TCR22-x & Sx02CSx series

RoHS

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Sensitive gate SCRs are easily triggered with microAmps of current as furnished by sense coils, proximity switches, and microprocessors.

Features & Benefits

- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 600 V
- Surge capability up to 20 A

Main Features							
Symbol	Value	Unit					
I _{T(RMS)}	1.5	А					
V _{drm} /V _{rrm}	400 or 600	V					
I _{ct}	200	μA					

Applications

Typical applications are capacitive discharge systems for strobe lights and gas engine ignition. Also controls for power tools, home/brown goods and white goods appliances.

Schematic Symbol

Symbol	Parameter	Test Conditions	Value	Unit
I _{T(RMS)}	RMS on-state current	$T_c = 40^{\circ}C$	1.5	A
I _{T(AV)}	Average on-state current	$T_c = 40^{\circ}C$	0.95	A
		single half cycle; f = 50Hz; T _J (initial) = 25°C	16	
Peak non-repetitive surge curre	Peak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	20	A
²t	l²t Value for fusing	t _p = 8.3 ms	1.6	A²s
di/dt	Critical rate of rise of on-state current	f = 60 Hz ; T _J = 110°C	50	A/µs
I _{GM}	Peak gate current	T _J = 110°C	1	А
P _{G(AV)}	Average gate power dissipation	T _J = 110°C	0.1	W
T _{stg}	Storage temperature range	·	-40 to 150	°C
T,	Operating junction temperature range		-40 to 110	°C

Absolute Maximum Ratings – Sensitive SCRs

Electrical Characteristics ($T_J = 25^{\circ}C$, unless otherwise specified)

Symbol	Test Conditions	Value	Unit			
I _{gt}			MAX.	200	μA	
V _{GT}	$V_{D} = 6V; R_{L} = 100 \Omega$		MAX.	0.8	V	
-l/-lt		400V	N AINI	40		
dv/dt	$dv/dt \qquad V_{\rm D} = V_{\rm DRM}; \ R_{\rm GK} = 1 k \Omega$	600V	MIN.	30	V/µs	
V _{gd}	$V_{\rm D} = V_{\rm DRM}; R_{\rm L} = 3.3 \text{ k}\Omega; T_{\rm J} = 110^{\circ}\text{C}$		MIN.	0.25	V	
V _{grm}	I _{GR} = 10µA		MIN.	6	V	
I _H	I _τ = 200mA (initial)		MAX.	5	mA	
t _q	(1)		MAX.	50	μs	
t _{gt}	$I_{g} = 2 \times I_{gT}$; PW = 15µs; $I_{T} = 3A$		TYP.	20	μs	

(1) $I_T = 1A$; $t_p = 50 \mu s$; $dv/dt = 5V/\mu s$; $di/dt = -10A/\mu s$

Static Characteristics							
Symbol		Test Condit	tions		Value	Unit	
V _{TM}	I _T = 3	3A; t _p = 380 μs		1.5	V		
		400			1		
I _{drm} / I _{rrm}	V _{DRM} = V _{RRM}	$T_{J} = 25^{\circ}C$	600V	MAX.	2	μA	
		T _J = 1 ²	10°C		100		

Thermal Resistances								
Symbol	Parameter		Value	Unit				
D		TCR22-x	50	°C/W				
$R_{\theta(JC)}$	Junction to case (AC)	Sx02CSx	60*	C/VV				
R _{e(J-A)}	Junction to ambient	TCR22-x	160	°C/W				

*=Mount on 1 cm2 copper (two-ounce) foil surface

Littelfuse Power

Thyristors 1.5 Amp Sensitive SCRs

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

Figure 5: On-State Current vs. On-State Voltage (Typical)

Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

Figure 4: Normalized DC Latching Current vs. Junction Temperature

Figure 6: Power Dissipation (Typical) vs. RMS On-State Current

Littelfuse Power

Thyristors

1.5 Amp Sensitive SCRs

Figure 7: Maximum Allowable Case Temperature vs. RMS On-State Current

Figure 11: Peak Repetitive Capacitor Discharge Current

Figure 8: Maximum Allowable Case Temperature vs. Average On-State Current

Figure 10: Maximum Allowable Ambient Temperature vs. Average On-State Current

Figure 12: Peak Repetitive Sinusoidal Pulse Current

Figure 13: Typical DC Gate Trigger Current with R_{GK} vs. Junction Temperature for TCR22-8/S602CS

Figure 14: Typical DC Holding Current with R_{gk} vs. Junction Temperature for TCR22-8/S602CS

Figure 16: Typical turn off time with R_{GK} vs. Junction Temperature for TCR22-8/S602CS

Figure 17: Surge Peak On-State Current vs. Number of Cycles

Value at Specified Case Temperature

Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 18: Simple Test Circuit for Gate Trigger Voltage and Current

Note: V1 — 0 V to 10 V dc meter V_{GT} — 0 V to 1 V dc meter

 $I_c - 0$ mA to 1 mA dc milliammeter

Ř1 — 1 k potentiometer

To measure gate trigger voltage and current, raise gate voltage (V_{G1}) until meter reading V1 drops from 6 V to 1 V. Gate trigger voltage is the reading on V_{GT} just prior to V1 dropping. Gate trigger current I_{GT} Can be computed from the relationship

$$_{\rm GT} = I_{\rm G} - \frac{V_{\rm GT}}{1000} \rm Amps$$

where I_c is reading (in amperes) on meter just prior to V1 dropping

Note: $I_{\rm GT}$ may turn out to be a negative quantity (trigger current flows out from gate lead). If negative current occurs, $I_{\rm GT}$ value is not a valid reading. Remove 1 k resistor and use $I_{\rm G}$ as the more correct $I_{\rm GT}$ value. This will occur on 12 μA gate products.

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra (T _L) to pea	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Time (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _e)		20 – 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Finish	100% Matt Tin-plated/Pb-free Solder Dipped
Body Material	UL Recognized compound meeting flammability rating V-0
Lead Material	Copper Alloy

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Thyristors 1.5 Amp Sensitive SCRs

PRELIMINARY & CONFIDENTIAL

Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final.

Dimensions – TO-92 (E Package)

Dimension	Inches		Millimeters		
Dimension	Min	Max	Min	Max	
А	0.176	0.196	4.47	4.98	
В	0.500		12.70		
D	0.095	0.105	2.41	2.67	
E	0.150		3.81		
F	0.046	0.054	1.16	1.37	
G	0.135	0.145	3.43	3.68	
Н	0.088	0.096	2.23	2.44	
J	0.176	0.186	4.47	4.73	
К	0.088	0.096	2.23	2.44	
L	0.013	0.019	0.33	0.48	
Μ	0.013	0.017	0.33	0.43	

All leads insulated from case. Case is electrically nonconductive.

Dimensions – Compak (C Package)

Dimension	Inc	hes	Millim	neters
Dimension	Min	Max	Min	Max
А	0.130	0.156	3.30	3.95
В	0.201	0.220	5.10	5.60
С	0.077	0.087	1.95	2.20
D	0.159	0.181	4.05	4.60
E	0.030	0.063	0.75	1.60
F	0.075	0.096	1.90	2.45
G	0.002	0.008	0.05	0.20
Н	0.077	0.104	1.95	2.65
J	0.043	0.053	1.09	1.35
К	0.006	0.016	0.15	0.41
L	0.030	0.055	0.76	1.40
М	0.022	0.028	0.56	0.71
Ν	0.027	0.033	0.69	0.84
Р	0.052	0.058	1.32	1.47

I store Inc. has characterized initial samples of this I is currently conducting reliability testing. Parts umbers and specifications are subject to change until

Product Selector

Part Number	Voltage		Coto Consitivity	Turce	Deelvono
Part Number	400V	600V	Gate Sensitivity	Туре	Package
TCR22-6	Х		200µA	Sensitive SCR	TO-92
TCR22-8		Х	200µA	Sensitive SCR	TO-92
Sx02CS		Х	200µA	Sensitive SCR	Compak

Note: x = Voltage

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
TCR22-x	TCR22-x	0.19 g	Bulk	2000
TCR22-xRP	TCR22-x	0.19 g	Reel Pack	2000
TCR22-xAP	TCR22-x	0.19 g	Ammo Pack	2000
Sx02CSRP	Sx02CS	0.18 g	Reel Pack	2500

Note: x = Voltage

Part Numbering System

Part Marking System

Line1 = Littelfuse Part Number Line2 = continuation...Littelfuse Part Number Y = Last Digit of Calendar Year M = Letter Month Code (A-L for Jan-Dec) L = Location Code DD = Calendar Date

Date Code Marking Y:Year Code M: Month Code XXX: Lot Trace Code

Thyristors 1.5 Amp Sensitive <u>SCRs</u>

PRELIMINARY & CONFIDENTIAL

ittelfuse, Inc. has characterized initial samples of this level is currently conducting reliability testing. Part: ur to a log specifications are subject to change until

eet is made final.

TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

Thyristors 1.5 Amp Sensitive SCRs

PRELIMINARY & CONFIDENTIAL Littelfuse, Ir 📥 haracterized initial samples of this

the datasheet is made fin

Compak Embossed Carrier Reel Pack (RP) Specifications

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littlefuse.com/disclaimer-electronics.