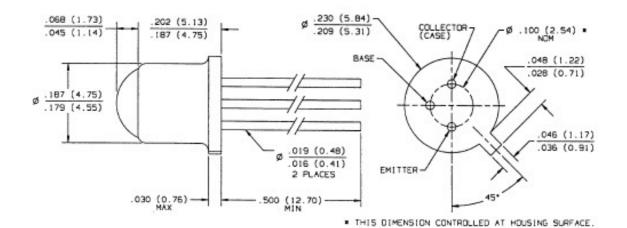
NPN Silicon Phototransistor

OP800A, OP800B, OP800C

Features:

- · Narrow receiving angle
- Suitable for applications from 400nm to 1100
- · Variety of sensitivity ranges
- TO-18 hermetically sealed package
- Enhanced temperature range
- Base lead connection



Description:

The OP800 Series device consist of a NPN silicon phototransistor mounted in a hermetically sealed package. The narrow receiving angle provides excellent on-axis coupling. TO-18 package offer high power dissipation and hostile environment operation. The base lead is bonded to enable conventional transistor biasing.

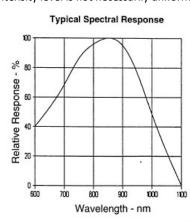
Applications:

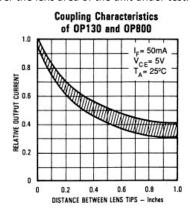
- Industrial and commercial electronics
- · Distance sensing
- Harsh environment
- Photointerrupters

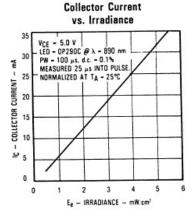
Rev C 11/2021 Page 1

DIMENSIONS ARE IN INCHES (MILLIMETERS)

NPN Silicon Phototransistor

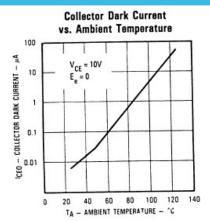

OP800A, OP800B, OP800C

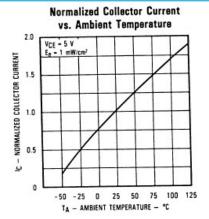


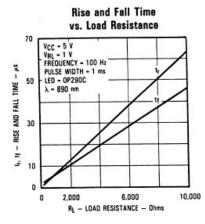

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)						
Collector-Base Voltage	30 V					
Collector-Emitter Voltage	30 V					
Emitter-Base Voltage	5 V					
Emitter-Collector Voltage	5 V					
Continuous Collector Current	50 mA					
Storage Temperature Range	-65°C to +150°C					
Operating Temperature Range	-65°C to +125°C					
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽²⁾					
Power Dissipation	250 mW ⁽³⁾					

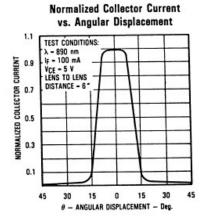
Notes:

- 1. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- 2. Derate linearly 2.5 mW/° C above 25° C.
- 3. Junction temperature maintained at 25° C.
- 4. Light source is a GaAlAs LED, 890 nm peak emission wavelength, providing a 0.5 mW/cm² radiant intensity on the unit under test. The intensity level is not necessarily uniform over the lens area of the unit under test.






NPN Silicon Phototransistor


OP800A, OP800B, OP800C

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
	On-State Collector Current						
I _{C(ON)} (3)	OP800C	0.90 - 3.60 mA					
IC(ON)	OP800B	1.80	-	5.40	mA	$V_{CE} = 5 \text{ V, } E_{E} = 0.5 \text{ mW/cm}^{2(4)}$	
	OP800A	3.60	-	-	mA	VCE - 5 V, LE - 0.5 IIIVV/CIII	
I _{CEO}	Collector Dark Current	-	-	100	nA	V _{CE} = 10 V, E _E = 0	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	-	-	V	Ι _C = 100 μΑ	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	30	-	-	V	Ι _C = 100 μΑ	
$V_{(BR)ECO}$	Emitter-Collector Breakdown Voltage	5.0	-	-	V	Ι _Ε = 100 μΑ	
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	5.0	-	-	V	Ι _Ε = 100 μΑ	
t _r	Rise Time	-	7.0	-	μs	V_{CC} = 5 V, I_C = 0.80 mA, R_L = 100 Ω (See Test Circuit)	
t _f	Fall Time	-	7.0	-	μs		