N-Channel Power MOSFET 100 V, 58 A, 18.2 m Ω

Features

- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- NVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

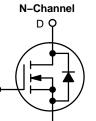
MAXIMUM RATINGS (T_J = 25°C Unless otherwise specified)

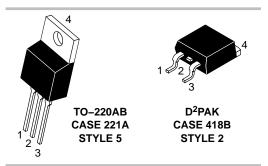
	Т	Ī			
Paran	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	100	V
Gate-to-Source Voltage - Continuous			V_{GS}	±20	V
Continuous Drain Cur-	Steady	T _C = 25°C	I _D	58	Α
rent R _{θJC}	State	T _C = 100°C		41	
Power Dissipation $R_{\theta JC}$	Steady State	T _C = 25°C	P _D	167	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	240	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	58	Α
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = 50 Vdc, V_{GS} = 10 Vdc, $I_{L(pk)}$ = 44.7 A, L = 0.3 mH, R_G = 25 Ω)			E _{AS}	300	mJ
Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds			TL	260	°C

THERMAL RESISTANCE RATINGS

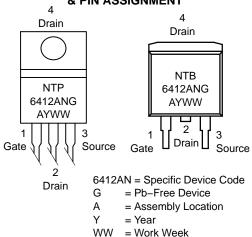
Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) Steady State	$R_{\theta JC}$	0.9	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	33	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).



ON Semiconductor®

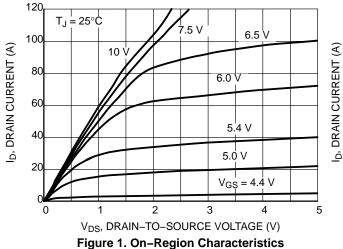

www.onsemi.com

V _{(BR)DS}	R _{DS(ON)} MAX	I _D MAX (Note 1)
100 V	18.2 mΩ @ 10 V	58 A

MARKING DIAGRAM & PIN ASSIGNMENT

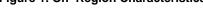
ORDERING INFORMATION

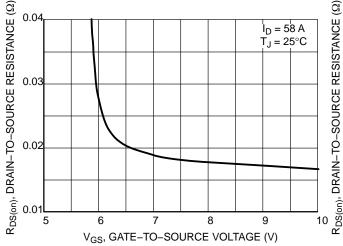
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless otherwise specified)

Characteristics	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V$,	I _D = 250 μA	100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				103		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		V _{DS} = 100 V	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	GS = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	$V_{GS(th)}$	$V_{GS} = V_{DS}$	I _D = 250 μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	$V_{GS(th)}/T_J$				9.2		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 \	/, I _D = 58 A		16.8	18.2	mΩ
		V _{GS} = 10 \	/, I _D = 20 A		15.6	18.2	
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 20 A			31		S
CHARGES, CAPACITANCES & GATE RESIST	ANCE						
Input Capacitance	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			2700	3500	pF
Output Capacitance	C _{oss}				400	500]
Reverse Transfer Capacitance	C _{rss}				150		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 80 \text{ V},$ $I_{D} = 58 \text{ A}$			73	100	nC
Threshold Gate Charge	Q _{G(TH)}				2.5		
Gate-to-Source Charge	Q_{GS}				13.5		
Gate-to-Drain Charge	Q_{GD}				35		
Plateau Voltage	V_{GP}				5.6		V
Gate Resistance	R _G				2.2		Ω
SWITCHING CHARACTERISTICS, V _{GS} = 10 V	(Note 3)						
Turn-On Delay Time	t _{d(on)}				16		ns
Rise Time	t _r	V _{GS} = 10 V,	$V_{DD} = 80 \text{ V},$		140		
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V},$ $I_D = 58 \text{ A}, I$	$R_G = 6.2 \Omega$		70		
Fall Time	t _f	1			126		
DRAIN-SOURCE DIODE CHARACTERISTICS							
Forward Diode Voltage	V _{SD}	Ic = 58 A	T _J = 25°C		0.96	1.3	V
			T _J = 125°C		0.89		1
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V, } I_{S} = 58 \text{ A,}$ $dI_{SD}/dt = 100 \text{ A/}\mu\text{s}$			85		ns
Charge Time	ta				60		1
Discharge Time	t _b				25		1
Reverse Recovery Charge	Q _{RR}				270		nC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


100


 $V_{DS} \ge 10 \text{ V}$

80 40 T_J = 125°C T_J = 25°C T_J = 25°C T_J = 55°C 0 2 3 4 5 6 7 8

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics

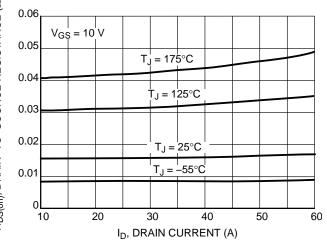
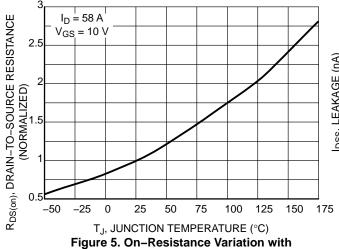
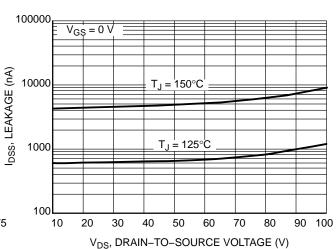
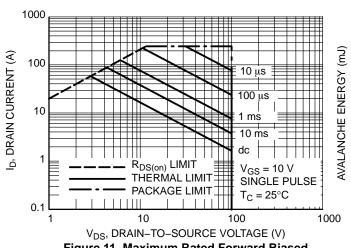



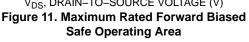
Figure 3. On-Region versus Gate Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

Temperature






Figure 6. Drain-to-Source Leakage Current versus Voltage

versus Gate Resistance

Current

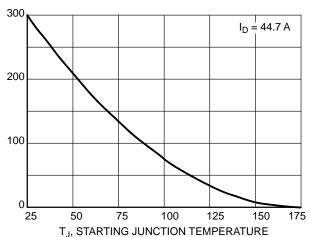


Figure 12. Maximum Avalanche Energy versus **Starting Junction Temperature**

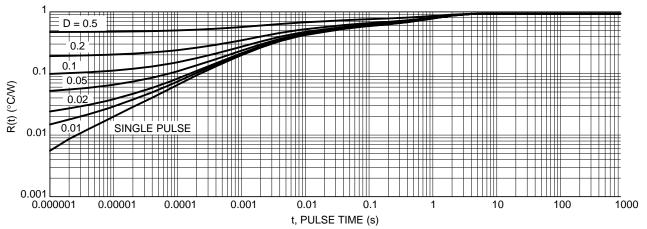


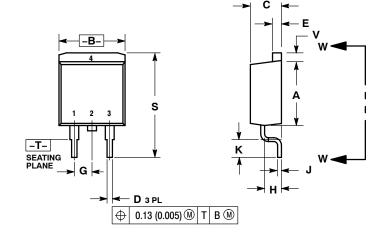
Figure 13. Thermal Response

ORDERING INFORMATION

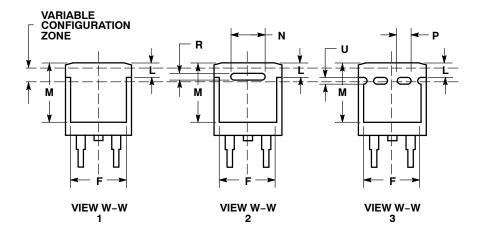
Device	Package	Shipping [†]
NTB6412ANG	D ² PAK (Pb-Free)	50 Units / Rail
NTB6412ANT4G	D ² PAK (Pb-Free)	800 / Tape & Reel
NTP6412ANG	TO-220 (Pb-Free)	50 Units / Rail
NVB6412ANT4G	D ² PAK (Pb-Free)	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE



D²PAK 3 CASE 418B-04 **ISSUE L**


DATE 17 FEB 2015

SCALE 1:1

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INC	HES	MILL IN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
C	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
Е	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
7	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
М	0.280	0.320	7.11	8.13
N	0.197 REF		5.00	REF
Ρ	0.079 REF		2.00 REF	
R	0.039 REF		0.99 REF	
S	0.575	0.625	14.60	15.88
٧	0.045	0.055	1.14	1.40

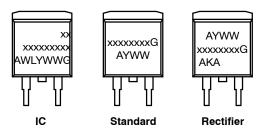
STYLE 1: PIN 1. BASE 2. COLLECTOR
3. EMITTER
4. COLLECTOR STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

STYLE 4:

PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 5: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 6: PIN 1. NO CONNECT 2. CATHODE 3. ANODE 4. CATHODE


MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK 3	•	PAGE 1 OF 2	

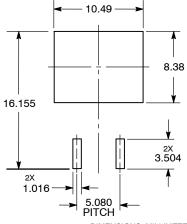
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*

xx = Specific Device Code A = Assembly Location

 WL
 = Wafer Lot


 Y
 = Year

 WW
 = Work Week

 G
 = Pb-Free Package

 AKA
 = Polarity Indicator

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales