



Order

Now





TEXAS INSTRUMENTS

# OPA202, OPA2202, OPA4202

SBOS812H-OCTOBER 2017-REVISED MAY 2020

# **OPAx202** Precision, Low-Noise, Heavy Capacitive Drive, 36-V Operational Amplifiers

# 1 Features

- Precision super-beta performance:
  - Low offset voltage: 200 µV (maximum)
  - Ultra-low drift: 1 µV/°C (maximum)
- Excellent efficiency:
  - Quiescent current: 580 µA (typical)
  - Gain-bandwidth product: 1 MHz
  - Low input voltage noise: 9 nV/√Hz
- Ease of use, design simplicity:
  - Heavy capacitive load drive: 5-µs settling time with 25 nF
  - Ultra-high input impedance: 3000 G $\Omega$  and 0.5 pF
  - EMI hardened, thermal, and short-circuit protection
- Stable Performance:
  - High CMRR and A<sub>OL</sub>: 126 dB (minimum)
  - High PSRR: 126 dB (minimum)
- Low bias current: 2 nA (maximum)
- Low 0.1-Hz to 10-Hz noise: 0.2 μV<sub>PP</sub>
- Wide supply voltage: ±2.25 V to ±18 V
- Replaces OP-07 and OP-27

# 2 Applications

- Data acquisition (DAQ)
- Lab and field instrumentation
- Merchant network and server PSU
- Multiparameter patient monitor
- String inverter



### OPAx202 Excel Even When Directly Driving Heavy Capacitive Loads

# 3 Description

The OPA202, OPA2202, and OPA4202 (OPAx202) are a family of devices built on TI's industry-leading precision super-beta, complementary, bipolar semiconductor process. This process offers ultra-low flicker noise, low offset voltage, low offset voltage temperature drift, and excellent linearity with common-mode and power-supply variation. These devices offer an exceptional combination of dc precision, heavy capacitive load drive, and protection against external EMI, thermal, and short-circuit events.

The supply current is 580  $\mu$ A at ±18 V. The OPAx202 do not exhibit phase inversion, and the series is stable with high capacitive loads. The OPAx202 are fully specified with a temperature range from -40°C to +105°C.

| Device Information <sup>(1)</sup> |            |                   |  |  |
|-----------------------------------|------------|-------------------|--|--|
| PART NUMBER                       | PACKAGE    | BODY SIZE (NOM)   |  |  |
|                                   | SOIC (8)   | 4.90 mm × 3.91 mm |  |  |
| OPA202                            | SOT-23 (5) | 2.90 mm × 1.60 mm |  |  |
|                                   | VSSOP (8)  | 3.00 mm × 3.00 mm |  |  |
| OPA2202                           | VSSOP (8)  | 3.00 mm × 3.00 mm |  |  |
|                                   | SOIC (8)   | 4.90 mm × 3.91 mm |  |  |
| OPA4202                           | SOIC (14)  | 8.65 mm × 3.91 mm |  |  |
|                                   | TSSOP (14) | 5.00 mm × 4.40 mm |  |  |

# Device Information<sup>(1)</sup>

(1) For all available packages, see the package option addendum at the end of the data sheet.

### Input Voltage Noise and Current Noise Spectral Density vs Frequency



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Texas Instruments

www.ti.com

# **Table of Contents**

| 1 | Feat | tures 1                          |
|---|------|----------------------------------|
| 2 | App  | lications1                       |
| 3 |      | cription1                        |
| 4 |      | ision History 2                  |
| 5 |      | Configuration and Functions 4    |
| 6 | Spe  | cifications7                     |
|   | 6.1  | Absolute Maximum Ratings 7       |
|   | 6.2  | ESD Ratings7                     |
|   | 6.3  | Recommended Operating Conditions |
|   | 6.4  | Thermal Information: OPA202 8    |
|   | 6.5  | Thermal Information: OPA22028    |
|   | 6.6  | Thermal Information: OPA42028    |
|   | 6.7  | Electrical Characteristics9      |
|   | 6.8  | Typical Characteristics 11       |
|   | 6.9  | Typical Characteristics 12       |
| 7 | Deta | ailed Description 19             |
|   | 7.1  | Overview 19                      |
|   | 7.2  | Functional Block Diagram 19      |
|   | 7.3  | Feature Description              |
|   |      |                                  |

|    | 7.4  | Device Functional Modes                         | 26 |
|----|------|-------------------------------------------------|----|
| 8  | Арр  | lication and Implementation                     | 27 |
|    | 8.1  | Application Information                         | 27 |
|    | 8.2  | Typical Application                             | 29 |
| 9  | Pow  | er Supply Recommendations                       | 30 |
| 10 | Lay  | out                                             | 31 |
|    | 10.1 | Layout Guidelines                               | 31 |
|    | 10.2 | Layout Example                                  | 31 |
| 11 | Dev  | ice and Documentation Support                   | 32 |
|    | 11.1 |                                                 |    |
|    | 11.2 | Documentation Support                           | 32 |
|    | 11.3 | Related Links                                   | 33 |
|    | 11.4 | Receiving Notification of Documentation Updates | 33 |
|    | 11.5 | Support Resources                               | 33 |
|    | 11.6 | Trademarks                                      | 33 |
|    | 11.7 | Electrostatic Discharge Caution                 | 33 |
|    | 11.8 | Glossary                                        | 33 |
| 12 | Mec  | hanical, Packaging, and Orderable               |    |
|    | Info | rmation                                         | 33 |
|    |      |                                                 |    |

# **4** Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| C      | hanges from Revision G (March 2020) to Revision H                                                                                                                   | Page      |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| •      | Changed OPA202 VSSOP (DGK) and OPA2202 SOIC (D) packages from preview to production data (active)                                                                   | 1         |
| С      | hanges from Revision F (February 2020) to Revision G                                                                                                                | Page      |
| •      | Changed OPA4202 14-pin TSSOP (PW) package from preview to production data (active)                                                                                  | 1         |
| •      | Added OPA2202 8-pin SOIC (D) preview package and associated content to data sheet                                                                                   | 1         |
| С      | hanges from Revision E (February 2020) to Revision F                                                                                                                | Page      |
| •      | Added OPA4202 14-pin TSSOP (PW) preview package and associated content to data sheet                                                                                | 1         |
| •      | Changed Figure 19, Input Voltage Noise and Current Noise Spectral Density vs Frequency, to more accurately represent the input current noise behavior of the device | 15        |
| С      | hanges from Revision D (December 2019) to Revision E                                                                                                                | Page      |
| •      | Added OPA202 8-pin VSSOP (DGK) preview package and associated content to data sheet                                                                                 | 1         |
| -      |                                                                                                                                                                     |           |
| с      | hanges from Revision C (October 2018) to Revision D                                                                                                                 | Page      |
| с<br>• | hanges from Revision C (October 2018) to Revision D<br>Changed OPA2202 and OPA4202 devices from advanced information (preview) to production data (active)          |           |
| •      |                                                                                                                                                                     | 1         |
| •      | Changed OPA2202 and OPA4202 devices from advanced information (preview) to production data (active)                                                                 | 1<br>Page |

Copyright © 2017–2020, Texas Instruments Incorporated



SBOS812H-OCTOBER 2017-REVISED MAY 2020

| Changes from Revision A (September 2018) to Revision B     Changed SOT-23 package from preview to production data |      |  |
|-------------------------------------------------------------------------------------------------------------------|------|--|
| Changed SOT-23 package from preview to production data                                                            | 1    |  |
| Changes from Original (October 2017) to Revision A                                                                | Page |  |

Added preview content for SOT-23 package offering ..... 1

# 5 Pin Configuration and Functions





# **Pin Functions: OPA202**

| PIN  |                         |              |     |                                               |
|------|-------------------------|--------------|-----|-----------------------------------------------|
| NAME | N                       | NO.          |     | DESCRIPTION                                   |
|      | D (SOIC)<br>DGK (VSSOP) | DBV (SOT-23) | I/O |                                               |
| –IN  | 2                       | 4            | I   | Inverting input                               |
| +IN  | 3                       | 3            | I   | Noninverting input                            |
| NC   | 1, 5, 8                 |              | _   | No internal connection (can be left floating) |
| OUT  | 6                       | 1            | 0   | Output                                        |
| V–   | 4                       | 2            |     | Negative (lowest) power supply                |
| V+   | 7                       | 5            |     | Positive (highest) power supply               |

4

TEXAS INSTRUMENTS

www.ti.com



#### OPA2202 D and DGK Packages 8-Pin SOIC VSSOP Top View Ο OUT A V+ 8 OUT B –IN A 2 +IN A –IN B -3 6 V– 4 +IN B 5

Not to scale

### **Pin Functions: OPA2202**

|       | PIN | 1/0 | DESCRIPTION                  |  |
|-------|-----|-----|------------------------------|--|
| NAME  | NO. | I/O | DESCRIPTION                  |  |
| –IN A | 2   | I   | Inverting input channel A    |  |
| +IN A | 3   | I   | Noninverting input channel A |  |
| –IN B | 6   | I   | Inverting input channel B    |  |
| +IN B | 5   | I   | Noninverting input channel B |  |
| OUT A | 1   | 0   | Output channel A             |  |
| OUT B | 7   | 0   | Output channel B             |  |
| V–    | 4   | —   | Negative supply              |  |
| V+    | 8   | —   | Positive supply              |  |





# Pin Functions: OPA4202

| PIN I/O |     | 1/0 | DESCRIPTION                  |
|---------|-----|-----|------------------------------|
| NAME    | NO. | //O | DESCRIPTION                  |
| –IN A   | 2   | I   | Inverting input channel A    |
| +IN A   | 3   | I   | Noninverting input channel A |
| –IN B   | 6   | I   | Inverting input channel B    |
| +IN B   | 5   | I   | Noninverting input channel B |
| –IN C   | 9   | I   | Inverting input channel C    |
| +IN C   | 10  | I   | Noninverting input channel C |
| –IN D   | 13  | I   | Inverting input channel D    |
| +IN D   | 12  | I   | Noninverting input channel D |
| OUT A   | 1   | 0   | Output channel A             |
| OUT B   | 7   | 0   | Output channel B             |
| OUT C   | 8   | 0   | Output channel C             |
| OUT D   | 14  | 0   | Output channel D             |
| V–      | 11  | —   | Negative supply              |
| V+      | 4   | —   | Positive supply              |

6



# 6 Specifications

# 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                       |                  |                             | MIN        | MAX        | UNIT |
|---------------------------------------|------------------|-----------------------------|------------|------------|------|
| Supply voltage,                       | s, Single-supply |                             |            | 40         |      |
| $V_{\rm S} = (V+) - (V-)$             | Dual-supply      |                             |            | ±20        |      |
| Signal input pins                     | N/ 16            | Common-mode <sup>(2)</sup>  | (V–) – 0.5 | (V+) + 0.5 | V    |
|                                       | Voltage          | Differential <sup>(3)</sup> |            | ±0.5       |      |
|                                       | Current          |                             |            | ±10        | mA   |
| Output short current <sup>(4)</sup>   |                  |                             | Continuous |            |      |
| Operating temperature, T <sub>A</sub> |                  |                             | -40        | 125        |      |
| Junction temperature, T <sub>J</sub>  |                  |                             |            | 125        | °C   |
| Storage temperature,                  | T <sub>stg</sub> |                             | -65        | 150        |      |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that swing more than 0.5 V beyond the supply rails must be current-limited to 10 mA or less.

(3) Input terminals are anti-parallel diode-clamped to each other. Input signals that cause differential voltages of swing more than ± 0.5 V must be current-limited to 10 mA or less.

(4) Short-circuit to ground, one amplifier per package.

# 6.2 ESD Ratings

|                    |                                                                   |                                                                                | VALUE | UNIT |
|--------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|------|
|                    | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup> | ±2500                                                                          | V     |      |
| V <sub>(ESD)</sub> | Electrostatic discharge                                           | Charged device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±1000 | v    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

# 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|                                                |                       |             | MIN   | NOM MAX | UNIT |
|------------------------------------------------|-----------------------|-------------|-------|---------|------|
| V <sub>S</sub> Supply voltage, [ (V+) – (V–) ] | Single-supply         | 4.5         | 36    | V       |      |
|                                                |                       | Dual-supply | ±2.25 | ±18     | v    |
| T <sub>A</sub>                                 | Specified temperature |             | -40   | 105     | °C   |

# OPA202, OPA2202, OPA4202

SBOS812H-OCTOBER 2017-REVISED MAY 2020

www.ti.com

# 6.4 Thermal Information: OPA202

|                       |                                              | OPA202   |             |              |      |
|-----------------------|----------------------------------------------|----------|-------------|--------------|------|
|                       | THERMAL METRIC <sup>(1)</sup>                | D (SOIC) | DGK (VSSOP) | DBV (SOT-23) | UNIT |
|                       |                                              | 8 PINS   | 8 PINS      | 5 PINS       |      |
| $R_{\theta JA}$       | Junction-to-ambient thermal resistance       | 136      | 190.8       | 206.0        | °C/W |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 74       | 82.3        | 121.8        | °C/W |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 62       | 113.0       | 65.9         | °C/W |
| $\Psi_{\text{JT}}$    | Junction-to-top characterization parameter   | 19.7     | 19.0        | 39.0         | °C/W |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 54.8     | 111.2       | 65.6         | °C/W |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | N/A      | N/A         | N/A          | °C/W |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

# 6.5 Thermal Information: OPA2202

|                       |                                              | OPA2        | OPA2202  |      |  |  |  |  |
|-----------------------|----------------------------------------------|-------------|----------|------|--|--|--|--|
|                       | THERMAL METRIC <sup>(1)</sup>                | DGK (VSSOP) | D (SOIC) | UNIT |  |  |  |  |
|                       |                                              | 8 PINS      | 8 PINS   |      |  |  |  |  |
| $R_{\thetaJA}$        | Junction-to-ambient thermal resistance       | 180.1       | 121.5    | °C/W |  |  |  |  |
| $R_{\theta JC(top)}$  | Junction-to-case (top) thermal resistance    | 68.3        | 64.3     | °C/W |  |  |  |  |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 101.4       | 65       | °C/W |  |  |  |  |
| $\Psi_{\text{JT}}$    | Junction-to-top characterization parameter   | 10.5        | 18.2     | °C/W |  |  |  |  |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 99.8        | 64.3     | °C/W |  |  |  |  |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | N/A         | N/A      | °C/W |  |  |  |  |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

# 6.6 Thermal Information: OPA4202

|                       |                                              | OPA      | OPA4202    |      |  |  |  |
|-----------------------|----------------------------------------------|----------|------------|------|--|--|--|
|                       | THERMAL METRIC <sup>(1)</sup>                | D (SOIC) | PW (TSSOP) | UNIT |  |  |  |
|                       |                                              | 14 PINS  | 14 PINS    |      |  |  |  |
| $R_{	ext{	heta}JA}$   | Junction-to-ambient thermal resistance       | 87.9     | 116.6      | °C/W |  |  |  |
| $R_{\theta JC(top)}$  | Junction-to-case (top) thermal resistance    | 42.7     | 39.5       | °C/W |  |  |  |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 44.6     | 61.4       | °C/W |  |  |  |
| $\Psi_{\text{JT}}$    | Junction-to-top characterization parameter   | 8.9      | 3.6        | °C/W |  |  |  |
| $\Psi_{JB}$           | Junction-to-board characterization parameter | 44.1     | 60.6       | °C/W |  |  |  |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | N/A      | N/A        | °C/W |  |  |  |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.



# 6.7 Electrical Characteristics

|                      | PARAMETER                              | L L L L L L L L L L L L L L L L L L L                           | EST CONDITIONS                                                                                                 | MIN                                           | TYP       | MAX        | UNIT              |    |
|----------------------|----------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|------------|-------------------|----|
| OFFSET               | VOLTAGE                                |                                                                 |                                                                                                                |                                               |           |            |                   |    |
| V                    | Input offect veltage                   | V <sub>S</sub> = ±18 V                                          |                                                                                                                |                                               | ±20       | ±200       |                   |    |
| V <sub>os</sub>      | Input offset voltage                   | $V_{S} = \pm 18 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C}$ | to +105°C                                                                                                      |                                               |           | ±250       | μV                |    |
| N/ / IT              |                                        | OPA202, OPA4202                                                 | $T_A = -40^{\circ}C$ to $+105^{\circ}C$                                                                        |                                               | ±0.5      | ±1         | µV/°C             |    |
| dV <sub>OS</sub> /dT | Input offset voltage drift             | OPA2202                                                         | $T_A = -40^{\circ}C \text{ to } +105^{\circ}C$                                                                 |                                               | ±0.5      | ±1.5       | µV/°C             |    |
| DODD                 | Input offset voltage                   | $V_{S} = \pm 2.25 \text{ V to } \pm 18 \text{ V}$               |                                                                                                                |                                               | ±0.1      | ±0.5       |                   |    |
| PSRR                 | versus power supply                    | $V_{S} = \pm 2.25 \text{ V to } \pm 18 \text{ V},$              | $\Gamma_A = -40^{\circ}C \text{ to } +105^{\circ}C$                                                            |                                               |           | ±0.5       | μV/V              |    |
| INPUT BI             | AS CURRENT                             |                                                                 |                                                                                                                | 1                                             |           |            |                   |    |
|                      | land this a summat                     |                                                                 |                                                                                                                |                                               | ±0.25     | ±2         | 0                 |    |
| IB                   | Input bias current                     | $T_A = -40^{\circ}C \text{ to } +105^{\circ}C$                  |                                                                                                                |                                               |           | ±2.1       | nA                |    |
|                      |                                        |                                                                 |                                                                                                                |                                               | ±15       | ±150       |                   |    |
|                      |                                        | OPA202 (D, DBV)                                                 | $T_A = -40^{\circ}C$ to $+105^{\circ}C$                                                                        |                                               |           | ±700       |                   |    |
| los                  | Input offset current                   | OPA202 (DGK),                                                   |                                                                                                                |                                               | ±25       | ±250       | рА                |    |
|                      |                                        | OPA2202, OPA4202                                                | $T_A = -40^{\circ}C$ to $+105^{\circ}C$                                                                        |                                               |           | ±700       |                   |    |
| NOISE                |                                        |                                                                 | - I                                                                                                            | -                                             |           |            |                   |    |
|                      |                                        |                                                                 |                                                                                                                |                                               | 0.2       |            | $\mu V_{PP}$      |    |
|                      | Input voltage noise                    | f = 0.1 Hz to 10 Hz                                             |                                                                                                                |                                               | 0.03      |            | μV <sub>RMS</sub> |    |
|                      |                                        | f = 10 Hz                                                       |                                                                                                                |                                               | 9.5       |            |                   |    |
| e <sub>n</sub>       | Input voltage noise                    | f = 100 Hz                                                      |                                                                                                                |                                               | 9.1       |            | nV/√Hz            |    |
|                      | density                                | f = 1 kHz                                                       |                                                                                                                |                                               | 9         |            |                   |    |
| i <sub>n</sub>       | Input current noise                    | f = 1 kHz                                                       |                                                                                                                |                                               | 0.076     |            | pA/√Hz            |    |
| INPUT VO             | LTAGE RANGE                            |                                                                 |                                                                                                                | 1                                             |           |            |                   |    |
| V <sub>CM</sub>      | Common-mode voltage range              |                                                                 |                                                                                                                | (V–) + 1.5                                    |           | (V+) – 1.5 | V                 |    |
|                      |                                        |                                                                 | (V–) + 1.5 V < V <sub>CM</sub> < (V+) – 1.5 V                                                                  | 114                                           | 131       |            |                   |    |
| 01/00                | Common-mode rejection                  | $V_{S} = \pm 2.25 V$                                            | $(V-) + 1.5 V < V_{CM} < (V+) - 1.5 V,$<br>$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$                      | 114                                           |           |            | 5                 |    |
| CMRR                 | ratio                                  | ratio                                                           |                                                                                                                | (V−) + 1.5 V < V <sub>CM</sub> < (V+) − 1.5 V | 126       | 148        |                   | dB |
|                      |                                        | $V_S = \pm 18 V$                                                | $(V-) + 1.5 V < V_{CM} < (V+) - 1.5 V,$<br>$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$                      | 119                                           |           |            |                   |    |
| INPUT CA             | PACITANCE                              |                                                                 | - I                                                                                                            | -                                             |           |            |                   |    |
|                      | Differential                           |                                                                 |                                                                                                                |                                               | 10    3.3 |            | MΩ    pF          |    |
|                      | Common-mode                            |                                                                 |                                                                                                                |                                               | 3    0.5  |            | TΩ    pF          |    |
| OPEN-LO              | OP GAIN                                |                                                                 |                                                                                                                | -                                             |           |            |                   |    |
|                      |                                        | N 0.05 V                                                        | $(V-) + 1.25 V \le V_0 \le (V+) - 1.25 V,$<br>$R_L = 10 k\Omega$                                               | 120                                           | 135       |            |                   |    |
|                      |                                        | V <sub>S</sub> = ±2.25 V                                        | $      (V-) + 1.25 V \le V_0 \le (V+) - 1.25 V, \\ R_L = 10 \ k\Omega, \ T_A = -40^\circ C \ to +105^\circ C $ | 119                                           |           |            |                   |    |
|                      |                                        | V = +18 V                                                       | $      (V-) + 1.25 \ V \leq V_O \leq (V+) - 1.25 \ V, \\ R_L = 10 \ k\Omega $                                  | 126                                           | 150       |            |                   |    |
| ۸                    | A <sub>OL</sub> Open-loop voltage gain | V <sub>S</sub> = ±18 V                                          |                                                                                                                | 126                                           |           |            | ٩D                |    |
| -OL                  |                                        | V <sub>S</sub> = ±2.25 V                                        | $      (V-) + 1.25 \ V \leq V_0 \leq (V+) - 1.25 \ V, \\ R_L = 2 \ k\Omega $                                   | 120                                           | 133       |            | dB                |    |
|                      |                                        | vs - 12.20 v                                                    |                                                                                                                | 119                                           |           |            |                   |    |
|                      |                                        | V <sub>S</sub> = ±18 V                                          | $      (V-) + 1.25 \ V \leq V_0 \leq (V+) - 1.25 \ V, \\ R_L = 2 \ k\Omega $                                   | 126                                           | 150       |            |                   |    |
|                      |                                        | 12-710 1                                                        | $(V-) + 1.25 V \le V_0 \le (V+) - 1.25 V,$<br>$R_L = 2 k\Omega, T_A = -40^{\circ}C \text{ to } +105^{\circ}C$  | 126                                           |           |            |                   |    |

Copyright © 2017–2020, Texas Instruments Incorporated

# **Electrical Characteristics (continued)**

at  $T_A = 25^{\circ}$ C,  $V_S = \pm 18$  V,  $V_{CM} = V_S / 2$ , and  $V_{OUT} = V_S / 2$ ,  $R_L = 10$  k $\Omega$  connected to  $V_S / 2$  (unless otherwise noted)

|                   | PARAMETER                            |                                              | TEST CONDITIONS                                            | MIN                                           | TYP     | MAX          | UNIT |    |
|-------------------|--------------------------------------|----------------------------------------------|------------------------------------------------------------|-----------------------------------------------|---------|--------------|------|----|
| FREQUE            | NCY RESPONSE                         | L.                                           | L. L                   |                                               |         |              |      |    |
| GBW               | Gain-bandwidth product               |                                              |                                                            |                                               | 1       |              | MHz  |    |
| SR                | Slew rate                            | 10-V step, G = 1                             |                                                            |                                               | 0.35    |              | V/µs |    |
|                   | 0.00                                 | To 0.1%, 10-V step                           | , G = 1                                                    |                                               | 30      |              |      |    |
| t <sub>S</sub>    | Settling time                        | To 0.01%, 10-V step                          | o , G = 1                                                  |                                               | 32      |              | μs   |    |
|                   | Overload recovery time               | $V_{IN} \times gain > V_S$                   |                                                            |                                               | 4       |              | μs   |    |
| THD+N             | Total harmonic distortion<br>+ noise | V <sub>O</sub> = 3 V <sub>RMS</sub> , G = 1, | f = 1 kHz, R <sub>L</sub> = 10 kΩ                          | (                                             | 0.0002% |              |      |    |
| OUTPUT            |                                      |                                              | L                                                          |                                               |         | <sup>I</sup> |      |    |
|                   | Voltage output swing                 |                                              | T <sub>A</sub> = 25°C, No Load                             |                                               | 650     | 750          |      |    |
|                   |                                      |                                              |                                                            | $T_A = 25^{\circ}C, R_L = 10 \text{ k}\Omega$ |         | 800          | 900  | mV |
|                   |                                      | \/ .10\/                                     | $T_A = 25^{\circ}C, R_L = 2 k\Omega$                       |                                               | 1.05    | 1.15         |      |    |
|                   | from rail                            | $V_{\rm S} = \pm 18 \text{ V}$               | $T_A = -40^{\circ}C$ to +105°C, $R_L = 10 \text{ k}\Omega$ |                                               |         | 1            | V    |    |
|                   |                                      |                                              | $A_{OL}$ > 120 dB, $R_L$ = 10 k $\Omega$                   |                                               |         | 1.05         | v    |    |
|                   |                                      |                                              | $A_{OL}$ > 120 dB, $R_L$ = 2 k $\Omega$                    |                                               |         | 1.25         |      |    |
|                   | Short-circuit current                | Sinking                                      |                                                            |                                               | 35      |              | mA   |    |
| I <sub>SC</sub>   | Short-circuit current                | Sourcing                                     |                                                            |                                               | 35      |              | IIIA |    |
| C <sub>LOAD</sub> | Capacitive load drive                |                                              |                                                            | Fi                                            | gure 28 |              |      |    |
| Zo                | Open-loop output impedance           | I <sub>O</sub> = 0 mA, f = 1 MH:             | z; see Figure 27                                           |                                               | 50      |              | Ω    |    |
| POWER S           | SUPPLY                               |                                              |                                                            |                                               |         |              |      |    |
| 1                 | Quiescent current per                | $I_0 = 0 \text{ mA}$                         |                                                            |                                               | 580     | 800          | μA   |    |
| l <sub>Q</sub>    | amplifier                            | $I_0 = 0 \text{ mA}, T_A = -40$              | °C to +105°C                                               |                                               |         | 900          | μΑ   |    |



# 6.8 Typical Characteristics

# Table 1. Table of Graphs

| Offset Voltage Drift Distribution From -40°C to +105°C     Figure 2       Input Bias Current Production Distribution     Figure 3       Input Offset Voltage vs Temperature     Figure 5       Offset Voltage vs Common-Mode Voltage     Figure 6       Offset Voltage vs Common-Mode Voltage     Figure 7       Open-Loop Gain and Phase vs Frequency     Figure 9       Input Bias Current vs Common-Mode Voltage     Figure 9       Input Bias Current vs Common-Mode Voltage     Figure 10       Input Bias Current vs Common-Mode Voltage     Figure 12       Output Voltage Swing vs Output Current     Figure 12       Output Voltage Swing vs Output Current (Sourcing)     Figure 13       Output Voltage Noise Vs Frequency     Figure 16       CMRR and PSRR vs Frequency     Figure 16       CMRR vs Temperature     Figure 16       PSRR vs Temperature     Figure 16       Output Voltage Noise Spectral Density vs Frequency     Figure 17       O.1+Lz to 10-Hz Voltage Noise     Figure 20       THD+N so Utput Amplitude     Figure 21       Quiescent Current vs Temperature     Figure 22       Quiescent Current vs Temperature     Figure 23       Open-Loop Gain vs Temperature     Figure 24       Open-Loop Gain vs Temperature     Figure 23       Open-Loop Gain vs Temperature     Figure 24       Open-Loop Gain vs Temperature                                                                              | DESCRIPTION                                            | FIGURE               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|
| Input Bias Current Production Distribution         Figure 3           Input Offset Current Production Distribution         Figure 4           Offset Voltage vs Temperature         Figure 5           Offset Voltage vs Supply Voltage         Figure 6           Offset Voltage vs Supply Voltage         Figure 7           Open-Loop Gain and Phase vs Frequency         Figure 9           Input Bias Current vs Common-Mode Voltage         Figure 10           Input Bias Current vs Common-Mode Voltage         Figure 11           Output Voltage Swing vs Output Current         Figure 12           Output Voltage Swing vs Output Current (Sourcing)         Figure 13           Output Voltage Swing vs Output Current (Sinking)         Figure 16           CMRR vs Temperature         Figure 17           O.1+Iz to 10-Hz Voltage Noise         Figure 18           Input Voltage Noise Spectral Density vs Frequency         Figure 20           THD+N Ratio vs Frequency         Figure 21           Quiescent Current vs Temperature         Figure 22           Quescent Current vs Temperature         Figure 21           Quiescent Current vs Temperature <td>Offset Voltage Production Distribution</td> <td>Figure 1</td> | Offset Voltage Production Distribution                 | Figure 1             |
| Input Offset Current Production DistributionFigure 4Offset Voltage vs TemperatureFigure 5Offset Voltage vs Common-Mode VoltageFigure 6Offset Voltage vs Supply VoltageFigure 7Open-Loop Gain and Phase vs FrequencyFigure 8Closed-Loop Gain and Phase vs FrequencyFigure 9Input Bias Current vs Common-Mode VoltageFigure 10Input Bias Current vs Common-Mode VoltageFigure 11Output Voltage Swing vs Output CurrentFigure 12Output Voltage Swing vs Output Current (Sourcing)Figure 13Output Voltage Swing vs Output Current (Sourcing)Figure 16CMRR vs TemperatureFigure 16CMRR vs TemperatureFigure 17O.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs TemperatureFigure 22Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (I0-kΩ)Figure 24Open-Loop Gain vs Output Lotage Noise Instruct Load (10-mV Step)Figure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 31No Phase ReversalFigure 31Negative Overload RecoveryFigure 32Negative Overload RecoveryFigure 31Small-Signal Step Response (10-V Step)Figure 33Large-Signal Step Response (10-V Step)Figure 35                                                                                                                                                                             | Offset Voltage Drift Distribution From -40°C to +105°C | Figure 2             |
| Offset Voltage vs Temperature         Figure 5           Offset Voltage vs Common-Mode Voltage         Figure 6           Offset Voltage vs Supply Voltage         Figure 7           Open-Loop Gain and Phase vs Frequency         Figure 9           Input Bias Current vs Common-Mode Voltage         Figure 9           Input Bias Current vs Common-Mode Voltage         Figure 10           Input Bias Current vs Common-Mode Voltage         Figure 11           Output Voltage Swing vs Output Current         Figure 12           Output Voltage Swing vs Output Current (Sourcing)         Figure 13           Output Voltage Swing vs Output Current (Sinking)         Figure 14           CMRR and PSRR vs Frequency         Figure 15           CMRR vs Temperature         Figure 16           PSRR vs Temperature         Figure 16           PSRR vs Temperature         Figure 20           Of 1-Hz Voltage Noise         Figure 20           THD+N Ratio vs Frequency         Figure 20           THD+N Ratio vs Frequency         Figure 21           Quiescent Current vs Supply Voltage         Figure 22           Quiescent Current vs Temperature         Figure 23           Open-Loop Gain vs Temperature         Figure 23           Open-Loop Gain vs Temperature         Figure 24           Open-Loop Gai                                                                                                   | Input Bias Current Production Distribution             | Figure 3             |
| Offset Voltage vs Common-Mode Voltage       Figure 6         Offset Voltage vs Supply Voltage       Figure 7         Open-Loop Gain and Phase vs Frequency       Figure 8         Closed-Loop Gain vs Frequency       Figure 9         Input Bias Current vs Common-Mode Voltage       Figure 10         Input Bias Current vs Common-Mode Voltage       Figure 10         Output Voltage Swing vs Output Current       Figure 11         Output Voltage Swing vs Output Current (Sourcing)       Figure 13         Output Voltage Swing vs Output Current (Sourcing)       Figure 14         CMRR and PSR vs Frequency       Figure 15         CMRR and PSR vs Frequency       Figure 16         PSR vs Temperature       Figure 18         Input Voltage Noise       Figure 19         D1-Hz Voltage Noise       Figure 20         THD+N vs Output Amplitude       Figure 21         Quiescent Current vs Supply Voltage       Figure 23         Open-Loop Gain vs Temperature       Figure 23         Open-Loop Gain vs Cutput Voltage Swing to Supply       Figure 24         Open-Loop Gain vs Cutput Voltage Swing to Supply       Figure 27         Small-Signal Overshoot vs Capacitive Load (10-mV Step)       Figure 31         Negative Overload Recovery       Figure 31         Negative Overload Recovery                                                                                                                   | Input Offset Current Production Distribution           | Figure 4             |
| Offset Voltage vs Supply Voltage       Figure 7         Open-Loop Gain and Phase vs Frequency       Figure 8         Closed-Loop Gain vs Frequency       Figure 9         Input Bias Current vs Common-Mode Voltage       Figure 10         Input Bias Current vs Common-Mode Voltage       Figure 11         Output Voltage Swing vs Output Current       Figure 12         Output Voltage Swing vs Output Current (Sourcing)       Figure 13         Output Voltage Swing vs Output Current (Sinking)       Figure 15         CMRR and PSRR vs Frequency       Figure 16         PSRR vs Temperature       Figure 17         O.1-Hz to 10-Hz Voltage Noise       Figure 18         Input Voltage Noise Spectral Density vs Frequency       Figure 20         THD+N Ratio vs Frequency       Figure 20         THD+N vs Output Amplitude       Figure 21         Quiescent Current vs Supply Voltage       Figure 22         Quiescent Current vs Supply Voltage       Figure 23         Open-Loop Gain vs Capacitive Load (10-mV Step)       Figure 24         Open-Loop Gain vs Capacitive Load (10-mV Step)       Figure 23         Open-Loop Gain vs Capacitive Load (10-mV Step)       Figure 23         Open-Loop Gain vs Capacitive Load (10-mV Step)       Figure 23         Open-Loop Gain vs Capacitive Load (10-mV Step)       Figure 24                                                                                      | Offset Voltage vs Temperature                          | Figure 5             |
| Open-Loop Gain and Phase vs FrequencyFigure 8Closed-Loop Gain vs FrequencyFigure 9Input Bias Current vs Common-Mode VoltageFigure 10Input Bias Current and Offset vs TemperatureFigure 11Output Voltage Swing vs Output CurrentFigure 12Output Voltage Swing vs Output Current (Sourcing)Figure 13Output Voltage Swing vs Output Current (Sinking)Figure 14CMRR and PSRR vs FrequencyFigure 15CMRR vs TemperatureFigure 16PSRR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 19THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs Supply VoltageFigure 23Open-Loop Gain vs Output Voltage Swing to SupplyFigure 26Open-Loop Gain vs Capacitive Load (10-mV Step)Figure 29Positive Overload RecoveryFigure 31Small-Signal Step Response (10-W Step)Figure 33Large-Signal Step Response (10-W Step)Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Offset Voltage vs Common-Mode Voltage                  | Figure 6             |
| Closed-Loop Gain vs FrequencyFigure 9Input Bias Current vs Common-Mode VoltageFigure 10Input Bias Current and Offset vs TemperatureFigure 11Output Voltage Swing vs Output CurrentFigure 12Output Voltage Swing vs Output Current (Sourcing)Figure 13Output Voltage Swing vs Output Current (Sinking)Figure 14CMRR and PSRR vs FrequencyFigure 15CMRR vs TemperatureFigure 16PSRR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 20THD+N Ratio vs FrequencyFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs Supply Voltage Swing to SupplyFigure 23Open-Loop Gain vs Output Voltage Swing to SupplyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 23No Phase ReversalFigure 23No Phase ReversalFigure 23No Phase ReversalFigure 23No Phase ReversalFigure 27Small-Signal Step Response (10-mV Step)Figure 31Small-Signal Step Response (10-mV Step)Figure 33Large-Signal Step Response (10-mV Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                             | Offset Voltage vs Supply Voltage                       | Figure 7             |
| Input Bias Current vs Common-Mode VoltageFigure 10Input Bias Current and Offset vs TemperatureFigure 11Output Voltage Swing vs Output CurrentFigure 12Output Voltage Swing vs Output Current (Sourcing)Figure 13Output Voltage Swing vs Output Current (Sinking)Figure 14CMRR and PSRR vs FrequencyFigure 15CMRR vs TemperatureFigure 16PSR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 20THD+N Ratio vs FrequencyFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 26Open-Loop Gain vs Capacitive Load (10-mV Step)Figure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 29Positive Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 33Large-Signal Step Response (10-V Step)Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Open-Loop Gain and Phase vs Frequency                  | Figure 8             |
| Input Bias Current and Offset vs TemperatureFigure 11Output Voltage Swing vs Output CurrentFigure 12Output Voltage Swing vs Output Current (Sourcing)Figure 13Output Voltage Swing vs Output Current (Sinking)Figure 14CMRR and PSRR vs FrequencyFigure 15CMRR vs TemperatureFigure 16PSR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 20THD+N Ratio vs FrequencyFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs Temperature (10-kΩ)Figure 23Open-Loop Gain vs Output Voltage Swing to SupplyFigure 25, Figure 26Open-Loop Gain vs Capacitive Load (10-mV Step)Figure 27Small-Signal Overshoat vs Capacitive Load (10-mV Step)Figure 31Small-Signal Step Response (10-W Step)Figure 31Small-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Closed-Loop Gain vs Frequency                          | Figure 9             |
| Output Voltage Swing vs Output CurrentFigure 12Output Voltage Swing vs Output Current (Sourcing)Figure 13Output Voltage Swing vs Output Current (Sinking)Figure 14CMRR and PSRR vs FrequencyFigure 15CMRR vs TemperatureFigure 16PSRR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 19THD+N Ratio vs FrequencyFigure 20THD+N Ratio vs FrequencyFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs Temperature (10-kΩ)Figure 23Open-Loop Gain vs Output Voltage Swing to SupplyFigure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 31Small-Signal Step Response (10-W Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Input Bias Current vs Common-Mode Voltage              | Figure 10            |
| Output Voltage Swing vs Output Current (Sourcing)Figure 13Output Voltage Swing vs Output Current (Sinking)Figure 14CMRR and PSRR vs FrequencyFigure 15CMRR vs TemperatureFigure 16PSRR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 20THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 24Open-Loop Gain vs Output Voltage Swing to SupplyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 31Small-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Input Bias Current and Offset vs Temperature           | Figure 11            |
| Output Voltage Swing vs Output Current (Sinking)Figure 14CMRR and PSRR vs FrequencyFigure 15CMRR and PSRR vs FrequencyFigure 16PSRR vs TemperatureFigure 16PSRR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 19THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Output Voltage Swing vs Output Current                 | Figure 12            |
| CMRR and PSRR vs FrequencyFigure 15CMRR vs TemperatureFigure 16PSRR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 19THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-rW Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Output Voltage Swing vs Output Current (Sourcing)      | Figure 13            |
| CMRR vs TemperatureFigure 16PSRR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 19THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs Temperature (10-kΩ)Figure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Output Voltage Swing vs Output Current (Sinking)       | Figure 14            |
| PSRR vs TemperatureFigure 170.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 19THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 25, Figure 26Open-Loop Gain vs Output Voltage Swing to SupplyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CMRR and PSRR vs Frequency                             | Figure 15            |
| 0.1-Hz to 10-Hz Voltage NoiseFigure 18Input Voltage Noise Spectral Density vs FrequencyFigure 19THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 25, Figure 26Open-Loop Gain vs Output Voltage Swing to SupplyFigure 27, Figure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CMRR vs Temperature                                    | Figure 16            |
| Input Voltage Noise Spectral Density vs FrequencyFigure 19THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 25, Figure 26Open-Loop Gain vs Output Voltage Swing to SupplyFigure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 29No Phase ReversalFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSRR vs Temperature                                    | Figure 17            |
| THD+N Ratio vs FrequencyFigure 20THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 24Open-Loop Gain vs Output Voltage Swing to SupplyFigure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1-Hz to 10-Hz Voltage Noise                          | Figure 18            |
| THD+N vs Output AmplitudeFigure 21Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 24Open-Loop Gain vs Output Voltage Swing to SupplyFigure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 30Positive Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Input Voltage Noise Spectral Density vs Frequency      | Figure 19            |
| Quiescent Current vs Supply VoltageFigure 22Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 24Open-Loop Gain vs Output Voltage Swing to SupplyFigure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THD+N Ratio vs Frequency                               | Figure 20            |
| Quiescent Current vs TemperatureFigure 23Open-Loop Gain vs Temperature (10-kΩ)Figure 24Open-Loop Gain vs Output Voltage Swing to SupplyFigure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THD+N vs Output Amplitude                              | Figure 21            |
| Open-Loop Gain vs Temperature (10-kΩ)Figure 24Open-Loop Gain vs Output Voltage Swing to SupplyFigure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quiescent Current vs Supply Voltage                    | Figure 22            |
| Open-Loop Gain vs Output Voltage Swing to SupplyFigure 25, Figure 26Open-Loop Output Impedance vs FrequencyFigure 27Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quiescent Current vs Temperature                       | Figure 23            |
| Open-Loop Output Impedance vs Frequency       Figure 27         Small-Signal Overshoot vs Capacitive Load (10-mV Step)       Figure 28         No Phase Reversal       Figure 29         Positive Overload Recovery       Figure 30         Negative Overload Recovery       Figure 31         Small-Signal Step Response (10-mV Step)       Figure 32, Figure 33         Large-Signal Step Response (10-V Step)       Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Open-Loop Gain vs Temperature (10-kΩ)                  | Figure 24            |
| Small-Signal Overshoot vs Capacitive Load (10-mV Step)Figure 28No Phase ReversalFigure 29Positive Overload RecoveryFigure 30Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Open-Loop Gain vs Output Voltage Swing to Supply       | Figure 25, Figure 26 |
| No Phase Reversal       Figure 29         Positive Overload Recovery       Figure 30         Negative Overload Recovery       Figure 31         Small-Signal Step Response (10-mV Step)       Figure 32, Figure 33         Large-Signal Step Response (10-V Step)       Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Open-Loop Output Impedance vs Frequency                | Figure 27            |
| Positive Overload Recovery       Figure 30         Negative Overload Recovery       Figure 31         Small-Signal Step Response (10-mV Step)       Figure 32, Figure 33         Large-Signal Step Response (10-V Step)       Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Small-Signal Overshoot vs Capacitive Load (10-mV Step) | Figure 28            |
| Negative Overload RecoveryFigure 31Small-Signal Step Response (10-mV Step)Figure 32, Figure 33Large-Signal Step Response (10-V Step)Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No Phase Reversal                                      | Figure 29            |
| Small-Signal Step Response (10-mV Step)     Figure 32, Figure 33       Large-Signal Step Response (10-V Step)     Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Positive Overload Recovery                             | Figure 30            |
| Large-Signal Step Response (10-V Step) Figure 34, Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Negative Overload Recovery                             | Figure 31            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Small-Signal Step Response (10-mV Step)                | Figure 32, Figure 33 |
| Settling Time (10-V Step) Figure 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Large-Signal Step Response (10-V Step)                 | Figure 34, Figure 35 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Settling Time (10-V Step)                              | Figure 36            |
| Short-Circuit Current vs Temperature Figure 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Short-Circuit Current vs Temperature                   | Figure 37            |
| Maximum Output Voltage vs Frequency Figure 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum Output Voltage vs Frequency                    | Figure 38            |
| EMIRR vs Frequency Figure 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EMIRR vs Frequency                                     | Figure 39            |

SBOS812H-OCTOBER 2017-REVISED MAY 2020

www.ti.com

# 6.9 Typical Characteristics

at  $T_A = 25^{\circ}C$ ,  $V_S = \pm 18$  V,  $V_{CM} = V_S / 2$ ,  $R_{LOAD} = 10$  k $\Omega$  connected to  $V_S / 2$ , and  $C_L = 100$  pF (unless otherwise noted)



Copyright © 2017-2020, Texas Instruments Incorporated



### **Typical Characteristics (continued)**



# **Typical Characteristics (continued)**





### **Typical Characteristics (continued)**



Copyright © 2017–2020, Texas Instruments Incorporated

# **Typical Characteristics (continued)**





# **Typical Characteristics (continued)**

at  $T_A = 25^{\circ}$ C,  $V_S = \pm 18$  V,  $V_{CM} = V_S / 2$ ,  $R_{LOAD} = 10$  k $\Omega$  connected to  $V_S / 2$ , and  $C_L = 100$  pF (unless otherwise noted)



# **Typical Characteristics (continued)**







# 7 Detailed Description

# 7.1 Overview

The OPA202, OPA2202, and OPA4202 (OPAx202) family of devices is a series of low-power, super-beta, bipolar junction transistor (super- $\beta$  BJT), input amplifiers that features superior drift performance and low input bias current. The low output impedance and heavy capacitive load drive abilities allow designers to interface to modern, fast-acquisition, precision analog-to-digital converters (ADCs) and buffer precision voltage references and drive power supply decoupling capacitors. The OPAx202 achieve a 1-MHz gain-bandwidth product and a 0.35-V/µs slew rate, and consumes only 580 µA (typical) of quiescent current, making the devices a great choice for low-power applications. These devices operate on a single 4.5-V to 36-V supply, or dual ±2.25-V to ±18-V supplies.

All versions are fully specified from -40°C to +105°C for use in the most challenging environments. The singlechannel OPA202 is available in 8-pin SOIC, 8-pin VSSOP, and 5-pin SOT-23 packages. The dual-channel OPA2202 is available in an 8-pin VSSOP package. The quad-channel OPA4202 is available in 14-pin SOIC and TSSOP packages.

The *Functional Block Diagram* shows the simplified diagram of the OPAx202.

# 7.2 Functional Block Diagram



Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com

# 7.3 Feature Description

### 7.3.1 Capacitive Load and Stability

The dynamic characteristics of the OPAx202 are optimized for commonly encountered gains, loads, and operating conditions. The OPAx202 feature a patented output stage capable of driving large capacitive loads. In a unity-gain configuration, the series is capable of directly driving to 25 nF of pure capacitive load. Increase the gain to enhance the ability of the devices to drive greater capacitive loads. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an amplifier is stable in operation.

The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier, and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. Add a small resistor ( $R_{OUT}$  equal to 50  $\Omega$ , for example) in series with the output to achieve isolation. Figure 40 shows the effects on small-signal overshoot for several capacitive loads and combinations of isolation resistance. See the *Feedback Plots Define Op Amp AC Performance* application bulletin for details of analysis techniques and application circuits, available for download from the www.Tl.com. By using isolation resistors, driving capacitive loads of 100 nF and beyond is possible.



Figure 40. Small-Signal Overshoot vs Capacitive Load (10-mV Output Step)



### Feature Description (continued)

For additional drive capability in unity-gain configurations, insert a small (10  $\Omega$  to 20  $\Omega$ ) resistor (R<sub>ISO</sub>) in series with the output to improve capacitive load drive, as shown in Figure 41. This resistor reduces ringing and maintains dc performance for purely capacitive loads. However, if a resistive load is in parallel with the capacitive load, then a voltage divider is created, which introduces a gain error at the output and reduces the output swing. The error is proportional to the ratio R<sub>ISO</sub> / R<sub>L</sub>, and is generally negligible at low output levels. A high capacitive load drive makes the OPAx202 a great choice for applications such as reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 41 uses an isolation resistor (R<sub>ISO</sub>) to stabilize the output of an op amp. R<sub>ISO</sub> modifies the open-loop gain of the system for increased phase margin. Table 2 lists the results using the OPAx202. For additional information on techniques to optimize and design using this circuit, TI Precision Design TIPD128 details complete design goals, simulation, and test results.



Figure 41. Extending Capacitive Load Drive With the OPAx202

|                        | MEASURED OVERSHOOT (%) |                       |                         |                            |                       |                         |  |  |  |  |  |
|------------------------|------------------------|-----------------------|-------------------------|----------------------------|-----------------------|-------------------------|--|--|--|--|--|
| PARAMETER              | INVE                   | RTING CONFIGUR        | ATION                   | NONINVERTING CONFIGURATION |                       |                         |  |  |  |  |  |
| C <sub>LOAD</sub> (pF) | $R_{ISO} = 0 \Omega$   | $R_{ISO} = 25 \Omega$ | $R_{ISO} = 50 \ \Omega$ | $R_{ISO} = 0 \Omega$       | $R_{ISO} = 25 \Omega$ | $R_{ISO} = 50 \ \Omega$ |  |  |  |  |  |
| 31                     | 8.6                    | 6.6                   | 6.6                     | 9.3                        | 9                     | 9.4                     |  |  |  |  |  |
| 251                    | 6.7                    | 6.4                   | 6.7                     | 8.9                        | 8.9                   | 8.9                     |  |  |  |  |  |
| 421                    | 6.4                    | 6.3                   | 6.6                     | 8.8                        | 8.8                   | 8.7                     |  |  |  |  |  |
| 641                    | 6.7                    | 6.3                   | 6.5                     | 8.1                        | 8.8                   | 8.5                     |  |  |  |  |  |
| 1079                   | 6.1                    | 6.1                   | 6.4                     | 8.6                        | 8.7                   | 9.8                     |  |  |  |  |  |
| 1539                   | 6.4                    | 6.3                   | 6.1                     | 8.9                        | 10.3                  | 10.1                    |  |  |  |  |  |
| 2579                   | 6.1                    | 6.3                   | 6.9                     | 16                         | 13.3                  | 12                      |  |  |  |  |  |
| 3949                   | 8.1                    | 7.9                   | 8.3                     | 25                         | 16                    | 14.1                    |  |  |  |  |  |
| 6269                   | 14.9                   | 10.8                  | 9.9                     | 33.1                       | 18.1                  | 14.5                    |  |  |  |  |  |
| 10139                  | 21.8                   | 13.5                  | 10.8                    | 40.2                       | 19.1                  | 15.4                    |  |  |  |  |  |
| 15729                  | 29.4                   | 15.2                  | 11.6                    | 46.2                       | 19.6                  | 14.5                    |  |  |  |  |  |
| 25069                  | 37                     | 16.5                  | 12.3                    | 52.6                       | 19.2                  | 13.9                    |  |  |  |  |  |

For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results, see TIPD128, *Capacitive Load Drive Solution Using an Isolation Resistor* verified reference design.



## 7.3.2 Output Current Limit

The output current of the OPAx202 is limited by internal circuitry to  $\pm 35$  mA (sinking or sourcing) to protect the device if the output is accidentally shorted. This short-circuit current depends on temperature, as Figure 37 shows.

### 7.3.3 Noise Performance

Figure 42 shows the total circuit noise for varying source impedances with the operational amplifier in a unitygain configuration (with no feedback resistor network and therefore no additional noise contributions). The OPAx202 and OPA211 are shown with total circuit noise calculated. The op amp itself contributes a voltage noise component and a current noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low source impedance, current noise is negligible and voltage noise dominates. The OPAx202 have both low voltage noise and low current noise because of the super-beta bipolar junction transistor (super- $\beta$  BJT) input of the op amp. As a result, the current noise contribution of the OPAx202 is negligible for most practical source impedances, which makes the series the better choice for applications with high source impedance.

The equation in Figure 42 shows the calculation of the total circuit noise with these parameters:

- e<sub>n</sub> = voltage noise
- $I_n = current noise$
- R<sub>S</sub> = source impedance
- k = Boltzmann's constant =  $1.38 \times 10^{-23}$  J/K
- T = temperature in kelvins (K)

For more details on calculating noise, see *Basic Noise Calculations*.



NOTE: For source resistances ( $R_S$ ) greater than 6 k $\Omega$ , the OPAx202 is a lower-noise option compared to the OPA211, as shown in Figure 42.

### Figure 42. Noise Performance of the OPAx202 vs the OPA211 in a Unity-Gain Buffer Configuration



### 7.3.4 Phase-Reversal Protection

The OPAx202 family has internal phase-reversal protection. Many FET- and bipolar-input op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input circuitry of the OPAx202 prevents phase reversal with excessive common-mode voltage; instead, the output limits into the appropriate rail (see Figure 29).

### 7.3.5 Thermal Protection

The OPAx202 family of op amps is capable of driving  $2-k\Omega$  loads with power-supply voltages of up to ±18 V across the specified temperature range. In a single-supply configuration, where the load is connected to the negative supply voltage, the minimum load resistance is 1.1 k $\Omega$  at a supply voltage of 36 V. For lower supply voltages (either single-supply or symmetrical supplies), a lower load resistance may be used as long as the output current does not exceed 35 mA; otherwise, the device short-circuit current protection circuit may activate.

Internal power dissipation increases when operating at high supply voltages. Copper leadframe construction used in the OPAx202 devices improves heat dissipation. Printed-circuit-board (PCB) layout helps reduce a possible increase in junction temperature. Wide copper traces help dissipate the heat by acting as an additional heat sink. An increase in temperature is further minimized by soldering the devices directly to the PCB rather than using a socket.

Although the output current is limited by internal protection circuitry, accidental shorting of one or more output channels of a device can result in excessive heating. For instance, when an output is shorted to midsupply, the typical short-circuit current of 35 mA leads to an internal power dissipation of over 600 mW at a supply of  $\pm$ 18 V.

To prevent excessive heating, the OPAx202 have an internal thermal shutdown circuit that shuts down the device if the die temperature exceeds approximately 135°C. When this thermal shutdown circuit activates, a builtin hysteresis of 10°C makes sure that the die temperature drops to approximately 125°C before the device switches on again. Additional consideration must be given to the combination of maximum operating voltage, maximum operating temperature, load, and package type.

### 7.3.6 Electrical Overstress

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

It is helpful to have a good understanding of this basic ESD circuitry and the relevance to an electrical overstress event. See Figure 43 for an illustration of the ESD circuits contained in the OPAx202 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where they meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, highcurrent pulse as the pulse discharges through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to protect the core from damage. The energy absorbed by the protection circuitry is then dissipated as heat.

When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or more of the steering diodes. Depending on the path that the current takes, the absorption device may activate. The absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPAx202 but below the device breakdown voltage level. Once this threshold is exceeded, the absorption device quickly activates and clamps the voltage across the supply rails to a safe level.

When the operational amplifier connects into a circuit (such as the one Figure 43 shows), the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a risk that some of the internal ESD protection circuits may be biased on and conduct current. Any such current flow occurs through steering diode paths and rarely involves the absorption device.

Copyright © 2017–2020, Texas Instruments Incorporated



Figure 43 shows a specific example where the input voltage,  $V_{IN}$ , exceeds the positive supply voltage (+V<sub>S</sub>) by 500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +V<sub>S</sub> can sink the current, one of the upper input steering diodes conducts and directs current to +V<sub>S</sub>. Excessively high current levels can flow with increasingly higher  $V_{IN}$ . As a result, the data sheet specifications recommend that applications limit the input current to 10 mA.

If the supply is not capable of sinking the current,  $V_{IN}$  may begin sourcing current to the operational amplifier, and then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings.

Another common question involves what happens to the amplifier if an input signal is applied to the input while the power supplies  $+V_s$  or  $-V_s$  are at 0 V.

It depends on the supply characteristic while at 0 V, or at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational amplifier supply current may be supplied by the input source through the current steering diodes. This state is not a normal bias condition; the amplifier most likely does not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the input source to deliver current, and any resistance in the input path.

If there is an uncertainty about the ability of the supply to absorb this current, external Zener diodes may be added to the supply pins as shown in Figure 43. The Zener voltage must be selected such that the diode does not turn on during normal operation.

However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin rises above the safe operating supply voltage level.



(1)  $V_{IN} = +V_S + 500 \text{ mV}.$ 

- (2) TVS:  $+V_{S(max)} > V_{TVSBR (Min)} > +V_{S}$
- (3) Suggested value is approximately 5 k $\Omega$  in overvoltage conditions.

### Figure 43. Equivalent Internal ESD Circuitry in a Typical Application Circuit



### 7.3.7 EMI Rejection

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR is performed in many ways, but this section provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for the following three reasons:

- Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the supply or output pins.
- The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit matching EMIRR performance
- EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can be isolated on a PCB. This isolation allows the RF signal to be applied directly to the noninverting input pin with no complex interactions from other components or connecting PCB traces.

High-frequency signals conducted or radiated to any pin of the operational amplifier may result in adverse effects, as the amplifier does not have sufficient loop gain to correct for signals with spectral content outside the bandwidth. Conducted or radiated EMI on inputs, power supply, or output may result in unexpected DC offsets, transient voltages, or other unknown behavior. Take care to properly shield and isolate sensitive analog nodes from noisy radio signals and digital clocks and interfaces. shows the effect of conducted EMI to the power supplies on the input offset voltage of OPAx202.

The EMIRR IN+ of the OPAx202 is plotted versus frequency, as shown in Figure 44. If available, any dual and quad op-amp device versions have similar EMIRR IN+ performance. The OPAx202 unity-gain bandwidth is 1 MHz. EMIRR performance less than this frequency denotes interfering signals that fall within the op-amp bandwidth.





Figure 44. OPAx202 EMIRR IN+

**ISTRUMENTS** 

XAS

Table 3 lists the EMIRR IN+ values for the OPAx202 at particular frequencies commonly encountered in realworld applications. Table 3 lists applications that may be centered on or operated near the particular frequency shown. This information may be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical (ISM) radio band.

| FREQUENCY | APPLICATION OR ALLOCATION                                                                                                                                                                     | EMIRR IN+ |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 400 MHz   | Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications                                                                                      | 41 dB     |
| 900 MHz   | Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications                                     | 47 dB     |
| 1.8 GHz   | GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)                                                                                               | 54 dB     |
| 2.4 GHz   | 802.11b, 802.11g, 802.11n, Bluetooth <sup>®</sup> , mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz) | 67 dB     |
| 3.6 GHz   | Radiolocation, aero communication and navigation, satellite, mobile, S-band                                                                                                                   | 67 dB     |
| 5 GHz     | 802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)                                                             | 81 dB     |

## Table 3. OPAx202 EMIRR IN+ for Frequencies of Interest

### 7.3.8 EMIRR +IN Test Configuration

Figure 45 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the op amp noninverting input pin using a transmission line. The op amp is configured in a unity-gain buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the op amp input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. The resulting DC offset voltage is sampled and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that may interfere with multimeter accuracy.



Figure 45. EMIRR +IN Test Configuration

### 7.4 Device Functional Modes

The OPAx202 have a single functional mode and are operational when the power-supply voltage is greater than 4.5 V ( $\pm 2.25$  V). The maximum power supply voltage for the OPAx202 is 36 V ( $\pm 18$  V).



# 8 Application and Implementation

## NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

# 8.1 Application Information

The OPA202, OPA2202, and OPA4202 (OPAx202) are unity-gain stable operational amplifiers with low noise, low input bias current, and low input offset voltage. Applications with noisy or high-impedance power supplies require decoupling capacitors placed close to the device pins. In most cases, 0.1-µF capacitors are adequate. Designers can use the low output impedance and heavy capacitive load drive abilities to interface to modern, fast-acquisition, precision analog-to-digital converters (ADCs) and buffer precision voltage references and drive power supply decoupling capacitors.

### 8.1.1 Basic Noise Calculations

Low-noise circuit design requires careful analysis of all noise sources. External noise sources dominates in many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the circuit is the root-sum-square combination of all noise components.

The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. Figure 42 shows this function. The source impedance is usually fixed; consequently, select the op amp and the feedback resistors to minimize the respective contributions to the total noise.

Figure 46 shows noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors contribute noise. Typically, the current noise of the op amp reacts with the feedback resistors to create additional noise components. However, the extremely low current noise of the OPAx202 means that the current noise contribution is neglected.

The feedback resistor values are typically selected to make these noise sources negligible. Low impedance feedback resistors load the output of the amplifier. The equations for total noise are shown for both configurations.



# **Application Information (continued)**

 $R_2$ 

 $\Lambda \Lambda \Lambda$ 

#### (A) Noise in Noninverting Gain Configuration

R

GND

Rs

Source GND Noise at the output is given as Eo, where

$$(1) \quad E_{0} = \left(1 + \frac{R_{2}}{R_{1}}\right) \cdot \sqrt{(e_{S})^{2} + (e_{N})^{2} + \left(e_{R_{1} \parallel R_{2}}\right)^{2} + (i_{N} \cdot R_{S})^{2} + \left(i_{N} \cdot \left[\frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}\right]\right)^{2}} \quad [V_{RMS}]$$

$$(2) \quad e_{S} = \sqrt{4 \cdot k_{B} \cdot T(K) \cdot R_{S}} \quad \left[\frac{V}{\sqrt{Hz}}\right] \qquad \text{Thermal noise of } R_{S}$$

$$(3) \quad e_{R_{1} \parallel R_{2}} = \sqrt{4 \cdot k_{B} \cdot T(K) \cdot \left[\frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}\right]} \quad \left[\frac{V}{\sqrt{Hz}}\right] \qquad \text{Thermal noise of } R_{1} \parallel R_{2}$$

$$(4) \quad k_{B} = 1.38065 \cdot 10^{-23} \quad \left[\frac{J}{K}\right] \qquad \text{Boltzmann Constant}$$

$$(5) \quad T(K) = 237.15 + T(^{\circ}C) \quad [K] \qquad \text{Temperature in kelvins}$$

(B) Noise in Inverting Gain Configuration

Noise at the output is given as E<sub>O</sub>, where



Copyright © 2017, Texas Instruments Incorporated

- (1)  $e_N = \text{the voltage noise of the amplifier} = 9 \text{ nV}/\sqrt{\text{Hz}}$  at 1 kHz.
- (2)  $i_N =$  the current noise of the amplifier = 76 fA/ $\sqrt{Hz}$  at 1 kHz.
- (3) For additional resources on noise calculations, visit *TI's Precision Labs*.

### Figure 46. Noise Calculation in Gain Configurations



# 8.2 Typical Application



Copyright © 2017, Texas Instruments Incorporated

Figure 47. 25-kHz, Low-Pass Filter

### 8.2.1 Design Requirements

Low-pass filters are used in signal processing applications to reduce noise and prevent aliasing. The OPAx202 devices are is designed to construct high-speed, high-precision active filters. Figure 47 shows a second-order, low-pass filter commonly encountered in signal processing applications.

Use the following parameters for this design example:

- Gain = 5 V/V (inverting gain)
- Low-pass cutoff frequency = 25 kHz
- Second-order Chebyshev filter response with 3-dB gain peaking in the passband

### 8.2.2 Detailed Design Procedure

The infinite-gain multiple-feedback circuit for a low-pass network function is shown in Figure 47. Use Equation 1 to calculate the voltage transfer function.

$$\frac{\text{Output}}{\text{Input}}(s) = \frac{-1/R_1R_3C_2C_5}{s^2 + (s/C_2)(1/R_1 + 1/R_3 + 1/R_4) + 1/R_3R_4C_2C_5}$$
(1)

This circuit produces a signal inversion. For this circuit, the gain at DC and the low-pass cutoff frequency are calculated by Equation 2:

Gain = 
$$\frac{R_4}{R_1}$$
  
 $f_C = \frac{1}{2\pi} \sqrt{(1/R_3 R_4 C_2 C_5)}$ 
(2)

Software tools are readily available to simplify filter design. WEBENCH<sup>®</sup> Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH<sup>®</sup> Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.

Available as a web based tool from the WEBENCH Design Center, WEBENCH Filter Designer allows you to design, optimize, and simulate complete multistage active filter solutions within minutes.



# **Typical Application (continued)**

# 8.2.3 Application Curve





# 9 Power Supply Recommendations

The OPAx202 are specified for operation from 4.5 V to 36 V ( $\pm 2.25$  V to  $\pm 18$  V); many specifications apply from  $-40^{\circ}$ C to  $\pm 105^{\circ}$ C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are shown in the *Typical Characteristics*.

CAUTION

Supply voltages greater than 40 V can permanently damage the device; see the *Absolute Maximum Ratings*.

Place  $0.1-\mu F$  bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement, see the *Layout* section.



# 10 Layout

# **10.1 Layout Guidelines**

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
  - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close as possible to the device. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. For more detailed information, see *The PCB is a component of op amp design*.
- To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace.
- Place the external components as close as possible to the device. As shown in Figure 49, keeping RF and RG close to the inverting input minimizes parasitic capacitance.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.
- For best performance, TI recommends cleaning the PCB following board assembly.
- Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, TI recommends baking the PCB assembly to remove moisture introduced into the device packaging during the cleaning process. A low temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.

# **10.2 Layout Example**



Copyright © 2017, Texas Instruments Incorporated

### Figure 49. Operational Amplifier Board Layout for Difference Amplifier Configuration

TEXAS INSTRUMENTS

www.ti.com

# **11** Device and Documentation Support

# **11.1 Device Support**

### 11.1.1 Development Support

# 11.1.1.1 TINA-TI™ (Free Software Download)

TINA<sup>™</sup> is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

### NOTE

These files require that either the TINA software (from DesignSoft<sup>™</sup>) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

### 11.1.1.2 WEBENCH Filter Designer Tool

WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.

### 11.1.1.3 TI Precision Designs

TI Precision Designs are available online at http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI's precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits.

### **11.2 Documentation Support**

### 11.2.1 Related Documentation

For related documentation see the following:

- Texas Instruments, The PCB is a component of op amp design
- Texas Instruments, Compensate Transimpedance Amplifiers Intuitively
- Texas Instruments, Operational amplifier gain stability, Part 3: AC gain-error analysis
- Texas Instruments, Operational amplifier gain stability, Part 2: DC gain-error analysis
- Texas Instruments, Using infinite-gain, MFB filter topology in fully differential active filters
- Texas Instruments, Op Amp Performance Analysis
- Texas Instruments, Single-Supply Operation of Operational Amplifiers
- Texas Instruments, Tuning in Amplifiers
- Texas Instruments, Shelf-Life Evaluation of Lead-Free Component Finishes
- Texas Instruments, Feedback Plots Define Op Amp AC Performance
- Texas Instruments, EMI Rejection Ratio of Operational Amplifiers



# 11.3 Related Links

Table 4 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

| PARTS   | PRODUCT FOLDER | ORDER NOW  | TECHNICAL<br>DOCUMENTS | TOOLS &<br>SOFTWARE | SUPPORT & COMMUNITY |
|---------|----------------|------------|------------------------|---------------------|---------------------|
| OPA202  | Click here     | Click here | Click here             | Click here          | Click here          |
| OPA2202 | Click here     | Click here | Click here             | Click here          | Click here          |
| OPA4202 | Click here     | Click here | Click here             | Click here          | Click here          |

### Table 4. Related Links

# 11.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

# 11.5 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

# 11.6 Trademarks

E2E is a trademark of Texas Instruments.

TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.

WEBENCH is a registered trademark of Texas Instruments.

Bluetooth is a registered trademark of Bluetooth SIG, Inc.

TINA, DesignSoft are trademarks of DesignSoft, Inc.

All other trademarks are the property of their respective owners.

### 11.7 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

# 11.8 Glossary

### SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

# 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



# PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material<br>(6) | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|-----------------|--------------------------------------|----------------------|--------------|-------------------------|---------|
| OPA202ID         | ACTIVE        | SOIC         | D                  | 8    | 75             | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 120   | OPA202                  | Samples |
| OPA202IDBVR      | ACTIVE        | SOT-23       | DBV                | 5    | 3000           | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 120   | 1T72                    | Samples |
| OPA202IDBVT      | ACTIVE        | SOT-23       | DBV                | 5    | 250            | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 120   | 1T72                    | Samples |
| OPA202IDGKR      | ACTIVE        | VSSOP        | DGK                | 8    | 2500           | RoHS & Green    | NIPDAUAG   SN                        | Level-2-260C-1 YEAR  | -40 to 105   | 1T2Q                    | Samples |
| OPA202IDGKT      | ACTIVE        | VSSOP        | DGK                | 8    | 250            | RoHS & Green    | NIPDAUAG   SN                        | Level-2-260C-1 YEAR  | -40 to 105   | 1T2Q                    | Samples |
| OPA202IDR        | ACTIVE        | SOIC         | D                  | 8    | 2500           | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 120   | OPA202                  | Samples |
| OPA2202ID        | ACTIVE        | SOIC         | D                  | 8    | 75             | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 150   | OP2202                  | Samples |
| OPA2202IDGKR     | ACTIVE        | VSSOP        | DGK                | 8    | 2500           | RoHS & Green    | NIPDAUAG   SN                        | Level-2-260C-1 YEAR  | -40 to 120   | 1XDQ                    | Samples |
| OPA2202IDGKT     | ACTIVE        | VSSOP        | DGK                | 8    | 250            | RoHS & Green    | NIPDAUAG   SN                        | Level-2-260C-1 YEAR  | -40 to 120   | 1XDQ                    | Samples |
| OPA2202IDR       | ACTIVE        | SOIC         | D                  | 8    | 2500           | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 150   | OP2202                  | Samples |
| OPA4202ID        | ACTIVE        | SOIC         | D                  | 14   | 50             | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 125   | OPA4202                 | Samples |
| OPA4202IDR       | ACTIVE        | SOIC         | D                  | 14   | 2500           | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 125   | OPA4202                 | Samples |
| OPA4202IPW       | ACTIVE        | TSSOP        | PW                 | 14   | 90             | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 125   | OPA4202                 | Samples |
| OPA4202IPWR      | ACTIVE        | TSSOP        | PW                 | 14   | 2000           | RoHS & Green    | NIPDAU                               | Level-2-260C-1 YEAR  | -40 to 125   | OPA4202                 | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".



# PACKAGE OPTION ADDENDUM

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

<sup>(6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Texas

STRUMENTS

# TAPE AND REEL INFORMATION





### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



| Device       | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| OPA202IDBVR  | SOT-23          | DBV                | 5    | 3000 | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| OPA202IDBVT  | SOT-23          | DBV                | 5    | 250  | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| OPA202IDGKR  | VSSOP           | DGK                | 8    | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| OPA202IDGKR  | VSSOP           | DGK                | 8    | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| OPA202IDGKT  | VSSOP           | DGK                | 8    | 250  | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| OPA202IDGKT  | VSSOP           | DGK                | 8    | 250  | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| OPA202IDR    | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| OPA2202IDGKR | VSSOP           | DGK                | 8    | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| OPA2202IDGKR | VSSOP           | DGK                | 8    | 2500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| OPA2202IDGKT | VSSOP           | DGK                | 8    | 250  | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| OPA2202IDGKT | VSSOP           | DGK                | 8    | 250  | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| OPA2202IDR   | SOIC            | D                  | 8    | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| OPA4202IDR   | SOIC            | D                  | 14   | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| OPA4202IPWR  | TSSOP           | PW                 | 14   | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |


www.ti.com

### PACKAGE MATERIALS INFORMATION

2-Jul-2023



| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| OPA202IDBVR  | SOT-23       | DBV             | 5    | 3000 | 213.0       | 191.0      | 35.0        |
| OPA202IDBVT  | SOT-23       | DBV             | 5    | 250  | 213.0       | 191.0      | 35.0        |
| OPA202IDGKR  | VSSOP        | DGK             | 8    | 2500 | 366.0       | 364.0      | 50.0        |
| OPA202IDGKR  | VSSOP        | DGK             | 8    | 2500 | 366.0       | 364.0      | 50.0        |
| OPA202IDGKT  | VSSOP        | DGK             | 8    | 250  | 366.0       | 364.0      | 50.0        |
| OPA202IDGKT  | VSSOP        | DGK             | 8    | 250  | 366.0       | 364.0      | 50.0        |
| OPA202IDR    | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |
| OPA2202IDGKR | VSSOP        | DGK             | 8    | 2500 | 366.0       | 364.0      | 50.0        |
| OPA2202IDGKR | VSSOP        | DGK             | 8    | 2500 | 366.0       | 364.0      | 50.0        |
| OPA2202IDGKT | VSSOP        | DGK             | 8    | 250  | 366.0       | 364.0      | 50.0        |
| OPA2202IDGKT | VSSOP        | DGK             | 8    | 250  | 366.0       | 364.0      | 50.0        |
| OPA2202IDR   | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |
| OPA4202IDR   | SOIC         | D               | 14   | 2500 | 356.0       | 356.0      | 35.0        |
| OPA4202IPWR  | TSSOP        | PW              | 14   | 2000 | 356.0       | 356.0      | 35.0        |

#### TEXAS INSTRUMENTS

www.ti.com

2-Jul-2023

#### TUBE



#### - B - Alignment groove width

#### \*All dimensions are nominal

| Device     | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | Τ (μm) | B (mm) |
|------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| OPA202ID   | D            | SOIC         | 8    | 75  | 506.6  | 8      | 3940   | 4.32   |
| OPA2202ID  | D            | SOIC         | 8    | 75  | 506.6  | 8      | 3940   | 4.32   |
| OPA4202ID  | D            | SOIC         | 14   | 50  | 506.6  | 8      | 3940   | 4.32   |
| OPA4202IPW | PW           | TSSOP        | 14   | 90  | 530    | 10.2   | 3600   | 3.5    |

# **DBV0005A**



### **PACKAGE OUTLINE**

### SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



# DBV0005A

# **EXAMPLE BOARD LAYOUT**

### SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



### DBV0005A

# **EXAMPLE STENCIL DESIGN**

### SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.



D (R-PDSO-G14)

PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.





NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
  E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE



A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153





NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



# D0008A



### **PACKAGE OUTLINE**

#### SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



#### NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



# D0008A

# **EXAMPLE BOARD LAYOUT**

#### SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



### D0008A

# **EXAMPLE STENCIL DESIGN**

### SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.



DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.



# DGK (S-PDSO-G8)

### PLASTIC SMALL OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated