

PI74ALVCH16646

with 3-STATE Outputs

Product Features

- PI74ALVCH16646 is designed for low voltage operation
- $V_{CC} = 2.3 V$ to 3.6V
- Hysteresis on all inputs
- Typical V_{OLP} (Output Ground Bounce) < 0.8V at V_{CC} = 3.3V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) < 2.0V at V_{CC} = 3.3V, T_A = 25°C
- Bus Hold retains last active bus state during 3-STATE, eliminating the need for external pullup resistors
- Industrial operation at -40°C to +85°C
- Packages available:
 - 56-pin 240 mil wide plastic TSSOP (A)
 - 56-pin 300 mil wide plastic SSOP (V)

Product Description

Pericom Semiconductor's PI74ALVCH series of logic circuits are produced in the Company's advanced 0.5 micron CMOS technology, achieving industry leading speed.

16-Bit Bus Transceiver and Register

The PI74ALVCH16646 is a 16-bit bus transceiver and register designed for 2.3V to 3.6V V_{CC} operation. It can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate Clock (CLKAB or CLKBA) input. Four fundamental bus-management functions can be performed.

Output Enable (\overline{OE}) and Direction Control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The Select Control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. Circuitry used for Select Control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. DIR determines which bus receives data when \overline{OE} is LOW. In the isolation mode (\overline{OE} HIGH), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

Logic Block Diagram

Product Pin Configuration

1DIR 🗌 1	\bigcirc	56 🛛 10E
1CLKAB 🗌 2		55 🛛 1CLKBA
1SAB 🗌 3		54 🛛 1SBA
GND 🗌 4		53 🛛 GND
1A1 🗌 5		52 🗍 1B1
1A2 🗌 6	56-PIN	51 🗍 1B2
	V56	50 🛛 Vcc
1A3 🗌 8	A56	49 🛛 1B3
1A4 🗌 9		48 🛛 1B4
1A5 🗌 10		47 🗋 1B5
GND 🗌 11		46 🛛 GND
1A6 🗌 12		45 🗋 1B6
1A7 🗌 13		44 🗋 1B7
1A8 🗌 14		43 🗋 1B8
2A1 🗌 15		42 🛛 2B1
2A2 🗌 16		41 🛛 2B2
2A3 🗌 17		40 🛛 2B3
GND [18		39 🛛 GND
2A4 🗌 19		38 🛛 2B4
2A5 🗌 20		37 🗋 2B5
2A6 🗌 21		36 🛛 2B6
Vcc [22		35 🛛 Vcc
2A7 🗌 23		34 🛛 2B7
2A8 🗌 24		33 🛛 2B8
GND 🗌 25		32 🛛 GND
2SAB 🗌 26		31 🛛 2SBA
2CLKAB 🗌 27		30 2 2CLKBA
2DIR 🗌 28		29 🛛 2OE

Product Pin Description

Pin Name	Description
xOE	Output Enable Inputs (Active LOW)
xDIR	Direction Control
xCLKAB, xCLKBA	Clock Pulse Inputs
xSAB, xSBA	Select Control Inputs
xAx	Data Register A Inputs Data Register B Outputs
xBx	Data Register B Inputs Data Register A Outputs
GND	Ground
V _{CC}	Power

Truth Table⁽²⁾

		Inputs						Data I/O		
Function	xOE	xDIR	xCLKAB	xCLKBA	xSAB	xSBA	xAx	xBx		
Store A, B Unspecified ⁽¹⁾	Х	X	\uparrow	Х	Х	X	Input	Unspecified ⁽¹⁾		
Store B, A Unspecified ⁽¹⁾	Х	X	Х	↑	X	Х	Unspecified ⁽¹⁾	Input		
Isolation	Н	X	H or L	H or L	X	Х	Input Disable	Input Disable		
Store A and B Data	Н	X	\uparrow	1	X	X	Input	Input		
Real Time A Data to B Bus	L	Н	X	Х	L	Х	Input	Output		
Stored A Data to B Bus	L	Н	H or L	X	Н	X	Input	Output		
Real Time B Data to A Bus	L	L	X	X	X	L	Output	Input		
Stored B Data to A Bus	L	L	X	H or L	Х	Η	Output	Input		

Note:

1. The data output functions may be enabled or disabled by various signals at the xOE or xDIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.

2. H = High Voltage Level

X = Don't Care

L = Low Voltage Level

 \uparrow = LOW-to-HIGH Transition

Note:

1. Cannot transfer data to A bus and B bus simultaneously.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Input Voltage Range, V _{IN}	-0.5V to V _{CC} +4.6V
Output Voltage Range, V _{OUT}	0.5V to V _{CC} +0.5V
DC Input Voltage	0.5V to +5.0V
DC Output Current	50 mA
Power Dissipation	1.0W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}$ C to +85°C, $V_{CC} = 3.3V \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units
V _{CC}	Supply Voltage		2.3		3.6	
VIH ⁽³⁾		$V_{CC} = 2.3 V$ to 2.7 V	1.7			
VIH	Input HIGH Voltage	$V_{\rm CC} = 2.7 V$ to 3.6V	2.0			
V _{IL} (3)	Supply Voltage Input HIGH Voltage Input LOW Voltage Input Voltage Output Voltage Output Voltage Output HIGH Voltage Output LOW Voltage Output LOW Voltage Output	$V_{\rm CC} = 2.3 \text{V}$ to 2.7 V			0.7	
vII.c.	Input LO w Voltage	$V_{\rm CC} = 2.7 V$ to 3.6V			0.8	
V _{IN} ⁽³⁾	Input Voltage		0		V _{CC}	
V _{OUT} ⁽³⁾	Output Voltage		0		V _{CC}	
		I_{OH} = -100µA, V_{CC} = Min. to Max.	V _{CC} -0.2			
		$V_{IH} = 1.7V$, $I_{OH} = -6mA$, $V_{CC} = 2.3V$	2.0			V
VOH		$V_{IH} = 1.7V, I_{OH} = -12mA, V_{CC} = 2.3V$	1.7			V
		$V_{IH} = 2.0V, I_{OH} = -12mA, V_{CC} = 2.7V$	2.2			
		$V_{IH} = 2.0V, I_{OH} = -12mA, V_{CC} = 3.0V$	2.4			
		$V_{IH} = 2.0V, I_{OH} = -24mA, V_{CC} = 3.0V$	2.0			
		$I_{OL} = 100 \mu A$, $V_{IL} = Min.$ to Max.			0.2	
	HIGH Voltage Output LOW Voltage	$V_{IL} = 0.7V, I_{OL} = 6mA, V_{CC} = 2.3V$			0.4	
VOL		$V_{IL} = 0.7V$, $I_{OL} = 12mA$, $V_{CC} = 2.3V$			0.7	
		$V_{IL} = 0.8V$, $I_{OL} = 12mA$, $V_{CC} = 2.7V$			0.4	
		$V_{IL} = 0.8V$, $I_{OL} = 24mA$, $V_{CC} = 3.0V$			0.55	
		$V_{CC} = 2.3 V$			-12	
I _{OH} ⁽³⁾ HIGH Current I _{OL} ⁽³⁾ Output LOW		$V_{CC} = 2.7 V$			-12	
	$V_{CC} = 3.0V$			-24		
		$V_{CC} = 2.3 V$			12	mA
	LOW Current	$V_{CC} = 2.7 V$			12	
		$V_{CC} = 3.0 V$			24	

PI74ALVCH16646 16-Bit Bus Transceiver and Register with 3-STATE Outputs

DC Electrical Characteristics-Continued (Over the Operating Range, $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 3.3 V \pm 10\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units
I _{IN}	Input Current	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.6V$			± 5	
		$V_{IN} = 0.7V, V_{CC} = 2.3V$	45			
	Input	$V_{IN} = 1.7V, V_{CC} = 2.3V$	-45			
$I_{\mathbb{IN}}$ (hold)	Hold Current	$V_{IN} = 0.8V, V_{CC} = 3.0V$	75			
	Current	$V_{IN} = 2.0V, V_{CC} = 3.0V$	-75			
		$V_{IN} = 0$ to 3.6V, $V_{CC} = 3.6V$			±500	μA
I _{OZ}	Output Current (3-STATE Outputs)	$V_{OUT} = V_{CC}$ or GND, $V_{CC} = 3.6V$			±10	
I _{CC}	Supply Current	$V_{CC} = 3.6V, I_{OUT} = 0\mu A,$ $V_{IN} = GND \text{ or } V_{CC}$			40	
ΔI _{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = 3.0V$ to $3.6V$ One Input at $V_{CC} - 0.6V$ Other Inputs at V_{CC} or GND			750	
C-	Control Inputs	$V_{\text{res}} = V_{\text{res}} \circ (\text{ND}) V_{\text{res}} = 2.2 V_{\text{res}}$		3		
CI	Data Inputs	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.3V$		6	r	pF
CO	Outputs	$V_{\rm O} = V_{\rm CC}$ or GND, $V_{\rm CC} = 3.3 V$		7		

Notes:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient and maximum loading.

3. Unused Control Inputs must be held HIGH or LOW to prevent them from floating.

Timing Requirements

Parameters	Description		Conditions ⁽¹⁾	$V_{\rm CC} = 2.5 V \pm 0.2 V$		$V_{\rm CC} = 2.7 V$		$V_{CC} = 3.3V \pm 0.3V$		Units
			Conditions	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Units
FCLOCK	Cloc	Clock Frequency		0	150	0	150	0	150	MHz
tw	Pulse Duration	CLKAB or CLKBA HIGH or LOW	C = 50=E	3.3		3.3		3.3		
t _{SU}	Setup Time	A Before CLKAB↑ or B Before CLKBA↑	$C_L = 50 pF$ $R_L = 500 \Omega$	1.6		1.7		1.4		ns
t _H	Hold Time	A After CLKAB↑ or B After CLKBA↑		0.6		0.4		0.7		

Switching	Characteristics	over Operating	Range ⁽¹⁾
			, ,

Demonsterm	From	То	Conditions ⁽¹⁾	$V_{\rm CC} = 2.$	$V_{CC} = 2.5V \pm 0.2V$		$V_{\rm CC} = 2.7 V$		$V_{\rm CC} = 3.3 \rm V \pm 0.3 \rm V$					
Parameters	(INPUT)	(OUTPUT)	Conditions	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Units				
f _{MAX}				150		150		150		MHz				
tpD	A or B	B or A			4.8		4.5		3.9					
t _{PD}	CLKAB or CLKBA		$C_L = 50 pF$ $R_L = 500 \Omega$	1.0	5.6		5.2	1.0	4.5					
t _{PD}	SAB or SBA						$C_L = 50 pF$	$C_L = 50 pF$	1.0	6.8		6.4	1.0	5.3
t _{EN}	OE	A or B						6.5		6.2		5.1	ns	
tDIS	OE	A or B	A OI B	A OI B	AUB	AUB		1.8	5.7		5.0	1.4	4.7	
t _{EN}	DIR											1.0	7.8	
t _{DIS}	DIR			1.7	6.5		6.0	1.1	5.3					
	D	escription												
$\Delta t/\Delta v^{(3)}$	Input Trar	sition Rise or	Fall	0	10	0	10	0	10	ns/V				

Notes:

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Recommended operating condition.

Operating Characteristics, $T_A = 25^{\circ}C$

Parameter		Test Conditions	$V_{CC} = 2.5V \pm 0.2V$ $V_{CC} = 3.3V \pm 0.3V$		Units	
		Test Conditions	Ту	Units		
CPD Power Dissipation	Outputs Enabled	$C_{L} = 50 \text{pF}, f = 10 \text{ MHz}$	39	43	– pF	
Capacitance	Outputs Disabled	$C_{\rm L} = 50 \text{pr}, 1 = 10 \text{ MHz}$	10	12		

Pericom Semiconductor Corporation 2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com