5. The application clears the Reset to Power-Down Modules bit.

6. The application programs registers in the CSR and sets the Port Resume bit in Host Port CSR (Setting the Port Resume bit is
required by the core, although Resume signaling starts earlier).

7. The application clears the Port Resume bit and the core stops driving Resume signaling.
The core is in normal operating mode.

Note: The application must insert delays of at least 2 PHY clocks between all steps in this sequence. This requirement applies to all
USB EM2 programming sequences.

Host Mode Remote Wakeup in EM2
Sequence of operations:

1. The core detects Remote Wakeup signaling on the USB. The PHY exits suspend mode and the PHY clock restarts.

2.The core generates a Remote Wakeup Detected interrupt. The Remote Wakeup interrupt is generated using the 32 kHz clock de-
pending on the USB_HCFG.RESVALID (ResumeValidPeriod) programmed. The Host Core starts resume signaling at this stage.

3. The USBC clock is switched back to normal 48 MHz clock.

4. The application clears the Stop PHY Clock bit.

5. The application clears the Power Clamp bit.

6. The application clears the Reset to Power-Down Modules bit

7.The application programs CSRs and sets the Port Resume bit. The core continues to drive Resume signaling on the USB.
8. The application clears the Port Resume bit and the core stops driving Resume signaling.

The core enters normal operating mode.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Host Mode Session End in EM2
Sequence of operations:

1.Back up the essential registers of the core. Read and store the following core registers:
*+ USB_GINTMSK  + USB_DAINTMSK

- USB_GOTGCTL - USB_DIEPMSK

- USB_GAHBCFG -+ USB_DOEPMSK

- USB_GUSBCFG -+ USB_DIEPx_CTL
«USB_GRXFSIZ - USB_DIEPx_TSIZ

- USB_GNPTXFSIZ + USB_DIEPx_DMAADDR
- USB_DCFG - USB_PCGCCTL

- USB_DCTL « USB_DIEPTXFn

2.The application sets the Port Suspend bit in the Host Port CSR and the core drives a USB suspend.
3. The application clears the Port Power bit.

4.The application sets the Power Clamp bit in the Power and Clock Gating Control register, and the core clamps the signals between
the internal modules on different power rails.

5. The application sets the Reset to Power-Down Modules bit in the Power and Clock Gating Control register.

6. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register, and the core suspends the PHY, stop-
ping the PHY clock.

7. Switch USBC clock to 32 kHz.
8. Enter EM2.

Host Mode Session Start (EM2 -> EMO0)
Sequence of operations:

1. Exit EM2/Enter EMO).

2. Switch USBC clock back to 48 MHz.

3. The application clears the Stop PHY Clock bit.

4.The application clears the Power Clamp bit. The application clears the Reset to Power-Down Modules bit.
5. The application programs CSRs and sets the Port Power bit to turn on VBUS.

6. The core detects the connection and drives the USB reset.

The core enters normal operating mode.

Host Mode Session End (EMO0 -> EM2)
Sequence of operations:

1. Back up the essential registers of the core. Read and store the following core registers:
+ USB_GINTMSK  +« USB_DAINTMSK

- USB_GOTGCTL - USB_DIEPMSK

- USB_GAHBCFG -+ USB_DOEPMSK

- USB_GUSBCFG -+ USB_DIEPx_CTL

- USB_GRXFSIZ  +USB_DIEPx_TSIZ

- USB_GNPTXFSIZ + USB_DIEPx_DMAADDR
- USB_DCFG - USB_PCGCCTL

- USB_DCTL

2. The application sets the Port Suspend bit in the Host Port CSR and the core drives a USB suspend.
3. The application clears the Port Power bit.

silabs.com | Building a more connected world. Rev. 1.1 | 432




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

4.The application sets the Power Clamp bit in the Power and Clock Gating Control register, and the core clamps the signals between
the internal modules on different power rails.

5. The application sets the Reset to Power-Down Modules bit in the Power and Clock Gating Control register.

6. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register.

7.Enter EM2.

Host Mode Sessions Start (SRP) (EM2 -> EMO0)

Sequence of operations:

1. The core detects SRP (data line pulsing) on the bus. The core de-asserts the suspend_n signal to the PHY, generating the PHY
clock. The SRP Detected interrupt is generated.

2. The application clears the Stop PHY Clock bit, the core deasserts the suspend_n signal to the PHY to generate the PHY clock.

3. The power (VDD_DN) is turned on and stabilizes.

4. The application clears the Power Clamp bit.

5. The application clears the Reset to Power-Down Modules bit.

6. The application programs the CSRs, and sets the Port Power bit to turn on VBUS.

7. The core detects device connection and drives a USB reset.

The core enters normal operating mode.

Rev. 1.1 | 433

silabs.com | Building a more connected world.




EFM32WG Reference Manual

15.4.8.2.1.3 EM2 When the Core is in Device Mode

Device Mode Suspend With EM2

In Device mode, the device validates the host-driven Resume signal for a period of 1.5 ps (75 clock cycles at 48 MHz). With a 32-KHz
clock, 2.34 ms is required (75 clock cycles at 32 KHz) to detect the resume. Hence, the application programs USB_DCFG.RESVALID
with a value of 4 clock cycles (125 ps). If the core is in Suspend mode, the device thus detects the resume and the host signals a
resume for a minimum of 125 us.

If the device is being reset from suspend, it begins a high-speed detection handshake after detecting SEO for no fewer than 2.5 ps. With
a 48-MHz clock, detection occurs after 120 clock cycles (2.5 ps). With a 32-kHz clock, 120 clock cycles signifies 3.75 msec. Hence, a
programmable value of 4 clock cycles (125 ps) is used to detect reset.

The 32-KHz Suspend feature incorporates switching to the 32-KHz clock during suspend and resume/ remote wakeup until the system
comes up and starts driving 48 MHz.

Sequence of operations:

1. Detect Suspend state. Wait for an interrupt from the device core and check that USB_GINTSTS.USBSUSP is set to 1.
2.Back up the essential registers of the core. Read and store the following core registers:
+ USB_GINTMSK  + USB_DAINTMSK

- USB_GOTGCTL - USB_DIEPMSK

- USB_GAHBCFG -+ USB_DOEPMSK

- USB_GUSBCFG -+ USB_DIEPx_CTL

- USB_GRXFSIZ  +USB_DIEPx_TSIZ

- USB_GNPTXFSIZ + USB_DIEPx_DMAADDR
- USB_DCFG - USB_PCGCCTL

- USB_DCTL - USB_DIEPTXFn

3. The application sets the PWRCLMP bit in the Power and Clock Gating Control (USB_PCGCCTL) register.
4. The application sets the USB_PCGCCTL.RSTPDWNMODULE bit.

5. The application sets the USB_ PCGCCTL.STOPPCLK bit.

6. Switch USB Core Clock (USBC) to 32 kHz.

7.Enter EM2.

Device Mode Resume (EM2 -> EMO0)
Sequence if operations:

1. The core detects Resume signaling on the USB. The core generates a Resume Detected interrupt.
2. Switch USB Core Clock (USBC) back to 48 MHz.
3. The application clears the STOPPCLK bit.
4.The application clears the USB_PCGCCTL.PWRCLMP and USB_PCGCCTL.RSTPDWNMODULE bits.
5. Restore the USB_GUSBCFG and USB_DCFG registers with the values stored during the Save operation before entering EM2.
6. Restore the following core registers with the values stored during the Save operation before entering EM2:
+ USB_GINTMSK  + USB_DIEPMSK

- USB_GOTGCTL - USB_DOEPMSK
- USB_GUSBCFG - USB_DIEPx_CTL

- USB_GRXFSIZ  +USB_DIEPx_TSIZ

- USB_GNPTXFSIZ + USB_DIEPx_DMAADDR
- USB_DAINTMSK + USB_DIEPTXFn

7. The application programs CSRs, then sets the Power-On Programming Done bit in the Device Control register.



EFM32WG Reference Manual

Device Mode Remote Wakeup (EM2 -> EMO0)
Sequence if operations:

1. An interrupt wakes up the device from EM2.
2. Switch USB Core Clock (USBC) back to 48 MHz.
3. The application clears the STOPPCLK and GATEHCLK bits in the USB_PCGCCTL register.
4. The application clears the USB_PCGCCTL.PWRCLMP and USB_PCGCCTL.RSTPDWNMODULE bits.
5. Restore the USB_GUSBCFG and USB_DCFG registers with the values stored during the Save operation before entering EM2 .
6. Drive remote wakeup from the core. Program USB_DCTL by performing write-only operation with the following values:
+ USB_DCTL.RMTWKUPSIG =1
» Other Bits = Value stored during the Save operation before entering EM2

7.Clear all interrupt status. Wait for at least 1 millisecond of remote wakeup time and then program GINSTS register with
OxFFFFFFFF to clear all the status register fields.

8. Restore the following core registers with the values stored during the Save operation before entering EM2:
+« USB_GINTMSK  + USB_DIEPMSK

- USB_GOTGCTL +USB_DOEPMSK
- USB_GUSBCFG + USB_DIEPx_CTL
-USB_GRXFSIZ  +USB_DIEPx_TSIZ

- USB_GNPTXFSIZ + USB_DIEPx_DMAADDR
- USB_DAINTMSK + USB_DIEPTXFn

9.Wait for remote wakeup time (1-15ms) and then program USB_DCTL by performing read-modify-write to set
USB_DCTL.RMTWKUPSIG = 0.

Device Mode Session End (EMO0 -> EM2)
Sequence of operations:

1. The core detects a USB suspend and generates a Suspend Detected interrupt. The host turns off VBUS.
2. The application sets the Power Clamp bit in the Power and Clock Gating Control register.

3. The application sets the Reset to Power-Down Modules bit in the Power and Clock Gating Control register.
4. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register.

5. Switch USB Core clock (USBC) to 32 kHz.

6. Enter EM2.

Device Mode Session Start (EM2 -> EMO0)
Sequence of operations:

1. The core detects VBUS on (voltage level within session-valid). A New Session Detected interrupt is generated.
2. Switch USB Core clock (USBC) back to 48 MHz.

3. The application clears the Stop PHY Clock bit.

4. The application clears the Power Clamp bit.

5. The application clears the Reset to Power-Down Modules bit.

6. The application programs CSRs.

7.The cores detects a USB reset.

The core enters normal operating mode.

15.4.8.2.2 Using Clock Gating in EMO/EMA1

The core supports HCLK gating to reduce dynamic power to internal modules to the core during Suspend/ session-off state in EMO and
EM1.



EFM32WG Reference Manual

15.4.8.2.2.1 Internal Clock Gating when the Core is in Host Mode

The following sections show the procedures you must follow to use the clock gating feature.

Host Mode Suspend and Resume With Clock Gating
Sequence of operations:

1. The application sets the Port Suspend bit in the Host Port CSR, and the core drives a USB suspend.

2. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register. The application sets the Gate hclk bit
in the Power and Clock Gating Control register, the core gates the hclk internally.

3. The core remains in Suspend mode.

4. The application clears the Gate hclk and Stop PHY Clock bits, and the PHY clock is generated.
5. The application sets the Port Resume bit, and the core starts driving Resume signaling.

6. The application clears the Port Resume bit after at least 20 ms.

7.The core is in normal operating mode.

Host Mode Suspend and Remote Wakeup With Clock Gating
Sequence of operations:

1. The application sets the Port Suspend bit in the Host Port CSR, and the core drives a USB suspend.

2.The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register. The application sets the Gate hclk bit
in the Power and Clock Gating Control register, and the core gates hclk internally.

3. The core remains in Suspend mode.

4.The Remote Wakeup signaling from the device is detected. The core generates a Remote Wakeup Detected interrupt.
5. The application clears the Gate hclk and Stop PHY Clock bits. The core sets the Port Resume bit.

6. The application clears the Port Resume bit after at least 20 ms.

7. The core is in normal operating mode.

Host Mode Session End and Start With Clock Gating
Sequence of operations:

1. The application sets the Port Suspend bit in the Host Port CSR, and the core drives a USB suspend.
2. The application clears the Port Power bit. The core turns off VBUS.

3. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register. The application sets the Gate hclk bit
in the Power and Clock Gating Control register, and the core gates hclk internally.

4.The core remains in Low-Power mode.

5. The application clears the Gate hclk bit and the application clears the Stop PHY Clock bit to start the PHY clock.
6. The application sets the Port Power bit to turn on VBUS.

7.The core detects device connection and drives a USB reset.

8. The core is in normal operating mode.

Host Mode Session End and SRP With Clock Gating
Sequence of operations:

1. The application sets the Port Suspend bit in the Host Port CSR, and the core drives a USB suspend.
2. The application clears the Port Power bit. The core turns off VBUS.

3. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register. The application sets the Gate hclk bit
in the Power and Clock Gating Control register, and the core gates hclk internally.

4.The core remains in Low-Power mode.

5. SRP (data line pulsing) from the device is detected. An SRP Request Detected interrupt is generated.
6. The application clears the Gate hclk bit and the Stop PHY Clock bit.

7.The core sets the Port Power bit to turn on VBUS.

8. The core detects device connection and drives a USB reset.

9. The core is in normal operating mode.



EFM32WG Reference Manual

15.4.8.2.2.2 Internal Clock Gating when the Core is in Device Mode
The following sections show the procedures you must follow to use the clock gating feature.
Device Mode Suspend and Resume With Clock Gating

Sequence of operations:
1. The core detects a USB suspend and generates a Suspend Detected interrupt.

2.The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register. The application sets the Gate hclk bit
in the Power and Clock Gating Control register, and the core gates hclk.

3. The core remains in Suspend mode.

4. The Resume signaling from the host is detected. A Resume Detected interrupt is generated.
5. The application clears the Gate hclk bit and the Stop PHY Clock bit.

6. The host finishes Resume signaling.

7.The core is in normal operating mode.

Device Mode Suspend and Remote Wakeup With Clock Gating

Sequence of operations:
1. The core detects a USB suspend and generates a Suspend Detected interrupt.

2.The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register. The application sets the Gate hclk bit
in the Power and Clock Gating Control register, the core gates hclk.

3. The core remains in Suspend mode.

4. The application clears the Gate hclk bit and the Stop PHY Clock bit.

5. The application sets the Remote Wakeup bit in the Device Control register, the core starts driving Remote Wakeup signaling.
6. The host drives Resume signaling.

7.The core is in normal operating mode.

Device Mode Session End and Start With Clock Gating

Sequence of operations:
1. The core detects a USB suspend, and generates a Suspend Detected interrupt. The host turns off VBUS.

2. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register. The application sets the Gate hclk bit
in the Power and Clock Gating Control register, and the core gates hclk.

3. The core remains in Low-Power mode.

4.The new session is detected (A session-valid voltage is detected). A New Session Detected interrupt is generated.
5. The application clears the Gate hclk and Stop PHY Clock bits.

6. The core detects USB reset.

7.The core is in normal operating mode.

Device Mode Session End and SRP With Clock Gating

Sequence of operations:
1. The core detects a USB suspend, and generates a Suspend Detected interrupt. The host turns off VBUS.

2. The application sets the Stop PHY Clock bit in the Power and Clock Gating Control register. The application sets the Gate hclk bit
in the Power and Clock Gating Control register, and the core gates hclk.

3. The core remains in Low-Power mode.

4. The application clears the Gate hclk and Stop PHY Clock bits.

5. The application sets the SRP Request bit, and the core drives data line and VBUS pulsing.
6. The host turns on VBUS, detects device connection, and drives a USB reset.

7.The core is in normal operating mode.



EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.4.9 Register Usage

Only the Core Global, Power and Clock Gating, Data FIFO Access, and Host Port registers can be accessed in both Host and Device
modes. When the core is operating in one mode, either Device or Host, the application must not access registers from the other mode.
If an illegal access occurs, a Mode Mismatch interrupt is generated and reflected in the Core Interrupt register (USB_GINTSTS.MO-
DEMIS).

When the core switches from one mode to another, the registers in the new mode must be reprogrammed as they would be after a
power-on reset.

The memory map for the core is as follows:

Core Global Registers are located in the address offset-range [0x3C000, 0x3C3FF] and typically start with first letter G.
Host Mode Registers are located in the address offset-range [0x3C400, 0x3C7FF] and start with first letter H.

Device Mode Registers are located in the address offset-range [0x3C800, 0Ox3CDFF] and start with first letter D.

The Power and Clock Gating register is located at offset 0xX3CEQO.

The Device EP/Host Channel FIFOs start at address offset 0x3D000 with 4K spacing. These registers, available in both Host and
Device modes, are used to read or write the FIFO space for a specific endpoint or a channel, in a given direction. If a host channel is
of type IN, the FIFO can only be read on the channel. Similarly, if a host channel is of type OUT, the FIFO can only be written on the
channel.

The Direct RAM Access area start at address offset 0x5C000.

silabs.com | Building a more connected world. Rev. 1.1 | 438




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.5 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 USB_CTRL RwW System Control Register

0x004 USB_STATUS System Status Register

0x008 USB_IF Interrupt Flag Register

0x00C USB_IFS Wi1 Interrupt Flag Set Register

0x010 USB_IFC (R)W1 Interrupt Flag Clear Register

0x014 USB_IEN RwW Interrupt Enable Register

0x018 USB_ROUTE RW 1/0 Routing Register

0x3C000 USB_GOTGCTL RWH OTG Control and Status Register

0x3C004 |USB_GOTGINT RW1H OTG Interrupt Register

0x3C008 USB_GAHBCFG RW AHB Configuration Register

0x3C00C |USB_GUSBCFG RWH USB Configuration Register

0x3C010 USB_GRSTCTL RWH Reset Register

0x3C014 USB_GINTSTS RWH Interrupt Register

0x3C018 USB_GINTMSK RwW Interrupt Mask Register

0x3C01C |USB_GRXSTSR Receive Status Debug Read Register

0x3C020 USB_GRXSTSP Receive Status Read and Pop Register

0x3C024 USB_GRXFSIzZ RW Receive FIFO Size Register

0x3C028 USB_GNPTXFSIZ RwW Non-periodic Transmit FIFO Size Register
0x3C02C |USB_GNPTXSTS R Non-periodic Transmit FIFO/Queue Status Register
0x3C05C | USB_GDFIFOCFG RwW Global DFIFO Configuration Register

0x3C100 USB_HPTXFSIZ RW Host Periodic Transmit FIFO Size Register
0x3C104 USB_DIEPTXF1 RwW Device IN Endpoint Transmit FIFO 1 Size Register
0x3C108 USB_DIEPTXF2 RwW Device IN Endpoint Transmit FIFO 2 Size Register
0x3C10C | USB_DIEPTXF3 RW Device IN Endpoint Transmit FIFO 3 Size Register
0x3C110 USB_DIEPTXF4 RwW Device IN Endpoint Transmit FIFO 4 Size Register
0x3C114 USB_DIEPTXF5 RwW Device IN Endpoint Transmit FIFO 5 Size Register
0x3C118 USB_DIEPTXF6 RwW Device IN Endpoint Transmit FIFO 6 Size Register
0x3C400 USB_HCFG RW Host Configuration Register

0x3C404 USB_HFIR RW Host Frame Interval Register

0x3C408 USB_HFNUM Host Frame Number/Frame Time Remaining Register
0x3C410 USB_HPTXSTS Host Periodic Transmit FIFO/Queue Status Register
0x3C414 USB_HAINT Host All Channels Interrupt Register

0x3C418 USB_HAINTMSK RwW Host All Channels Interrupt Mask Register
0x3C440 USB_HPRT RWH Host Port Control and Status Register

0x3C500 USB_HCO CHAR RWH Host Channel x Characteristics Register

silabs.com | Building a more connected world.

Rev. 1.1 | 439




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Offset Name Type Description

0x3C508 USB_HCO_INT RW1H Host Channel x Interrupt Register

0x3C50C |USB_HCO_INTMSK RW Host Channel x Interrupt Mask Register

0x3C510 USB_HCO_TSIZ RW Host Channel x Transfer Size Register

0x3C514 USB_HCO_DMAADDR RwW Host Channel x DMA Address Register
USB_HCx_CHAR RWH Host Channel x Characteristics Register
USB_HCx_INT RW1H Host Channel x Interrupt Register
USB_HCx_INTMSK RwW Host Channel x Interrupt Mask Register
USB_HCx_TSIZ RW Host Channel x Transfer Size Register
USB_HCx_DMAADDR RwW Host Channel x DMA Address Register

0x3C6A0 |USB_HC13_CHAR RWH Host Channel x Characteristics Register

0x3C6A8 |USB_HC13_INT RW1H Host Channel x Interrupt Register

0x3C6AC |USB_HC13_INTMSK RwW Host Channel x Interrupt Mask Register

0x3C6B0 |USB_HC13_TSIZ RwW Host Channel x Transfer Size Register

0x3C6B4 |USB_HC13 _DMAADDR RwW Host Channel x DMA Address Register

0x3C800 USB_DCFG RW Device Configuration Register

0x3C804 USB_DCTL RWH Device Control Register

0x3C808 USB_DSTS R Device Status Register

0x3C810 USB_DIEPMSK RwW Device IN Endpoint Common Interrupt Mask Register

0x3C814 USB_DOEPMSK RwW Device OUT Endpoint Common Interrupt Mask Register

0x3C818 USB_DAINT R Device All Endpoints Interrupt Register

0x3C81C |USB_DAINTMSK RwW Device All Endpoints Interrupt Mask Register

0x3C828 USB_DVBUSDIS RwW Device VBUS Discharge Time Register

0x3C82C |USB_DVBUSPULSE RwW Device VBUS Pulsing Time Register

0x3C834 USB_DIEPEMPMSK RwW Device IN Endpoint FIFO Empty Interrupt Mask Register

0x3C900 USB_DIEPOCTL RWH Device IN Endpoint 0 Control Register

0x3C908 USB_DIEPOINT RWH Device IN Endpoint 0 Interrupt Register

0x3C910 USB_DIEPOTSIZ RwW Device IN Endpoint 0 Transfer Size Register

0x3C914 USB_DIEPODMAADDR RwW Device IN Endpoint 0 DMA Address Register

0x3C918 USB_DIEPOTXFSTS R Device IN Endpoint 0 Transmit FIFO Status Register

0x3C920 USB_DIEPO_CTL RWH Device IN Endpoint x+1 Control Register

0x3C928 USB_DIEPO_INT RWH Device IN Endpoint x+1 Interrupt Register

0x3C930 USB_DIEPO_TSIZ RwW Device IN Endpoint x+1 Transfer Size Register

0x3C934 USB_DIEPO_DMAADDR RW Device IN Endpoint x+1 DMA Address Register

0x3C938 USB_DIEPO_TXFSTS R Device IN Endpoint x+1 Transmit FIFO Status Register
USB_DIEPx_CTL RWH Device IN Endpoint x+1 Control Register
USB_DIEPx_INT RWH Device IN Endpoint x+1 Interrupt Register
USB_DIEPx_TSIZ RwW Device IN Endpoint x+1 Transfer Size Register

silabs.com | Building a more connected world.

Rev. 1.1 | 440




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Offset Name Type Description
USB_DIEPx_DMAADDR RW Device IN Endpoint x+1 DMA Address Register
USB_DIEPx_TXFSTS R Device IN Endpoint x+1 Transmit FIFO Status Register

0x3C9CO0 |USB_DIEP5 CTL RWH Device IN Endpoint x+1 Control Register

0x3C9C8 |USB_DIEP5_INT RWH Device IN Endpoint x+1 Interrupt Register

0x3C9D0 |USB_DIEPS_TSIZ RW Device IN Endpoint x+1 Transfer Size Register

0x3C9D4 |USB_DIEP5 DMAADDR RwW Device IN Endpoint x+1 DMA Address Register

0x3C9D8 |USB_DIEP5 TXFSTS R Device IN Endpoint x+1 Transmit FIFO Status Register

0x3CB0O0 |USB_DOEPOCTL RWH Device OUT Endpoint 0 Control Register

0x3CB08 |USB_DOEPOINT RWH Device OUT Endpoint O Interrupt Register

0x3CB10 |USB_DOEPQTSIZ RwW Device OUT Endpoint 0 Transfer Size Register

0x3CB14 | USB_DOEPODMAADDR RW Device OUT Endpoint 0 DMA Address Register

0x3CB20 |USB_DOEPO_CTL RWH Device OUT Endpoint x+1 Control Register

0x3CB28 |USB_DOEPO_INT RWH Device OUT Endpoint x+1 Interrupt Register

0x3CB30 |USB_DOEPO_TSIZ RWH Device OUT Endpoint x+1 Transfer Size Register

0x3CB34 |USB_DOEPO _DMAADDR RwW Device OUT Endpoint x+1 DMA Address Register
USB_DOEPx_CTL RWH Device OUT Endpoint x+1 Control Register
USB_DOEPx_INT RWH Device OUT Endpoint x+1 Interrupt Register
USB_DOEPx_TSIZ RWH Device OUT Endpoint x+1 Transfer Size Register
USB_DOEPx_DMAADDR RwW Device OUT Endpoint x+1 DMA Address Register

0x3CBCO |USB_DOEP5 CTL RWH Device OUT Endpoint x+1 Control Register

0x3CBC8 |USB _DOEPS5 INT RWH Device OUT Endpoint x+1 Interrupt Register

0x3CBD0O |USB_DOEPS5_TSIZ RWH Device OUT Endpoint x+1 Transfer Size Register

0x3CBD4 |USB_DOEP5_DMAADDR RW Device OUT Endpoint x+1 DMA Address Register

0x3CEO0 |USB_PCGCCTL RWH Power and Clock Gating Control Register

0x3D000 | USB_FIFOODO RW Device EP 0/Host Channel 0 FIFO
USB_FIFO0Dx RwW Device EP 0/Host Channel 0 FIFO

0x3D7FC | USB_FIFO0OD511 RW Device EP 0/Host Channel 0 FIFO

0x3E000 USB_FIFO1D0 RwW Device EP 1/Host Channel 1 FIFO
USB_FIFO1Dx RwW Device EP 1/Host Channel 1 FIFO

Ox3E7FC |USB_FIFO1D511 RW Device EP 1/Host Channel 1 FIFO

0x3F000 USB_FIFO2D0 RW Device EP 2/Host Channel 2 FIFO
USB_FIFO2Dx RwW Device EP 2/Host Channel 2 FIFO

0x3F7FC | USB_FIFO2D511 RW Device EP 2/Host Channel 2 FIFO

0x40000 USB_FIFO3D0 RW Device EP 3/Host Channel 3 FIFO
USB_FIFO3Dx RwW Device EP 3/Host Channel 3 FIFO

0x407FC | USB_FIFO3D511 RW Device EP 3/Host Channel 3 FIFO

0x41000 USB_FIFO4D0 RW Device EP 4/Host Channel 4 FIFO

silabs.com | Building a more connected world.

Rev. 1.1 | 441




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

Offset Name Type Description
USB_FIFO4Dx RW Device EP 4/Host Channel 4 FIFO

0x417FC | USB_FIFO4D511 RW Device EP 4/Host Channel 4 FIFO

0x42000 USB_FIFO5D0 RW Device EP 5/Host Channel 5 FIFO
USB_FIFO5Dx RwW Device EP 5/Host Channel 5 FIFO

0x427FC | USB_FIFO5D511 RW Device EP 5/Host Channel 5 FIFO

0x43000 USB_FIFO6D0 RW Device EP 6/Host Channel 6 FIFO
USB_FIFO6Dx RwW Device EP 6/Host Channel 6 FIFO

0x437FC | USB_FIFO6D511 RW Device EP 6/Host Channel 6 FIFO

0x44000 USB_FIFO7D0 RW Host Channel 7 FIFO
USB_FIFO7Dx RW Host Channel 7 FIFO

0x447FC | USB_FIFO7D511 RW Host Channel 7 FIFO

0x45000 USB_FIFO8DO0 RW Host Channel 8 FIFO
USB_FIFO8Dx RW Host Channel 8 FIFO

0x457FC | USB_FIFO8D511 RW Host Channel 8 FIFO

0x46000 USB_FIFO9D0 RW Host Channel 9 FIFO
USB_FIFO9Dx RW Host Channel 9 FIFO

0x467FC | USB_FIFO9D511 RW Host Channel 9 FIFO

0x47000 USB_FIFO10D0 RwW Host Channel 10 FIFO
USB_FIFO10Dx RW Host Channel 10 FIFO

0x477FC  |USB_FIFO10D511 RW Host Channel 10 FIFO

0x48000 USB_FIFO11D0 RW Host Channel 11 FIFO
USB_FIFO11Dx RW Host Channel 11 FIFO

0x487FC | USB_FIFO11D511 RW Host Channel 11 FIFO

0x49000 USB_FIFO12D0 RW Host Channel 12 FIFO
USB_FIFO12Dx RW Host Channel 12 FIFO

0x497FC  |USB_FIFO12D511 RW Host Channel 12 FIFO

0x4A000 USB_FIFO13D0 RW Host Channel 13 FIFO
USB_FIFO13Dx RW Host Channel 13 FIFO

0x4A7FC | USB_FIFO13D511 RW Host Channel 13 FIFO

0x5C000 USB_FIFORAMO RW Direct Access to Data FIFO RAM for Debugging (2 KB)
USB_FIFORAMx RW Direct Access to Data FIFO RAM for Debugging (2 KB)

0x5C7FC | USB_FIFORAM511 RW Direct Access to Data FIFO RAM for Debugging (2 KB)

silabs.com | Building a more connected world. Rev. 1.1 | 442




EFM32WG Reference Manual
USB - Universal Serial Bus Controller

15.6 Register Description

15.6.1 USB_CTRL - System Control Register

Offset Bit Position
%000 |58/ RN &R IQNTR22= L T2dC2o0lo~owv voa o
Reset % % ol|o ol|o
Access E E E E E =
o ~—
AN o
o o
Q) 9 & <
Name o o 0|2 o=
x x O |a < |
% % [ONNO] 2 0
< < il =3
m m > | > o>
Bit Name Reset Access Description
31:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
25:24 BIASPROGEM23 0x0 RW Regulator Bias Programming Value in EM2/3
Regulator bias current setting in EM2/3 (i.e. while USB in suspend).
23:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
21:20 BIASPROGEMO1 0x0 RW Regulator Bias Programming Value in EM0/1
Regulator bias current setting in EM0/1 (i.e. while USB active).
19:18 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 2.1 Conven-
tions.
17 VREGOSEN 0 RwW VREGO Sense Enable
Set this bit to enable USB_VREGO voltage level sensing.
16 VREGDIS 0 RW Voltage Regulator Disable
Set this bit to disable the volt