

Precision Wide-Bandwidth Analog Switch

Features

- · Rail-To-Rail operation
- Pin-compatible with 3125 Bus Switch & 74 series 125
- Single-Supply operation: 2V to 6V
- Low On-Resistance: 8Ω typical @ 5V
- Tight match between channels: 0.9Ω typical
- R_{ON} flatness: 3Ω typical
- Low power consumption: 0.5μ-ohm typical
- High Speed, $T_{ON} = 8$ ns typical
- High-current channel capability: >100mA
- Wide bandwidth: >200 MHz
- Packaging (Pb-free & Green available):
 - -14-pin SOIC (W)
 - -16-pin QSOP (Q)

Applications

- Instrumentation, ATE
- · Audio Switching and Routing
- Telecommunications Systems
- Data Communications
- · Battery-Powered Systems
- · Replaces Mechanical Relays

Description

Pericom Semiconducto's PI5A101 is an all-purpose analog switch designed for single-supply operation from +2V to +6V. This switch is ideal for audio, video, and data switching and routing.

The PI5A101 is a quad SPST (single-pole, single-throw) NC (normally closed) function.

When on, each switch conducts current equally well in either direction. When off, they block voltages up to the power-supply rails.

The PI5A101 is fully specified with +5V and +3.3V supplies. With +5V the R_{ON} is 8Ω typical, making it ideal for replacing mechanical relays in data communications, test equipment, and instrumentation applications. Matching between channels is better than $2\Omega.$ R_{ON} flatness is better than 4Ω over the specified range.

These analog switches also offer wide bandwidth (>200 MHz high speed (T_{ON} >15ns), and low charge injection (Q >10pC).

The PI5A101 is available in the narrow-body 14-pin small SOIC and 16-pin QSOP packages for operation over the industrial (-40°C to +85°C) temperature range.

Pin Configurations

1

Truth Table

Logic	Switch
0	ON
1	OFF

Electrical Specifications - Single +5V Supply $(V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min.(1)	Typ.(2)	Max. ⁽¹⁾	Units
Analog Switch						-	
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V _{CC}	V
On-Resistance	R _{ON}		25		8	10	
On-Resistance	KON	$V_{CC} = 4.5V,$	Full			18	
On-Resistance		$I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = +2.5 \text{ V}$	25		0.9	2	
Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	V _{NO} or V _{NC} − ±2.3 V	Full			4	Ω
On-Resistance		$V_{CC} = 5V$,	25		3	4	
Flatness ⁽⁵⁾	R _{FLAT(ON)}	$I_{COM} = -30 \text{mA},$ V_{NO} or $V_{NC} = 1 \text{V}, 2.5 \text{V}, 4 \text{V}$	Full			5	
NO or NC Off Leak-	I _{NO(OFF)} or	$V_{CC} = 5.5V$,	25		0.05		
age Current ⁽⁶⁾	I _{NC(OFF)} of	$V_{COM} = 0V,$ $V_{NO} \text{ or } V_{NC} = 4.5V$	Full	-80		80	
COM Off Leakage		$V_{CC} = 5.5V$,	25		0.05		
Current ⁽⁶⁾	$I_{COM(OFF)}$	$V_{COM} = +4.5V,$ V_{NO} or $V_{NC} = \pm 0V$	Full	-80		80	nA
COM On Leakage		$V_{CC} = 5.5V,$	25		0.07		
Current ⁽⁶⁾	$I_{\text{COM(ON)}}$	$V_{COM} = +4.5V$ V_{NO} or $V_{NC} = +4.5V$	Full	-80		80	
Logic Input							
Input High Voltage	$ m V_{IH}$	Guaranteed logic High Level		2			17
Input Low Voltage	$V_{ m IL}$	Guaranteed logic Low Level					V
Input Current with Voltage High	I _{INH}	$V_{IN} = 2.4V$, all others = $0.8V$	Full			0.8	
Input Current with Voltage Low	I_{INL}	$V_{IN} = 0.8V$, all others = 2.4V		-1	0.005	1	μA

Electrical Specifications - Single +5V Supply $(V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$ (continued)

Parameter	Symbol	Conditions	Temp.(°C)	Min.(1)	Typ.(2)	Max. ⁽¹⁾	Units
Dynamic							
Turn-On Time	torr		25		8	15	
Turn-On Time	$t_{ m ON}$	$V_{CC} = 5V$, see figure 1	Full			20	na
Turn-Off Time	torn	VCC = 3 v, see figure 1	25		3.5	7	ns
Turn-On Time	$t_{ m OFF}$		Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ V, Figure 2			7	10	pC
Off Isolation	O _{IRR}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 10MHz$, see figure 3			-55		iD.
Crosstalk ⁽⁸⁾	I _{COM(OFF)}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 10MHz$, see figure 4	25		-92		dB
NC or NO Capacitance	C _(OFF)	f = 1kHz, see figure 5	1		8		
COM Off Capacitance	C _{COM(OFF)}				8		pF
COM On Capacitance	C _{COM(ON)}	f = 1kHz, see figure 6			14		
3-dB Bandwidth	BW	$R_L = 10k\Omega$	Full		230		MHz
Distortion ⁽⁹⁾	D		T uii		0.03		%
Supply							
Power-Supple Range	V _{CC}			2		6	V
Positve Supply Current	I _{CC}	V_{CC} = 3.6V, V_{IN} = 0V or V+, All Channels on or off	Full			1	μΑ

Absolute Maximum Ratings

I	Voltages Referenced to GND
	V_{CC}
l	$V_{IN},V_{COM},V_{NC}{}^{(1)}$ –0.5V to V_{CC} +2V
l	or 30mA, whichever occurs first
l	Current (any terminal except COM, NO, NC)30mA
l	Current: COM, NO, NC (pulsed at 1ms, 10% duty cycle)120mA

Thermal Information

	Continuous Power Dissipation
I	Narrow SO & QSOP (derate 8.7mW/°C above +70°C)650mW
I	Storage Temperature -65° C to $+150^{\circ}$ C
I	Lead Temperature (soldering, 10s)
ı	

Notes

- Signals on NC, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.
- 2. Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications-Single +3.3V Supply $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

		117 (66		11 111	•		
Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}		Full	0		V _{CC}	V
On-Resistance	D		25		7.2	18	
On-Resistance	R _{ON}	$V_{CC} = 3V$,	Full			28	
On-Resistance Match Be-	$\Delta R_{ m ON}$	$I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 1.5 \text{V}$	25		0.2	2	
tween Channels ⁽⁴⁾	ΔKON	NO NO	Full			4	Ω
(2.5)		$V_{CC} = 3.3V$,	25		2.72	10	
On-Resistance Flatness ^(3,5)	R _{FLAT(ON)}	$I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 0.8 \text{V}, 2.5 \text{V}$	Full			12	
Dynamic			-	-	-	-	
Turn On Time			25		7	25	
Turn-On Time	t _{ON}	$V_{CC} = 3.3V$,	Full			40	
Turn-Off Time	4	V_{NO} or $V_{NC} = 1.5V$, see figure 1	25		1	12	ns
Turn-Off Time	t _{OFF}		Full			20	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		1.6	10	рC
Supply						-	·
Positve Supply Current	I _{CC}	V_{CC} = 3.6V, V_{IN} = 0V or V_{CC} , All Channels on or off	Full			1	μΑ

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} MAX R_{ON} MIN$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} V_B / V_A$. See Figure 3.
- 8. Between any two switches. See Figure 4.
- 9. $D = R_{FLAT(ON)}/R_L$.

Typical Operating Characteristics ($T_A = +25^{\circ}C$, unless otherwise noted)

5 PS7079F 09/22/04

Insertion Loss vs. Frequency

Switching Times vs. V_{CC}

Supply Current vs. Temperature

Input Switching Threshold vs. Supply Voltage

Switching Times vs. Temperature

Supply Current vs. Input Switching Frequency

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 3. Off Isolation

Figure 4. Crosstalk

Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

Figure 7. Bandwidth

Packaging Mechanical: 16-Pin, QSOP (Q)

Packaging Mechanical: 14-Pin, SOIC (W)

Ordering Information

Ordeing Code	Package Code	Package Description
PI5A101Q	Q	16-pin, QSOP
PI5A101QE	Q	Pb-free & Green, 16-pin, QSOP
PI5A101W	W	14-pin SOIC
PI5A101WE	W	Pb-free & Green, 14-pin SOIC

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/