LH28F640BFHE-PTTL70A # Flash Memory 64Mbit (4Mbitx16) (Model Number: LHF64FG7) Spec. Issue Date: September 2, 2004 Spec No: EL165127A | SPEC No. | EL | 165 | 127A | |----------|------|-----|------| | ISSUE: | Sep. | 2, | 2004 | ## SPECIFICATIONS Product Type 64 M b i t Flash Memory ## L H 2 8 F 6 4 0 B F H E — P T T L 7 0 A | Model No | (LHF64FG7) | | |----------|------------|--| | | | | If you have any objections, please contact us before issuing purchasing order. - * This specifications contains 42 pages including the cover and appendix. - * Refer to LH28F640BF Series Appendix (FUM00701). #### **CUSTOMERS ACCEPTANCE** DATE: BY: **PRESENTED** YIHOTTA Dont General Manager Dept. General Manager **REVIEWED BY:** PREPARED BY: Product Development Dept. I System-Flash Division Integrated Circuits Group SHARP CORPORATION #### LHF64FG7 - Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company. - When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions. - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3). - Office electronics - Instrumentation and measuring equipment - Machine tools - Audiovisual equipment - Home appliance - Communication equipment other than for trunk lines - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system. - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment - Mainframe computers - Traffic control systems - · Gas leak detectors and automatic cutoff devices - Rescue and security equipment - Other safety devices and safety equipment, etc. - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy. - Aerospace equipment - Communications equipment for trunk lines - Control equipment for the nuclear power industry - Medical equipment related to life support, etc. - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company. - Please direct all queries regarding the products covered herein to a sales representative of the company. #### **CONTENTS** | PAGE | PAGE | |--|--| | 48-Lead TSOP Pinout | Extended Status Register Definition | | Pin Descriptions | Partition Configuration Register Definition 16 | | Simultaneous Operation Modes | Partition Configuration | | Allowed with Four Planes 5 | 1 Electrical Specifications | | Memory Map 6 | 1.1 Absolute Maximum Ratings 17 | | Identifier Codes and OTP Address | 1.1 1030tute Maximum Rutings | | for Read Operation 7 | 1.2 Operating Conditions | | Identifier Codes and OTP Address for | 1.2.1 Capacitance | | Read Operation on Partition Configuration 7 | 122 AC Input/Output Test Conditions 19 | | OTP Block Address Map for OTP Program 8 | 1.2.2 AC Input/Output Test Conditions 18 | | | 1.2.3 DC Characteristics | | Bus Operation | | | G 15 G 11 | 1.2.4 AC Characteristics | | Command Definitions | - Read-Only Operations 21 | | Functions of Block Lock and Block Lock-Down 12 | 1.2.5 AC Characteristics | | | - Write Operations | | Block Locking State Transitions upon | | | Command Write | 1.2.6 Reset Operations | | Block Locking State Transitions upon | 1.2.7 Block Erase, Full Chip Erase, | | WP# Transition | (Page Buffer) Program and | | | OTP Program Performance | | Status Register Definition | <u> </u> | | | 2 Related Document Information | | | 3 Package and packing specification 30 | SHARP LHF64FG7 2 ## LH28F640BFHE-PTTL70A 64Mbit (4Mbit×16) Page Mode Dual Work Flash MEMORY - 64M density with 16Bit I/O Interface - High Performance Reads - 70/30ns 8-Word Page Mode - Configurative 4-Plane Dual Work - Flexible Partitioning - Read operations during Block Erase or (Page Buffer) Program - Status Register for Each Partition - Low Power Operation - 2.7V Read and Write Operations - \bullet $V_{\mbox{\footnotesize{CCQ}}}$ for Input/Output Power Supply Isolation - Automatic Power Savings Mode Reduces I_{CCR} in Static Mode - Enhanced Code + Data Storage - 5µs Typical Erase/Program Suspends - OTP (One Time Program) Block - 4-Word Factory-Programmed Area - 4-Word User-Programmable Area - High Performance Program with Page Buffer - 16-Word Page Buffer - $5\mu s$ /Word (Typ.) at $9.5V V_{PP}$ - Operating Temperature -40°C to +85°C - CMOS Process (P-type silicon substrate) - Flexible Blocking Architecture - Eight 4K-word Parameter Blocks - One-hundred and twenty-seven 32K-word Main Blocks - Top Parameter Location - Enhanced Data Protection Features - Individual Block Lock and Block Lock-Down with Zero-Latency - All blocks are locked at power-up or device reset. - Absolute Protection with V_{PP}≤V_{PPLK} - Block Erase, Full Chip Erase, (Page Buffer) Word Program Lockout during Power Transitions - Automated Erase/Program Algorithms - 3.0V Low-Power 11µs/Word (Typ.) Programming - 9.5V No Glue Logic 9μs/Word (Typ.) Production Programming and 0.5s Erase (Typ.) - Cross-Compatible Command Support - Basic Command Set - Common Flash Interface (CFI) - Extended Cycling Capability - Minimum 100,000 Block Erase Cycles - 48-Lead TSOP - ETOX^{TM*} Flash Technology - Not designed or rated as radiation hardened The product, which is 4-Plane Page Mode Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =2.7V-3.6V and V_{PP} =1.65V-3.6V or 9.0V-10.0V. Its low voltage operation capability greatly extends battery life for portable applications. The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states. Furthermore, its newly configurative partitioning architecture allows flexible dual work operation. The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage. Fast program capability is provided through the use of high speed Page Buffer Program. Special OTP (One Time Program) block provides an area to store permanent code such as a unique number. * ETOX is a trademark of Intel Corporation. Figure 1. 48-Lead TSOP (Normal Bend) Pinout Table 1. Pin Descriptions | Symbol | Type | Name and Function | |-----------------------------------|------------------|---| | A ₀ -A ₂₁ | INPUT | ADDRESS INPUTS: Inputs for addresses. 64M: A ₀ -A ₂₁ | | DQ ₀ -DQ ₁₅ | INPUT/
OUTPUT | DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code and partition configuration register code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle. | | CE# | INPUT | CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels. | | RST# | INPUT | RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down. | | OE# | INPUT | OUTPUT ENABLE: Gates the device's outputs during a read cycle. | | WE# | INPUT | WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first). | | WP# | INPUT | WRITE PROTECT: When WP# is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP# is V_{IH} , lock-down is disabled. | | $ m V_{PP}$ | INPUT/SUPPLY | MONITORING POWER SUPPLY VOLTAGE: V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, full chip erase, (page buffer) program or OTP program cannot be executed and should not be attempted. Applying $9.5V\pm0.5V$ to V_{PP} provides fast erasing or fast programming mode. In this
mode, V_{PP} is power supply pin. Applying $9.5V\pm0.5V$ to V_{PP} during erase/program can only be done for a maximum of $1,000$ cycles on each block. V_{PP} may be connected to $9.5V\pm0.5V$ for a total of 80 hours maximum. Use of this pin at $9.5V$ beyond these limits may reduce block cycling capability or cause permanent damage. | | V _{CC} | SUPPLY | DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \le V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted. | | V _{CCQ} | SUPPLY | INPUT/OUTPUT POWER SUPPLY (2.7V-3.6V): Power supply for all input/output pins. | | GND | SUPPLY | GROUND: Do not float any ground pins. | | Table 2. Simu | Itaneous Operation | Modes Allowed | with Four Planes ^(1, 2) | |---------------|--------------------|---------------|------------------------------------| |---------------|--------------------|---------------|------------------------------------| | | | | THEN T | тне мо | DES ALL | OWED IN | THE OT | HER PAI | RTITION I | S: | | |-------------------------|---------------|----------------|----------------|---------------|-----------------|---------------------------|----------------|----------------|--------------------|--------------------|---------------------------| | IF ONE
PARTITION IS: | Read
Array | Read
ID/OTP | Read
Status | Read
Query | Word
Program | Page
Buffer
Program | OTP
Program | Block
Erase | Full Chip
Erase | Program
Suspend | Block
Erase
Suspend | | Read Array | X | X | X | X | X | X | | X | | X | X | | Read ID/OTP | X | X | X | X | X | X | | X | | X | X | | Read Status | X | X | X | X | X | X | X | X | X | X | X | | Read Query | X | X | X | X | X | X | | X | | X | X | | Word Program | X | X | X | X | | | | | | | X | | Page Buffer
Program | X | X | X | X | | | | | | | X | | OTP Program | | | X | | | | | | | | | | Block Erase | X | X | X | X | | | | | | | | | Full Chip Erase | | | X | | | | | | | | | | Program
Suspend | X | X | X | X | | | | | | | X | | Block Erase
Suspend | X | X | X | X | X | X | | | | X | | #### NOTES: - 1. "X" denotes the operation available. - 2. Configurative Partition Dual Work Restrictions: Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing. Commands must be written to an address within the block targeted by that command. #### 3FF000H - 3FFFFFH 4K-WORD 134 3FE000H - 3FEFFFH 4K-WORD 133 3FD000H - 3FDFFFH 132 4K-WORD 131 4K-WORD 3FC000H - 3FCFFFH 4K-WORD 3FB000H - 3FBFFFH 4K-WORD 3FA000H - 3FAFFFH 129 4K-WORD 3F9000H - 3F9FFFH 128 3F8000H - 3F8FFFH 127 4K-WORD 32K-WORD 3F0000H - 3F7FFFH 126 3E8000H - 3EFFFFH 125 32K-WORD 3E0000H - 3E7FFFH 124 32K-WORD PLANE) 3D8000H - 3DFFFFH 123 32K-WORD 122 32K-WORD 3D0000H - 3D7FFFH 32K-WORD 121 3C8000H - 3CFFFFH 120 32K-WORD 3C0000H - 3C7FFFH (PARAMETER 119 32K-WORD 3B8000H - 3BFFFFH 3B0000H - 3B7FFFH 118 32K-WORD 3A8000H - 3AFFFFH 117 32K-WORD 3A0000H - 3A7FFFH 116 32K-WORD 115 32K-WORD 398000H - 39FFFFH 114 32K-WORD 390000H - 397FFFH 32K-WORD 388000H - 38FFFFH 113 32K-WORD 380000H - 387FFFH 112 PLANE3 32K-WORD 378000H - 37FFFFH 111 370000H - 377FFFH 368000H - 36FFFFH 360000H - 367FFFH 358000H - 35FFFFH 350000H - 357FFFH 348000H - 34FFFFH 340000H - 347FFFH 338000H - 33FFFFH 330000H - 337FFFH 328000H - 32FFFFH 320000H - 327FFFH 318000H - 31FFFFH 310000H - 317FFFH 308000H - 30FFFFH 300000H - 307FFFH 32K-WORD 110 109 108 107 106 105 104 103 102 101 100 99 97 BLOCK NUMBER ADDRESS RANGE | | 95 | 32K-WORD | 2F8000H - 2FFFFFH | |----------------|----|----------|-------------------| | | 94 | 32K-WORD | 2F0000H - 2F7FFFH | | | 93 | 32K-WORD | 2E8000H - 2EFFFFH | | | 92 | 32K-WORD | 2E0000H - 2E7FFFH | | | 91 | 32K-WORD | 2D8000H - 2DFFFFH | | | 90 | 32K-WORD | 2D0000H - 2D7FFFH | | | 89 | 32K-WORD | 2C8000H - 2CFFFFH | | | 88 | 32K-WORD | 2C0000H - 2C7FFFH | | _ | 87 | 32K-WORD | 2B8000H - 2BFFFFH | | \mathbf{E} | 86 | 32K-WORD | 2B0000H - 2B7FFFH | | | 85 | 32K-WORD | 2A8000H - 2AFFFFH | | (UNIFORM PLANE | 84 | 32K-WORD | 2A0000H - 2A7FFFH | | Γ | 83 | 32K-WORD | 298000H - 29FFFFH | | T | 82 | 32K-WORD | 290000H - 297FFFH | | l⋦l | 81 | 32K-WORD | 288000H - 28FFFFH | | \sim | 80 | 32K-WORD | 280000H - 287FFFH | | lΨ. | 79 | 32K-WORD | 278000H - 27FFFFH | | ᄝ | 78 | 32K-WORD | 270000H - 277FFFH | | 15 | 77 | 32K-WORD | 268000H - 26FFFFH | |) [| 76 | 32K-WORD | 260000H - 267FFFH | | E | 75 | 32K-WORD | 258000H - 25FFFFH | | PLANE2 | 74 | 32K-WORD | 250000H - 257FFFH | | ĮĄ, | 73 | 32K-WORD | 248000H - 24FFFFH | | Ы | 72 | 32K-WORD | 240000H - 247FFFH | | - | 71 | 32K-WORD | 238000H - 23FFFFH | | | 70 | 32K-WORD | 230000H - 237FFFH | | | 69 | 32K-WORD | 228000H - 22FFFFH | | | 68 | 32K-WORD | 220000H - 227FFFH | | | 67 | 32K-WORD | 218000H - 21FFFFH | | | 66 | 32K-WORD | 210000H - 217FFFH | | | 65 | 32K-WORD | 208000H - 20FFFFH | | | 64 | 32K-WORD | 200000H - 207FFFH | #### BLOCK NUMBER ADDRESS RANGE | | 63 | 32K-WORD | 1F8000H - 1FFFFFH | |------------------------|----|----------|-------------------| | | 62 | 32K-WORD | 1F0000H - 1F7FFFH | | | 61 | 32K-WORD | 1E8000H - 1EFFFFH | | | 60 | 32K-WORD | 1E0000H - 1E7FFFH | | | 59 | 32K-WORD | 1D8000H - 1DFFFFH | | | 58 | 32K-WORD | 1D0000H - 1D7FFFH | | | 57 | 32K-WORD | 1C8000H - 1CFFFFH | | | 56 | 32K-WORD | 1C0000H - 1C7FFFH | | $\overline{}$ | 55 | 32K-WORD | 1B8000H - 1BFFFFH | | 田田 | 54 | 32K-WORD | 1B0000H - 1B7FFFH | | | 53 | 32K-WORD | 1A8000H - 1AFFFFH | | 7 | 52 | 32K-WORD | 1A0000H - 1A7FFFH | | P] | 51 | 32K-WORD | 198000H - 19FFFFH | | \mathbf{z} | 50 | 32K-WORD | 190000H - 197FFFH | | \mathbb{Z} | 49 | 32K-WORD | 188000H - 18FFFFH | | 0 | 48 | 32K-WORD | 180000H - 187FFFH | | 出 | 47 | 32K-WORD | 178000H - 17FFFFH | | Z | 46 | 32K-WORD | 170000H - 177FFFH | | \odot | 45 | 32K-WORD | 168000H - 16FFFFH | | 1 | 44 | 32K-WORD | 160000H - 167FFFH | | Ξ | 43 | 32K-WORD | 158000H - 15FFFFH | | PLANE1 (UNIFORM PLANE) | 42 | 32K-WORD | 150000H - 157FFFH | | Ą | 41 | 32K-WORD | 148000H - 14FFFFH | | Ы | 40 | 32K-WORD | 140000H - 147FFFH | | | 39 | 32K-WORD | 138000H - 13FFFFH | | | 38 | 32K-WORD | 130000H - 137FFFH | | | 37 | 32K-WORD | 128000H - 12FFFFH | | | 36 | 32K-WORD | 120000H - 127FFFH | | | 35 | 32K-WORD | 118000H - 11FFFFH | | | 34 | 32K-WORD | 110000H - 117FFFH | | ĺ | 33 | 32K-WORD | 108000H - 10FFFFH | | li | 32 | 32K-WORD | 100000H - 107FFFH | | | 31 | 32K-WORD | 0F8000H - 0FFFFFH | |-----------------------|----|----------|-------------------| | | 30 | 32K-WORD | 0F0000H - 0F7FFFH | | | 29 | 32K-WORD | 0E8000H - 0EFFFFH | | | 28 | 32K-WORD | 0E0000H - 0E7FFFH | | | 27 | 32K-WORD | 0D8000H - 0DFFFFH | | | 26 | 32K-WORD | 0D0000H - 0D7FFFH | | | 25 | 32K-WORD | 0C8000H - 0CFFFFH | | | 24 | 32K-WORD | 0C0000H - 0C7FFFH | | _ | 23 | 32K-WORD | 0B8000H - 0BFFFFH | | \mathbf{E} | 22 | 32K-WORD | 0B0000H - 0B7FFFH | | Z | 21 | 32K-WORD | 0A8000H - 0AFFFFH | | Y, | 20 | 32K-WORD | 0A0000H - 0A7FFFH | | PLANEO (UNIFORM PLANE | 19 | 32K-WORD | 098000H - 09FFFFH | | [] | 18 | 32K-WORD | 090000H - 097FFFH | | ♬ | 17 | 32K-WORD | 088000H - 08FFFFH | |)F | 16 | 32K-WORD | 080000H - 087FFFH | | F(| 15 | 32K-WORD | 078000H - 07FFFFH | | F | 14 | 32K-WORD | 070000H - 077FFFH | | 15 | 13 | 32K-WORD | 068000H - 06FFFFH | | $\overline{}$ | 12 | 32K-WORD | 060000H - 067FFFH | | Ξ | 11 | 32K-WORD | 058000H - 05FFFFH | | Z | 10 | 32K-WORD | 050000H - 057FFFH | | A | 9 | 32K-WORD | 048000H - 04FFFFH | | ۱Ž. | 8 | 32K-WORD | 040000H - 047FFFH | | 1 | 7 | 32K-WORD | 038000H - 03FFFFH | | | 6 | 32K-WORD | 030000H - 037FFFH | | | 5 | 32K-WORD | 028000H - 02FFFFH | | | 4 | 32K-WORD | 020000H - 027FFFH | | | 3 | 32K-WORD | 018000H - 01FFFFH | | | 2 | 32K-WORD | 010000H - 017FFFH | | | 1 | 32K-WORD | 008000H - 00FFFFH | | | 0 | 32K-WORD | 000000H - 007FFFH | | | | | | Figure 2. Memory Map (Top Parameter) 7 1.5 1, 6 SHARP | | Code | Address
[A ₁₅ -A ₀] | Data [DQ ₁₅ -DQ ₀] | Notes | |----------------------------------|----------------------------------|---|---|-------| | Manufacturer Code | Manufacturer Code | 0000Н | 00B0H | 1 | | Device Code | Top Parameter Device Code | 0001H | 00B2H | 1, 2 | | Block Lock Configuration
Code | Block is Unlocked | | $DQ_0 = 0$ | 3 | | | Block is Locked | Block
Address | $DQ_0 = 1$ | 3 | | | Block is not Locked-Down | + 2 | $DQ_1 = 0$ | 3 | | | Block is Locked-Down |] | $DQ_1 = 1$ | 3 | | Device Configuration Code | Partition Configuration Register | 0006Н | PCRC | 1, 4 | 0080H 0081-0088H OTP-LK **OTP** Table 3. Identifier Codes and OTP Address for Read Operation #### NOTES: OTP - 1. The address A_{21} - A_{16} are shown in below table for reading the manufacturer code, device code, device configuration code and OTP data. - 2. Top parameter device has its parameter blocks in the plane3 (The highest address). OTP Lock OTP - 3. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes/OTP command (90H) has been written. DQ₁₅-DQ₂ are reserved for future implementation. - 4. PCRC=Partition Configuration Register Code. - 5. OTP-LK=OTP Block Lock configuration. - 6. OTP=OTP Block data. Table 4. Identifier Codes and OTP Address for Read Operation on Partition Configuration⁽¹⁾ (64M-bit device) | Partition Configuration Register (2) | | | Address (64M-bit device) | |--------------------------------------|-------|-------|-------------------------------------| | PCR.10 | PCR.9 | PCR.8 | [A ₂₁ -A ₁₆] | | 0 | 0 | 0 | 00H | | 0 | 0 | 1 | 00H or 10H | | 0 | 1 | 0 | 00H or 20H | | 1 | 0 | 0 | 00H or 30H | | 0 | 1 | 1 | 00H or 10H or 20H | | 1 | 1 | 0 | 00H or 20H or 30H | | 1 | 0 | 1 | 00H or 10H or 30H | | 1 | 1 | 1 |
00H or 10H or 20H or 30H | - 1. The address to read the identifier codes or OTP data is dependent on the partition which is selected when writing the Read Identifier Codes/OTP command (90H). - 2. Refer to Table 12 for the partition configuration register. Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.) | SH | A | RI | P | | |----|---|----|---|--| | | | | | | | Table 5. Bus C | Operation ^(1, 2) | |----------------|-----------------------------| |----------------|-----------------------------| | Mode | Notes | RST# | CE# | OE# | WE# | Address | V_{PP} | DQ ₀₋₁₅ | |------------------------------|-------|-----------------|-----------------|-----------------|-----------------|-------------------------------|----------|-------------------------------| | Read Array | 6 | V_{IH} | V_{IL} | V_{IL} | V_{IH} | X | X | D _{OUT} | | Output Disable | | V _{IH} | V_{IL} | V _{IH} | V _{IH} | X | X | High Z | | Standby | | V_{IH} | V_{IH} | X | X | X | X | High Z | | Reset | 3 | V_{IL} | X | X | X | X | X | High Z | | Read Identifier
Codes/OTP | 6 | V _{IH} | V_{IL} | V _{IL} | V _{IH} | See
Table 3 and
Table 4 | X | See
Table 3 and
Table 4 | | Read Query | 6,7 | V _{IH} | V _{IL} | V _{IL} | V _{IH} | See
Appendix | X | See
Appendix | | Write | 4,5,6 | V _{IH} | V_{IL} | V _{IH} | V _{IL} | X | X | D _{IN} | - 1. Refer to DC Characteristics. When $V_{PP} \le V_{PPLK}$, memory contents can be read, but cannot be altered. 2. X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or $V_{PPH1/2}$ for V_{PP} . See DC Characteristics for V_{PPLK} and V_{PPH1/2} voltages. 3. RST# at GND±0.2V ensures the lowest power consumption. - 4. Command writes involving block erase, full chip erase, (page buffer) program or OTP program are reliably executed when $V_{PP}=V_{PPH\,1/2}$ and $V_{CC}=2.7V-3.6V$. 5. Refer to Table 6 for valid D_{IN} during a write operation. - 6. Never hold OE# low and WE# low at the same timing. - 7. Refer to Appendix of LH28F640BF series for more information about query code. | | Bus | |] | First Bus Cyc | ele | Second Bus Cycle | | | |--|-----------------|-------|---------------------|---------------------|---------------|---------------------|---------------------|---------------------| | Command | Cycles
Req'd | Notes | Oper ⁽¹⁾ | Addr ⁽²⁾ | Data | Oper ⁽¹⁾ | Addr ⁽²⁾ | Data ⁽³⁾ | | Read Array | 1 | | Write | PA | FFH | | | | | Read Identifier Codes/OTP | ≥ 2 | 4 | Write | PA | 90H | Read | IA or OA | ID or OD | | Read Query | ≥ 2 | 4 | Write | PA | 98H | Read | QA | QD | | Read Status Register | 2 | | Write | PA | 70H | Read | PA | SRD | | Clear Status Register | 1 | | Write | PA | 50H | | | | | Block Erase | 2 | 5 | Write | BA | 20H | Write | BA | D0H | | Full Chip Erase | 2 | 5,9 | Write | X | 30H | Write | X | D0H | | Program | 2 | 5,6 | Write | WA | 40H or
10H | Write | WA | WD | | Page Buffer Program | ≥ 4 | 5,7 | Write | WA | E8H | Write | WA | N-1 | | Block Erase and (Page Buffer)
Program Suspend | 1 | 8,9 | Write | PA | ВОН | | | | | Block Erase and (Page Buffer)
Program Resume | 1 | 8,9 | Write | PA | D0H | | | | | Set Block Lock Bit | 2 | | Write | BA | 60H | Write | BA | 01H | | Clear Block Lock Bit | 2 | 10 | Write | BA | 60H | Write | BA | D0H | | Set Block Lock-down Bit | 2 | | Write | BA | 60H | Write | BA | 2FH | | OTP Program | 2 | 9 | Write | OA | СОН | Write | OA | OD | | Set Partition Configuration Register | 2 | | Write | PCRC | 60H | Write | PCRC | 04H | Table 6. Command Definitions⁽¹¹⁾ - 1. Bus operations are defined in Table 5. - 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle. - X=Any valid address within the device. - PA=Address within the selected partition. - IA=Identifier codes address (See Table 3 and Table 4). - QA=Query codes address. Refer to Appendix of LH28F640BF series for details. - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit. - WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. - OA=Address of OTP block to be read or programmed (See Figure 3). - PCRC=Partition configuration register code presented on the address A₀-A₁₅. - 3. ID=Data read from identifier codes. (See Table 3 and Table 4). - QD=Data read from query database. Refer to Appendix of LH28F640BF series for details. - SRD=Data read from status register. See Table 10 for a description of the status register bits. - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles. - OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles. - N-1=N is the number of the words to be loaded into a page buffer. - 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code and the data within OTP block (See Table 3 and Table 4). The Read Query command is available for reading CFI (Common Flash Interface) information. - 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH} . - 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup. - 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to Appendix of LHF64FG7 LH28F640BF series for details. - 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next. - 9. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended. - 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is V_{IL} . When WP# is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration. - 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used. | | | (2) | | | | |----------------------|-----|--------------------------------|--------------|-------------------|---------------------------| | State | WP# | DQ ₁ ⁽¹⁾ | $DQ_0^{(1)}$ | State Name | Erase/Program Allowed (2) | | [000] | 0 | 0 | 0 | Unlocked | Yes | | [001] ⁽³⁾ | 0 | 0 | 1 | Locked | No | | [011] | 0 | 1 | 1 | Locked-down | No | | [100] | 1 | 0 | 0 | Unlocked | Yes | | [101] ⁽³⁾ | 1 | 0 | 1 | Locked | No | | [110] ⁽⁴⁾ | 1 | 1 | 0 | Lock-down Disable | Yes | | [111] | 1 | 1 | 1 | Lock-down Disable | No | Table 7. Functions of Block Lock⁽⁵⁾ and Block Lock-Down #### NOTES: - DQ₀=1: a block is locked; DQ₀=0: a block is unlocked. DQ₁=1: a block is locked-down; DQ₁=0: a block is not locked-down. - 2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations. - 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation. - 4. When WP# is driven to $V_{\rm IL}$ in [110] state, the state changes to [011] and the blocks are automatically locked. - 5. OTP (One Time Program) block has the lock function which is different from those described above. | | Curren | t State | | Result after Lock Command Written (Next State) | | | | | |-------|--------|-----------------|--------|--|---------------------------|------------------------------|--|--| | State | WP# | DQ ₁ | DQ_0 | Set Lock ⁽¹⁾ | Clear Lock ⁽¹⁾ | Set Lock-down ⁽¹⁾ | | | | [000] | 0 | 0 | 0 | [001] | No Change | [011] ⁽²⁾ | | | | [001] | 0 | 0 | 1 | No Change ⁽³⁾ | [000] | [011] | | | | [011] | 0 | 1 | 1 | No Change | No Change | No Change | | | | [100] | 1 | 0 | 0 | [101] | No Change | [111] ⁽²⁾ | | | | [101] | 1 | 0 | 1 | No Change | [100] | [111] | | | | [110] | 1 | 1 | 0 | [111] | No Change | [111] ⁽²⁾ | | | | [111] | 1 | 1 | 1 | No Change | [110] | No Change | | | Table 8. Block Locking State Transitions upon Command Write⁽⁴⁾ - 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command. - 2. When the Set Block Lock-Down Bit command is written to the unlocked block (DQ $_0$ =0), the corresponding block is locked-down and automatically locked at the same time. - 3. "No Change" means that the state remains unchanged after the command written. - 4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} . | Table 0 | Block Locking | State | Transitions upon | W/P# | Transition(4) | |----------|---------------|---------|------------------|----------|---------------| | Table 9. | DIOCK LOCKIII | z State | Transmons upon | . VV F # | Transmon | | Day in Contra | | Current S | State | | Result after WP# Transition (Next State) | | | |---------------------------------|-------|-----------|-----------------|--------|--|------------------------------|--| | Previous State | State | WP# | DQ ₁ | DQ_0 | WP#=0→1 ⁽¹⁾ | WP#= $1 \rightarrow 0^{(1)}$ | | | - | [000] | 0 | 0 | 0 | [100] | - | | | - | [001] | 0 | 0 | 1 | [101] | - | | | [110] ⁽²⁾ | [011] | 0 | 1 | 1 | [110] | - | | | Other than [110] ⁽²⁾ | | | | |
[111] | - | | | - | [100] | 1 | 0 | 0 | - | [000] | | | - | [101] | 1 | 0 | 1 | - | [001] | | | - | [110] | 1 | 1 | 0 | - | $[011]^{(3)}$ | | | - | [111] | 1 | 1 | 1 | - | [011] | | - 1. "WP#=0 \rightarrow 1" means that WP# is driven to V_{IH} and "WP#=1 \rightarrow 0" means that WP# is driven to - 2. State transition from the current state [011] to the next state depends on the previous state. - 3. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked. - 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state. | R | R | R | R | R | R | R | R | |------|------|--------|--------|------|-------|-----|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | WSMS | BESS | BEFCES | PBPOPS | VPPS | PBPSS | DPS | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R) 15 (K) SR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy SR.6 = BLOCK ERASE SUSPEND STATUS (BESS) 1 = Block Erase Suspended 0 = Block Erase in Progress/Completed SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES) 1 = Error in Block Erase or Full Chip Erase 0 = Successful Block Erase or Full Chip Erase SR.4 = (PAGE BUFFER) PROGRAM AND OTP PROGRAM STATUS (PBPOPS) 1 = Error in (Page Buffer) Program or OTP Program 0 = Successful (Page Buffer) Program or OTP Program $SR.3 = V_{PP} STATUS (VPPS)$ $1 = V_{pp}$ LOW Detect, Operation Abort $0 = V_{pp} OK$ SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS) 1 = (Page Buffer) Program Suspended 0 = (Page Buffer) Program in Progress/Completed SR.1 = DEVICE PROTECT STATUS (DPS) 1 = Erase or Program Attempted on a Locked Block, Operation Abort 0 = Unlocked Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration. NOTES: Check SR.7 to determine block erase, full chip erase, (page buffer) program or OTP program completion. SR.6 - SR.1 are invalid while SR.7="0". If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit, set partition configuration register attempt, an improper command sequence was entered. SR.3 does not provide a continuous indication of V_{PP} level. The WSM interrogates and indicates the V_{PP} level only after Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program command sequences. SR.3 is not guaranteed to report accurate feedback when $V_{PP} \neq V_{PPH1}$, V_{PPH2} or V_{PPLK} . SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/OTP command indicates block lock bit status. SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register. SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R) | R | R | R | R | R | R | R | R | |-----|----|----|----|----|----|---|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | SMS | R | R | R | R | R | R | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | #### XSR.15-8 = RESERVED FOR FUTURE**ENHANCEMENTS (R)** #### XSR.7 = STATE MACHINE STATUS (SMS) 1 = Page Buffer Program available 0 = Page Buffer Program not available XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R) #### NOTES: After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not. XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register. | Table 12. | Partition | Configuration | Register Definition | |-----------|-----------|---------------|---------------------| | | | | | | R | R | R | R | R | PC2 | PC1 | PC0 | |----|----|----|----|----|-----|-----|-----| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | R | R | R | R | R | R | R | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | #### PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R) #### PCR.10-8 = PARTITION CONFIGURATION (PC2-0) 000 = No partitioning. Dual Work is not allowed. 001 = Plane1-3 are merged into one partition. (default in a bottom parameter device) 010 = Plane 0-1 and Plane2-3 are merged into one partition respectively. 100 = Plane 0-2 are merged into one partition. (default in a top parameter device) 011 = Plane 2-3 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions. 110 = Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions. 101 = Plane 1-2 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions. 111 = There are four partitions in this configuration. Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions. #### PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R) #### NOTES: After power-up or device reset, PCR10-8 (PC2-0) is set to "001" in a bottom parameter device and "100" in a top parameter device. See Figure 4 for the detail on partition configuration. PCR.15-11 and PCR.7-0 are reserved for future use and should be masked out when checking the partition configuration register. | PC2 PC1 PC0 | PARTITIONING FOR DUAL WORK | PC2 PC1 PC0 PARTITIONING FOR DUAL WORK | |-------------|---|--| | 0 0 0 |
PLANE3 PLANE1 PLANE1 PLANE1 | PARTITION2 PARTITION1 PARTITION0 0 1 1 BLANE3 | | 0 0 1 | ONOITITRANE INOITITRANE BLANE | PARTITION2 PARTITION1 PARTITION0 1 1 0 | | 0 1 0 | 0/2007/17/2009 0/2007/17/2009 0/2009/2009/2009/2009/2009/2009/20 | PARTITION2 PARTITION1 PARTITION0 1 0 1 E3 F4 | | 1 0 0 | PARTITIONO PARTITIONO BLANE3 PLANE3 PLANE3 | PARTITION3 PARTITION2 PARTITION PARTITION 1 1 1 1 ELANBER LANBER LAN | Figure 4. Partition Configuration #### 1 Electrical Specifications #### 1.1 Absolute Maximum Ratings* **Operating Temperature** During Read, Erase and Program ...-40°C to +85°C (1) Storage Temperature During under Bias....-40°C to +85°C During non Bias...--65°C to +125°C Voltage On Any Pin (except V_{CC} and V_{PP})......-0.5V to $V_{CC}+0.5V^{(2)}$ V_{CC} and V_{CCQ} Supply Voltage -0.2V to +3.9V $^{(2)}$ V_{PP} Supply Voltage-0.2V to +10.0V (2, 3, 4) Output Short Circuit Current 100mA (5) *WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability. #### NOTES: - 1. Operating temperature is for extended temperature product defined by this specification. - 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} and V_{PP} pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC} +0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns. - 3. Maximum DC voltage on V_{PP} may overshoot to +11.0V for periods <20ns. - 4. V_{PP} erase/program voltage is normally 2.7V-3.6V. Applying 9.0V-10.0V to V_{PP} during erase/program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. V_{PP} may be connected to 9.0V-10.0V for a total of 80 hours maximum. - 5. Output shorted for no more than one second. No more than one output shorted at a time. #### 1.2 Operating Conditions | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |---|-------------------|---------|------|-------|--------|-------| | Operating Temperature | T_{A} | -40 | +25 | +85 | °C | | | V _{CC} Supply Voltage | V _{CC} | 2.7 | 3.0 | 3.6 | V | 1 | | I/O Supply Voltage | V_{CCQ} | 2.7 | 3.0 | 3.6 | V | 1 | | V _{PP} Voltage when Used as a Logic Control | V _{PPH1} | 1.65 | 3.0 | 3.6 | V | 1 | | V _{PP} Supply Voltage | V _{PPH2} | 9.0 | 9.5 | 10.0 | V | 1, 2 | | Main Block Erase Cycling: V _{PP} =V _{PPH1} | | 100,000 | | | Cycles | | | Parameter Block Erase Cycling: V _{PP} =V _{PPH1} | | 100,000 | | | Cycles | | | Main Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs. | | | | 1,000 | Cycles | | | Parameter Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs. | | | | 1,000 | Cycles | | | Maximum V _{PP} hours at V _{PPH2} | | | | 80 | Hours | | - 1. See DC Characteristics tables for voltage range-specific specification. - 2. Applying V_{PP} =9.0V-10.0V during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to V_{PP} =9.0V-10.0V is not allowed and can cause damage to the device. 18 #### 1.2.1 Capacitance⁽¹⁾ (T_A =+25°C, f=1MHz) | Parameter | Symbol | Condition | Min. | Тур. | Max. | Unit | |--------------------|-----------|------------------------|------|------|------|------| | Input Capacitance | C_{IN} | V _{IN} =0.0V | | 4 | 7 | pF | | Output Capacitance | C_{OUT} | V _{OUT} =0.0V | | 6 | 10 | pF | #### NOTE: 1. Sampled, not 100% tested. #### 1.2.2 AC Input/Output Test Conditions Figure 5. Transient Input/Output Reference Waveform for V_{CC} =2.7V-3.6V Figure 6. Transient Equivalent Testing Load Circuit Table 13. Configuration Capacitance Loading Value | Test Configuration | C _L (pF) | |----------------------------|---------------------| | V _{CC} =2.7V-3.6V | 50 | #### 1.2.3 DC Characteristics ### $V_{CC} = 2.7V - 3.6V$ | Symbol | Paran | neter | Notes | Min. | Тур. | Max. | Unit | Test Conditions | |--|--|--------------------|-----------|------|------|------|------|--| | I _{LI} | Input Load Current | | 1 | -1.0 | | +1.0 | μΑ | V _{CC} =V _{CC} Max., | | I_{LO} | Output Leakage Curr | rent | 1 | -1.0 | | +1.0 | μА | $V_{\rm CCQ} = V_{\rm CCQ} { m Max.,}$ $V_{\rm IN} / V_{\rm OUT} = V_{\rm CCQ} { m or}$ ${ m GND}$ | | I_{CCS} | V _{CC} Standby Curren | t | 1,8 | | 4 | 20 | μΑ | $V_{CC}=V_{CC}Max.,$ $CE\#=RST\#=$ $V_{CCQ}\pm0.2V,$ $WP\#=V_{CCQ}$ or GND | | I _{CCAS} | V _{CC} Automatic Pow | er Savings Current | 1,4,8 | | 4 | 20 | μA | V _{CC} =V _{CC} Max.,
CE#=GND±0.2V,
WP#=V _{CCQ} or GND | | I_{CCD} | V _{CC} Reset Current | | 1,8 | | 4 | 20 | μΑ | RST#=GND±0.2V | | T | Average V _{CC} Read
Current
Normal Mode | | 1,7,8 | | 15 | 25 | mA | V _{CC} =V _{CC} Max.,
CE#=V _{IL} , | | I_{CCR} | Average V _{CC} Read
Current
Page Mode | 8 Word Read | 1,7,8 | | 5 | 10 | mA | OE#=V _{IH} ,
f=5MHz | | I | V _{CC} (Page Buffer) P | rogram Current | 1,5,7,8 | | 20 | 60 | mA | V _{PP} =V _{PPH1} | | I_{CCW} | V _{CC} (1 age Bullet) 1 | rogram Current | 1,5,7,8 | | 10 | 20 | mA | V _{PP} =V _{PPH2} | | I | V _{CC} Block Erase, Fu | ıll Chip | 1,5,7,8 | | 10 | 30 | mA | V _{PP} =V _{PPH1} | | I _{CCE} | Erase Current | | 1,5,7,8 | | 4 | 10 | mA | V _{PP} =V _{PPH2} | | I _{CCWS}
I _{CCES} | V _{CC} (Page Buffer) P
Block Erase Suspend | | 1,2,7,8 | | 10 | 200 | μΑ | CE#=V _{IH} | | I _{PPS}
I _{PPR} | V _{PP} Standby or Reac | l Current | 1,6,7,8 | | 2 | 5 | μΑ | V _{PP} ≤V _{CC} | | т | V _{PP} (Page Buffer) Pr | rogram Current | 1,5,6,7,8 | | 2 | 5 | μΑ | V _{PP} =V _{PPH1} | | I_{PPW} | v pp (1 age Bullet) 11 | rogram Current | 1,5,6,7,8 | | 10 | 30 | mA | V _{PP} =V _{PPH2} | | ī | V _{PP} Block Erase, Fu | ll Chip | 1,5,6,7,8 | | 2 | 5 | μΑ | V _{PP} =V _{PPH1} | | I_{PPE} | Erase Current | | 1,5,6,7,8 | | 5 | 15 | mA | V _{PP} =V _{PPH2} | | Innue | V _{PP} (Page Buffer) Pr | rogram | 1,6,7,8 | | 2 | 5 | μΑ | V _{PP} =V _{PPH1} | | I_{PPWS} | Suspend Current | | 1,6,7,8 | | 10 | 200 | μΑ | V _{PP} =V _{PPH2} | | Inner | V _{PP} Block Erase Sus | enend Current | 1,6,7,8 | | 2 | 5 | μΑ | V _{PP} =V _{PPH1} | | I _{PPES} | 7 pp Diock Erase Sus | spend Current | 1,6,7,8 | | 10 | 200 | μΑ | V _{PP} =V _{PPH2} | #### DC Characteristics (Continued) #### $V_{CC} = 2.7 \text{V} - 3.6 \text{V}$ | Symbol | Parameter | Notes | Min. | Тур. | Max. | Unit | Test Conditions | |---------------------|--|-------|--------------------------|------|------------------------|------|--| | V_{IL} | Input Low Voltage | 5 | -0.4 | | 0.4 | V | | | V _{IH} | Input High Voltage | 5 | 2.4 | | V _{CCQ} + 0.4 | V | | | V _{OL} | Output Low Voltage | 5 | | | 0.2 | V | $\begin{aligned} &V_{CC} = &V_{CC}Min., \\ &V_{CCQ} = &V_{CCQ}Min., \\ &I_{OL} = &100\mu A \end{aligned}$ | | V _{OH} | Output High Voltage | 5 | V _{CCQ}
-0.2 | | | V | $\begin{aligned} &V_{CC} = &V_{CC}Min., \\ &V_{CCQ} = &V_{CCQ}Min., \\ &I_{OH} = &-100\mu A \end{aligned}$ | | V _{PPLK} | V _{PP} Lockout during Normal
Operations | 3,5,6 | | | 0.4 | V | | | V_{PPH1} | V _{PP} during Block Erase, Full Chip
Erase, (Page Buffer) Program or OTP
Program Operations | 6 | 1.65 | 3.0 | 3.6 | V | | | V _{PPH2} | V _{PP} during Block Erase, Full Chip
Erase, (Page Buffer) Program or OTP
Program Operations | 6 | 9.0 | 9.5 | 10.0 | V | | | V_{LKO} | V _{CC} Lockout Voltage | | 1.5 | | | V | | #### NOTES: SHARP - 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V and T_A =+25°C unless V_{CC} is specified. - 2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW} . If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} . - 3. Block erase, full chip erase, (page buffer) program and OTP program are inhibited when $V_{PP} \le V_{PPLK}$, and not guaranteed in the range between V_{PPLK} (max.) and V_{PPH1} (min.), between V_{PPH1} (max.) and V_{PPH2} (min.) and above V_{PPH2} (max.). - 4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed. - 5. Sampled, not 100% tested. - 6. V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, full chip erase, (page buffer) program and OTP program cannot be executed and should not be attempted. - Applying $9.5V\pm0.5V$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus. - Applying $9.5V\pm0.5V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $9.5V\pm0.5V$ for a total of 80 hours maximum. - 7. The operating current in dual work is the sum of the operating current (read, erase, program) in
each plane. - 8. For all pins other than those shown in test conditions, input level is V_{CCO} or GND. 21 ## 1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾ #### V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C | Symbol | Parameter | Notes | Min. | Max. | Unit | |---------------------------------------|---|-------|------|------|------| | t _{AVAV} | Read Cycle Time | | 70 | | ns | | t _{AVQV} | Address to Output Delay | | | 70 | ns | | t_{ELQV} | CE# to Output Delay | 3 | | 70 | ns | | t _{APA} | Page Address Access Time | | | 30 | ns | | t _{GLQV} | OE# to Output Delay | 3 | | 25 | ns | | t _{PHQV} | RST# High to Output Delay | | | 150 | ns | | t_{EHQZ}, t_{GHQZ} | CE# or OE# to Output in High Z, Whichever Occurs First | 2 | | 25 | ns | | t _{ELQX} | CE# to Output in Low Z | 2 | 0 | | ns | | t_{GLQX} | OE# to Output in Low Z | 2 | 0 | | ns | | t _{OH} | Output Hold from First Occurring Address, CE# or OE# change | 2 | 0 | | ns | | t _{AVEL} , t _{AVGL} | Address Setup to CE#, OE# Going Low
for Reading Status Register | 4, 6 | 10 | | ns | | t _{ELAX} , t _{GLAX} | Address Hold from CE#, OE# Going Low
for Reading Status Register | 5, 6 | 30 | | ns | | t _{EHEL} , t _{GHGL} | CE#, OE# Pulse Width High for Reading
Status Register | 6 | 15 | | ns | - 1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate. - 2. Sampled, not 100% tested. - 3. OE# may be delayed up to t_{ELQV} t_{GLQV} after the falling edge of CE# without impact to t_{ELQV}. 4. Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of CE# or OE# (whichever goes low last). 5. Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of CE# or OE# (whichever goes low last). - 6. Specifications t_{AVEL} , t_{AVGL} , t_{ELAX} , t_{GLAX} and t_{EHEL} , t_{GHGL} for read operations apply to only status register read operations. Figure 7. AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes, OTP Block or Query Code Figure 8. AC Waveform for Asynchronous 4-Word Page Mode Read Operations from Main Blocks or Parameter Blocks Figure 9. AC Waveform for Asynchronous 8-Word Page Mode Read Operations from Main Blocks or Parameter Blocks ### 1.2.5 AC Characteristics - Write Operations^{(1), (2)} #### V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C | Symbol | Parameter | Notes | Min. | Max. | Unit | |---|---|-------|------|---------------------------|------| | t _{AVAV} | Write Cycle Time | | 70 | | ns | | t _{PHWL} (t _{PHEL}) | RST# High Recovery to WE# (CE#) Going Low | 3 | 150 | | ns | | t _{ELWL} (t _{WLEL}) | CE# (WE#) Setup to WE# (CE#) Going Low | | 0 | | ns | | t _{WLWH} (t _{ELEH}) | WE# (CE#) Pulse Width | 4 | 55 | | ns | | t _{DVWH} (t _{DVEH}) | Data Setup to WE# (CE#) Going High | 8 | 40 | | ns | | t _{AVWH} (t _{AVEH}) | Address Setup to WE# (CE#) Going High | 8 | 55 | | ns | | t _{WHEH} (t _{EHWH}) | CE# (WE#) Hold from WE# (CE#) High | | 0 | | ns | | $t_{WHDX} (t_{EHDX})$ | Data Hold from WE# (CE#) High | | 0 | | ns | | $t_{WHAX} (t_{EHAX})$ | Address Hold from WE# (CE#) High | | 0 | | ns | | t _{WHWL} (t _{EHEL}) | WE# (CE#) Pulse Width High | 5 | 15 | | ns | | t _{SHWH} (t _{SHEH}) | WP# High Setup to WE# (CE#) Going High | 3 | 0 | | ns | | t _{VVWH} (t _{VVEH}) | V _{PP} Setup to WE# (CE#) Going High | 3 | 200 | | ns | | $t_{\mathrm{WHGL}} (t_{\mathrm{EHGL}})$ | Write Recovery before Read | | 30 | | ns | | t _{QVSL} | WP# High Hold from Valid SRD | 3, 6 | 0 | | ns | | t _{QVVL} | V _{PP} Hold from Valid SRD | 3, 6 | 0 | | ns | | t _{WHR0} (t _{EHR0}) | WE# (CE#) High to SR.7 Going "0" | 3, 7 | | t _{AVQV} +
50 | ns | - 1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations. - 2. A write operation can be initiated and terminated with either CE# or WE#. - 3. Sampled, not 100% tested. - 4. Write pulse width (t_{WP}) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, $t_{WP} = t_{WLWH} = t_{ELEH} = t_{WLEH} = t_{ELWH}$. - 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling edge of CE# or WE# (whichever goes low last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}. 6. V_{PP} should be held at V_{PP}=V_{PPH1/2} until determination of block erase, full chip erase, (page buffer) program or OTP - V_{PP} should be held at V_{PP}=V_{PPH1/2} until determination of block erase, full chip erase, (page buffer) program or OTP program success (SR.1/3/4/5=0). - 7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command=t_{AVOV}+100ns. - 8. Refer to Table 6 for valid address and data for block erase, full chip erase, (page buffer) program, OTP program or lock bit configuration. #### 1.2.6 Reset Operations Figure 11. AC Waveform for Reset Operations Reset AC Specifications (V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C) | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|---|---------|------|------|------| | $t_{\rm PLPH}$ | RST# Low to Reset during Read (RST# should be low during power-up.) | 1, 2, 3 | 100 | | ns | | t _{PLRH} | RST# Low to Reset during Erase or Program | 1, 3, 4 | | 22 | μs | | t _{2VPH} | V _{CC} 2.7V to RST# High | 1, 3, 5 | 100 | | ns | | t _{VHQV} | V _{CC} 2.7V to Output Delay | 3 | | 1 | ms | - 1. A reset time, t_{PHQV} , is required from the later of SR.7 going "1" or RST# going high until outputs are valid. Refer to AC Characteristics Read-Only Operations for t_{PHQV} . - 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed. - 3. Sampled, not 100% tested. - 4. If RST# asserted while a block erase, full chip erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns. - 5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there. #### 1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance⁽³⁾ V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C | Symbol | Parameter | Notes | Page Buffer
Command is | | _{PP} =V _{PPI}
In Syster | | V _{PP} =V _{PPH2}
(In Manufacturing) | | | Unit | |--|---|-------|---------------------------|------|--|---------------------|--|---------|---------------------|------| | | | | Used or not
Used | Min. | Typ.(1) | Max. ⁽²⁾ | Min. | Typ.(1) | Max. ⁽²⁾ | | | t_{WPB} | 4K-Word Parameter Block | 2 | Not Used | | 0.05 | 0.3 | | 0.04 | 0.12 | S | | WPB | Program Time | 2 | Used | | 0.03 | 0.12 | | 0.02 | 0.06 | S | | $t_{ m WMB}$ | 32K-Word Main Block | 2 | Not Used | | 0.38 | 2.4 | | 0.31 | 1.0 | S | | WMB | Program Time | 2 | Used | | 0.24 | 1.0 | | 0.17 | 0.5 | S | | t _{WHQV1} / | Word Program Time | 2 | Not Used | | 11 | 200 | | 9 | 185 | μs | | t_{EHQV1} | Word Frogram Time | 2 | Used | | 7 | 100 | | 5 | 90 | μs | | t _{WHOV1} /
t _{EHOV1} | OTP Program Time | 2 | Not Used | | 36 | 400 | | 27 | 185 | μs | | t _{WHQV2} /
t _{EHQV2} | 4K-Word Parameter Block
Erase Time | 2 | - | | 0.3 | 4 | | 0.2 | 4 | s | | t _{WHQV3} /
t _{EHQV3} | 32K-Word Main Block
Erase Time | 2 | - | | 0.6 | 5 | | 0.5 | 5 | S | | | Full Chip Erase Time | 2 | | | 80 | 700 | | 65 | 700 | S | | $t_{\mathrm{WHRH1}}/$ t_{EHRH1} | (Page Buffer) Program Suspend
Latency Time to Read | 4 | - | | 5 | 10 | | 5 | 10 | μs | | t _{WHRH2} /
t _{EHRH2} | Block Erase Suspend
Latency Time to Read | 4 | - | | 5 | 20 | | 5 | 20 | μs | | t _{ERES} | Latency Time from Block Erase
Resume Command to Block
Erase Suspend Command | 5 | - | 500 | | | 500 | | | μs | - 1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V or 9.5V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization. - 2. Excludes external system-level overhead. - 3. Sampled, but not 100% tested. - 4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1". - 5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished. 29 SHARP | 2 | D =1=4=4 I | Document | T., C., | (1) | |---|------------|----------|---------|---------| | Z | Kejaled i | Jocument | mom | iauon* | | Document No. | Document Name | |--------------|----------------------------| | FUM00701 | LH28F640BF series Appendix | #### NOTE: 1. International customers should contact their local SHARP or distribution sales offices. #### Package and packing specification #### [Applicability] This specification applies to IC package of the LEAD-FREE delivered as a standard specification. #### 1. Storage Conditions. - 1-1. Storage conditions required before opening the dry packing. - Normal temperature : 5~40°C - Normal humidity: 80%(Relative humidity) max. - *"Humidity" means "Relative humidity" #### 1-2. Storage conditions required after opening the dry packing. In order to prevent moisture absorption after opening, ensure the following storage conditions apply: - (1) Storage conditions for one-time soldering. (Convection reflow.*1, IR/Convection reflow.*1, or
Manual soldering.) - Temperature : 5~25°C - Humidity: 60% max. - · Period: 72 hours max. after opening. - (2) Storage conditions for two-time soldering. (Convection reflow.*1, IR/Convection reflow.*1) - a. Storage conditions following opening and prior to performing the 1st reflow. - Temperature : $5\sim25^{\circ}$ C - · Humidity: 60% max. - Period: 72 hours max. after opening. - b. Storage conditions following completion of the 1st reflow and prior to performing the 2nd reflow. - Temperature : 5~25°C - · Humidity: 60% max. - Period: 72 hours max. after completion of the 1st reflow. #### 1-3. Temporary storage after opening. To re-store the devices before soldering, do so only once and use a dry box or place desiccant (with a blue humidity indicator) with the devices and perform dry packing again using heat-sealing. The storage period, temperature and humidity must be as follows: (1) Storage temperature and humidity. **※**1 : External atmosphere temperature and humidity of the dry packing. - (2) Storage period. - X1+X2: Refer to Section 1-2(1) and (2)a, depending on the mounting method. - Y : Two weeks max. ^{*1:}Air or nitrogen environment. #### 2. Baking Condition. - (1) Situations requiring baking before mounting. - Storage conditions exceed the limits specified in Section 1-2 or 1-3. - · Humidity indicator in the desiccant was already red (pink) when opened. - (Also for re-opening.) - (2) Recommended baking conditions. - · Baking temperature and period : 120° C for $16\sim24$ hours. - · The above baking conditions apply since the trays are heat-resistant. - (3) Storage after baking. - After baking, store the devices in the environment specified in Section 1-2 and mount immediately. - 3. Surface mount conditions. The following soldering condition are recommended to ensure device quality. #### 3-1. Soldering. - (1) Convection reflow or IR/Convection. (one-time soldering or two-time soldering in air or nitrogen environment) - · Temperature and period : A) Peak temperature. 250°C max. B) Heating temperature. 40 to 60 seconds as 220° C C) Preheat temperature. It is 150 to 200°C, and is 120±30 seconds D) Temperature increase rate. It is 1 to 3°C/seconds - Measuring point : IC package surface. - · Temperature profile: (2) Manual soldering (soldering iron) (one-time soldering only) Soldering iron should only touch the IC's outer leads. · Temperature and period : 350℃ max. for 3 seconds / pin max. (Soldering iron should only touch the IC's outer leads.) · Measuring point : Soldering iron tip. 4. Condition for removal of residual flax. (1) Ultrasonic washing power: 25 watts / liter max. (2) Washing time: Total 1 minute max. (3) Solvent temperature : $15\sim40^{\circ}$ C 5. Package outline specification. Refer to the attached drawing. (Plastic body dimensions do not include burr of resin.) The contents of LEAD-FREE TYPE application of the specifications. (*2) #### 6. Markings. 6-1. Marking details. (The information on the package should be given as follows.) (1) Product name : LH28F640BFHE-PTTL70A (2) Company name : SHARP (3) Date code (4) "JAPAN" indicates the country of origin. #### 6-2. Marking layout. The layout is shown in the attached drawing. (However, this layout does not specify the size of the marking character and marking position.) *2 The contents of LEAD-FREE TYPE application of the specifications. | LEAD FINISH or
BALL TYPE | LEAD-FREE TYPE
(Sn-Bi) | | |--|---|--| | DATE CODE | They are those with an underline under YYWW XXX | | | The word of " LEAD FREE" is printed on the packing label | Printed | | 7. Packing Specifications (Dry packing for surface mount packages.) 7-1. Packing materials. | Material name | Material specifications | Purpose | | |--------------------|--|---|--| | Inner carton | Cardboard (960 devices / inner carton | Packing the devices. | | | | max.) | (10 trays / inner carton) | | | Tray | Conductive plastic (96 devices / tray) | Securing the devices. | | | Upper cover tray | Conductive plastic (1 tray / inner carton) | Securing the devices. | | | Laminated aluminum | Aluminum polyethylene | Keeping the devices dry. | | | bag | | | | | Desiccant | Silica gel | Keeping the devices dry. | | | Label | Paper | Indicates part number, quantity, and packed date. | | | PP band | Polypropylene (3 pcs. / inner carton) | Securing the devices. | | | Outer carton | Cardboard (3840 devices / outer carton max.) | Outer packing. | | (Devices must be placed on the tray in the same direction.) 7-2. Outline dimension of tray. Refer to the attached drawing. 7-3. Outline dimension of carton. Refer to the attached drawing. TYPE-A and TYPE-B exist as a packing-case. - 8. Precautions for use. - (1) Opening must be done on an anti-ESD treated workbench. All workers must also have undergone anti-ESD treatment. - (2) The trays have undergone either conductive or anti-ESD treatment. If another tray is used, make sure it has also undergone conductive or anti-ESD treatment. - (3) The devices should be mounted the devices within one year of the date of delivery. ## A-1 RECOMMENDED OPERATING CONDITIONS ## A-1.1 At Device Power-Up AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly. Figure A-1. AC Timing at Device Power-Up For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page. ## A-1.1.1 Rise and Fall Time | Symbol | Parameter | Notes | Min. | Max. | Unit | |-----------------|---------------------------|-------|------|-------|------| | t _{VR} | V _{CC} Rise Time | | 0.5 | 30000 | μs/V | | t _R | Input Signal Rise Time | | | 1 | μs/V | | t _F | Input Signal Fall Time | | | 1 | μs/V | ## NOTES: - 1. Sampled, not 100% tested. - 2. This specification is applied for not only the device power-up but also the normal operations. ## A-1.2 Glitch Noises Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a). Figure A-2. Waveform for Glitch Noises See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.). # A-2 RELATED DOCUMENT INFORMATION⁽¹⁾ | Document No. | Document Name | | |--------------|---|--| | AP-001-SD-E | Flash Memory Family Software Drivers | | | AP-006-PT-E | Data Protection Method of SHARP Flash Memory | | | AP-007-SW-E | RP#, V _{PP} Electric Potential Switching Circuit | | ## NOTE: 1. International customers should contact their local SHARP or distribution sales office. #### A-3 STATUS REGISTER READ OPERATIONS If AC timing for reading the status register described in specifications is not satisfied, a system processor can check the status register bit SR.15 instead of SR.7 to determine when the erase or program operation has been completed. Table A-3-1. Status Register Definition (SR.15 and SR.7) ## $SR.15 = WRITE STATE MACHINE STATUS: (DQ_{15})$ 1 = Ready in All Partitions 0 = Busy in Any Partition ## SR.7 = WRITE STATE MACHINE STATUS FOR EACH PARTITION: (DQ₇) 1 = Ready in the Addressed Partition 0 = Busy in the Addressed Partition #### NOTES: SR.15 indicates the status of WSM (Write State Machine). If SR.15="0", erase or program operation is in progress in any partition. SR.7 indicates the status of the partition. If SR.7="0", erase or program operation is in progress in the addressed partition. Even if the SR.7 is "1", the WSM may be occupied by the other partition. Figure A-3-1. Example of Checking the Status Register (In this example, the device contains four partitions.) #### SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage. #### **NORTH AMERICA** www.sharpsma.com SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 #### **TAIWAN** SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328 #### **CHINA** SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 **Head Office:** No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp #### **EUROPE** SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com #### **SINGAPORE** SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855 #### HONG KONG SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1
18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk Shenzhen Representative Office: Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Phone: (86) 755-3273731 Fax: (86) 755-3273735 #### **JAPAN** SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com #### **KOREA** SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819