ON Semiconductor # Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, # **Quad Variable Reluctance Sensor Interface IC** The NCV7001 is a four-channel variable reluctance sensor interface IC. Microprocessor control functions include two polarity 5.0 V programmable resets, two programmable watchdog inputs, and an enable function (OLE). Two watchdog inputs allow control from two independent microprocessors. Open sensor detection capability is provided. During test mode (NTEST = Low), a high on the OLE pin should provide a high on the output. A low under these conditions indicates an open load. This part has been designed to operate in an automotive environment. ## **Features** - Four Channel Capability - Differential Inputs - Open Sensor Detect - 5.0 V Supply Operation with RESET and Watchdog Features - On-Chip Input Voltage Clamping - NCV Prefix for Automotive and Other Applications Requiring Site and Change Control - AEC Qualified - PPAP Capable - Pb-Free Packages are Available* ### **Typical Applications** - Antilock Braking Systems (ABS) - Traction Control Systems (TCS) - Vehicle Dynamics Control (VDC) ## ON Semiconductor® http://onsemi.com SO-24L DW SUFFIX CASE 751E ## **MARKING DIAGRAM** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package ## **PIN CONNECTIONS** #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|---------------------|-----------------------| | NCV7001DW | SO-24L | 30 Units/Rail | | NCV7001DWG | SO-24L
(Pb-Free) | 30 Units/Rail | | NCV7001DWR2 | SO-24L | 1000 Tape & Reel | | NCV7001DWR2G | SO-24L
(Pb-Free) | 1000 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Figure 1. Application Diagram ## **MAXIMUM RATINGS*** | Rating | | Value | Unit | |--|--|-------------|------| | DC Supply Voltage (V _{CC}) | | -0.3 to 7.0 | V | | Input Clamp Current | | -10, 10 | mA | | ESD Capability (Human Body Model) | | 2.0 | kV | | Storage Temperature | | -55 to 150 | °C | | Operating Junction Temperature | | -40 to 150 | °C | | Package Thermal Resistance: Junction-to-Case, R _{θJC} Junction-to-Ambient, R _{θJA} | | 16
80 | °C/W | | Lead Temperature Soldering: | Reflow: (SMD styles only) (Notes 1, 2) | 240 peak | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. 60 second maximum above 183°C. - 2. $-5^{\circ}\text{C}/+0^{\circ}\text{C}$ allowable conditions. ^{*}The maximum package power dissipation must be observed. $\textbf{ELECTRICAL CHARACTERISTICS} \quad (4.5 \text{ V} \leq \text{V}_{CC} \leq 5.5 \text{ V}, \text{ -40}^{\circ}\text{C} \leq \text{T}_{J} \leq 125^{\circ}\text{C}; \text{ unless otherwise noted.})$ | Characteristic | CS $(4.5 \text{ V} \le \text{V}_{CC} \le 5.5 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{J} \le 125^{\circ}$
Test Conditions | Min | Тур | Max | Unit | |---|--|-----------------------|---------------------|-----------------------|------| | General Characteristics | | | | <u> </u> | | | Quiescent Current | - | _ | _ | 24 | mA | | Input | | | | | | | Positive Input Threshold | Rseries = 22 k between INPX & INNX
Thold Pin = 0 V | 30 | 45 | 60 | mV | | Negative Input Threshold | Rseries = 22 k between INPX & INNX
Thold Pin = 0 V | -60 | -45 | -30 | mV | | Positive Input Threshold | Rseries = 22 k between INPX & INNX
Thold Pin = 2.0 V | 84 | 126 | 168 | mV | | Negative Input Threshold | Rseries = 22 k between INPX & INNX
Thold Pin = 2.0 V | -168 | -126 | -84 | mV | | Positive Input Threshold | Rseries = 22 k between INPX & INNX
±90 mV at V _{CC} = V _{THOLD} = 4.5 V | 110 | 140 | 200 | mV | | Negative Input Threshold | Rseries = 22 k between INPX & INNX
±90 mV at V _{CC} = V _{THOLD} = 4.5 V | -200 | -140 | -110 | mV | | Input Resistance | - | 225 | 400 | 800 | kΩ | | Input Bias/Single Ended | Thold = 0 V | 0.46 V _{CC} | 0.5 V _{CC} | 0.54 V _{CC} | > | | Input Clamp Current | For Correct Reset & Watchdog During
Power Up | -6.0 | - | 6.0 | mA | | Input Clamp Voltage | (-10 mA) | -0.5 | 0 | 0.5 | V | | | (+10 mA) | V _{CC} - 0.6 | V _{CC} | V _{CC} + 0.6 | V | | Open Sensor Threshold | 22 k in Series with INNX and INPX | 12 | - | 120 | kΩ | | Output (NOUTX) | | 1 | | 1 | | | Output Low Voltage | I _{OUT} = 1.0 mA | - | 0.2 | 0.4 | V | | Output High Voltage | I _{OUT} = -100 μA | V _{CC} - 0.7 | - | - | V | | Output During Test /
Normal Sensor (V _{CC} - V _{OUT}) | OLE = 1.0, I _{OUT} = -100 μA | - | - | 0.7 | V | | Output During Test /
Open Sensor (V _{CC} - V _{OUT}) | OLE = 1.0, I _{OUT} = -1.0 mA | - | - | 0.4 | V | | Output (V _{CC} - V _{OUT}) | OLE (= Low), $I_{OUT} = -100 \mu A$, | - | - | 0.7 | V | | Output (V _{CC} - V _{OUT}) | OLE (= 1.0)/Normal Sensor, NO Signal from Sensor, I_{OUT} = -100 μA | - | - | 0.4 | V | | Logic | - | | | | | | Watchdog Output Low Voltage | $I_{WDO} = 1.0 \text{ mA}$ | - | 0.2 | 0.4 | V | | Watchdog Output High Leakage | $V_{WDO} = V_{CC}$ | - | - | 10 | μΑ | | Watchdog Input Voltage High | - | - | 1.5 | 2.0 | V | | Watchdog Input Voltage Low | - | 0.8 | 1.4 | - | V | | Watchdog Input Pullup Current | WD1 = WD2 = 2.0 V | -30 | - | -450 | μΑ | | Watchdog Input Pullup Current | WD1 = WD2 = 0.8 V | -50 | - | -600 | μΑ | | Thold Pin Input Current | 0.3 V < V _{THOLD} < V _{CC} | - | 5.0 | 40 | μΑ | | Test Input Low Threshold | - | 0.3 V _{CC} | - | - | V | | Test Input High Threshold | - | - | - | 0.7 V _{CC} | V | | Test Input Current | V _{IN} = 0.7 V _{CC} , TEST = 1 | -25 | - | 220 | μΑ | | OLE Input Low Threshold | | 0.8 | 1.4 | _ | V | | OLE Input High Threshold | | - | 1.5 | 2.0 | ٧ | | OLE Input Current | OLE = 1.0, V _{IN} = 2.0 V | -30 | - | -450 | μΑ | | OLE Input Current | OLE = Low, V _{IN} = 0.8 V | -50 | - | -600 | μΑ | # $\textbf{ELECTRICAL CHARACTERISTICS (continued)} \ \, (4.5 \ V \leq V_{CC} \leq 5.5 \ V, \ -40 ^{\circ}C \leq T_{J} \leq 125 ^{\circ}C; \ \, \text{unless otherwise noted.})$ | Characteristic | Test Conditions | Min | Тур | Max | Unit | |---|---|------|-------|------|------| | Low Voltage Reset | • | | • | | | | Timeout Delay | V _{CC} - Increasing 0 to 5.0 V | 30 | 50 | 70 | ms | | Reset Delay | V _{CC} - Decreasing 5.0 to 4.25 V | - | - | 1.0 | ms | | NLVI Rise and Fall Time | 10 k Pullup & CL = 30 pF | - | - | 50 | μs | | LVI Rise and Fall Time | 57 k Pulldown & CL = 30 pF | _ | - | 50 | μs | | Threshold High V _{CC} Going Up | - | - | 4.66 | 4.75 | V | | Threshold Low V _{CC} Going Low | - | 4.5 | 4.59 | - | V | | Threshold Hysteresis | LVTH - LVTL | 30 | 70 | - | mV | | NLVI Output Low | $25^{\circ}\text{C} \le T \le 125^{\circ}\text{C}, V_{\text{CC}} = 1.0 \text{ V},$ $I_{\text{NLVI}} = 1.0 \text{ mA}$ | - | 150 | 300 | mV | | | $-40^{\circ}\text{C} \le \text{T} \le 125^{\circ}\text{C}, \text{ V}_{\text{CC}} = 1.2 \text{ V},$
$\text{I}_{\text{NLVI}} = 1.0 \text{ mA}$ | - | 150 | 300 | mV | | NLVI Output Low | V _{CC} = 4.5 V @ -40°C, I _{NLVI} = 2.5 mA | - | 150 | 300 | mV | | NLVI Output Leakage | V _{NLI} = V _{CC} | -10 | - | 10 | μΑ | | LVI Output High | $V_{CC} = 1.0 \text{ V}, I_{LV} = -36 \mu\text{A}$ | 0.8 | 0.9 | - | V | | LVI Output High | $V_{CC} = 4.5 \text{ V}, I_{LV} = -250 \mu\text{A}$ | 3.6 | 4.3 | - | V | | LVI Output Leakage | 4.75 < V _{CC} 5.25 V, V _{LVC} = 0 V | -7.5 | - | 7.5 | μΑ | | Timing Specs | | | | | | | Watchdog Short Time Detect | (Watchdog Running at 300 Hz) | 4.56 | 6.075 | 7.59 | ms | | Watchdog Long Time Detect | (Watchdog Running at 33 Hz) | 13.7 | 18.25 | 22.8 | ms | | Watchdog Skew Time Detect | (Difference between WD1 & WD2) | 0.7 | - | 2.1 | ms | | Watchdog Timeout Delay Time | - | 30 | 50 | 70 | ms | | Output Rise Time | CL = 30 pF | - | 0.5 | 2.0 | μs | | Output Fall Time | CL = 30 pF | - | 0.05 | 2.0 | μs | | Delay Input to Output | - | - | 1.0 | 20 | μs | | OLE Delay to N _{OUT} | - | - | 1.0 | 20 | μS | ## **PIN DESCRIPTION** | Pin No. | Symbol | Description | |---------|-----------------|---| | 1 | RDLY | Determines the low voltage reset delay and watchdog enable and disable delay. | | 2 | NTEST | Low = test, high = normal operation. | | 3 | INN1 | Minus input to channel 1 comparator. | | 4 | INP1 | Plus input to channel 1 comparator. | | 5 | INN2 | Minus input to channel 2 comparator. | | 6 | INP2 | Plus input to channel 2 comparator. | | 7 | INP3 | Plus input to channel 3 comparator. | | 8 | INN3 | Minus input to channel 3 comparator. | | 9 | INP4 | Plus input to channel 4 comparator. | | 10 | INN4 | Minus input to channel 4 comparator. | | 11 | THOLD | Variable threshold adjustment. | | 12 | GND | Ground. | | 13 | NOUT4 | Inverted output of comparator 4. | | 14 | NOUT3 | Inverted output of comparator 3. | | 15 | WDLY | Determines watchdog timing. | | 16 | OLE | Disables outputs. High = normal operation. Low = forces all outputs and comparators high. | | 17 | WD1 | Watchdog input. | | 18 | V _{CC} | 5.0 V input to IC. | | 19 | WD2 | Watchdog input. | | 20 | NLVI | Reset output (in reset when low). | | 21 | LVI | Reset output (in reset when high). | | 22 | WDO | Watchdog output (low for valid watchdog signal). | | 23 | NOUT2 | Inverted output of comparator 2. | | 24 | NOUT1 | Inverted output of comparator 1. | Table 1. Wheel Speed Output Functionality | Sensor | NTEST | OLE | NOUTx | |--------|-------|-----|-------| | OPEN | L | L | Н | | OPEN | L | Н | L | | OPEN | Н | L | Н | | OPEN | Н | Н | X | | NORMAL | L | L | Н | | NORMAL | L | Н | Н | | NORMAL | Н | L | Н | | NORMAL | Н | Н | Х | $[\]dagger X$ = Do not care (dependent on presence of sensor signal). Figure 2. Block Diagram ## PACKAGE DIMENSIONS ## SO-24L **DW SUFFIX** CASE 751E-04 ISSUE E #### NOTES - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982 - 2. CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INCHES | | | |-----|----------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 15.25 | 15.54 | 0.601 | 0.612 | | | В | 7.40 | 7.60 | 0.292 | 0.299 | | | С | 2.35 | 2.65 | 0.093 | 0.104 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.41 | 0.90 | 0.016 | 0.035 | | | G | 1.27 BSC | | 0.050 BSC | | | | 7 | 0.23 | 0.32 | 0.009 | 0.013 | | | K | 0.13 | 0.29 | 0.005 | 0.011 | | | M | 0° | 8° | 0 ° | 8° | | | Р | 10.05 | 10.55 | 0.395 | 0.415 | | | R | 0.25 | 0.75 | 0.010 | 0.029 | | ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered raderians of semiconductor Components industries, LC (SCILLC) - Scillute services in english to make changes without further induce to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative