

ESDA6V1-5SC6

ASD™

TRANSIL[™] ARRAY FOR ESD PROTECTION

MAIN APPLICATIONS

Where transient overvoltage protection in ESD sensitive equipment is required, such as:

- Computers
- Printers
- Communication systems
- Cellular phone handsets and accessories
- Other telephone set
- Set top boxes

FEATURES

- 5 Unidirectional Transil[™] Functions
- Low leakage current: I_R max. < 1µA
- Breakdown voltage: V_{BR} = 6.1V min.

DESCRIPTION

The ESDA6V1-5SC6 is a 5-bit wide monolithic suppressor which is designed to protect against ESD components connected to data and transmission lines.

BENEFITS

- High integration
- Suitable for high density boards

COMPLIES WITH THE FOLLOWING STANDARDS:

		Test kV	Max. current
IEC61000-4-2 level 4	Air	15	-
	Contact	8	30A
MIL STD 883C-Method 3015-7 class3 (Human Body Model)	Contact	> 4	> 2.67A

Table 1: Order Code

Part Number	Marking
ESDA6V1-5SC6	EC62

Figure 1: Functional Diagram

Figure 2: ESD response to IEC61000-4-2 (air discharge 16kV, positive surge)

TM: ASD is a trademark of STMicroelectronics.

November 2004

ESDA6V1-5SC6

Symbol	P	Parameter				
V _{PP}	ESD discharge	MIL STD 883E - Method 3015-7 IEC61000-4-2 air discharge IEC61000-4-2 contact discharge	25 20 15	kV		
P _{PP}	Peak pulse power (8/20µs)	100	W			
Tj	Junction temperature	150	°C			
T _{stg}	Storage temperature range	-55 to +150	°C			
ΤL	Maximum lead temperature fo	260	°C			
T _{op}	Operating temperature range	(note 1)	-40 to +125	°C		

Table 2: Absolute Maximum Ratings (T_{amb} = 25°C)

Note 1: The evolution of the operating parameters versus temperature is given by curves and α T parameter.

Table 3: Electrical C	haracteristics	(T _{amb}	= 25°C)
-----------------------	----------------	-------------------	---------

Symbol	Parameter	
V _{RM}	Stand-off voltage	
V _{BR}	Breakdown voltage	
V _{CL}	Clamping voltage	
I _{RM}	Leakage current	
I _{PP}	Peak pulse current	
αΤ	Voltage temperature coefficient	
V _F	Forward voltage drop	
С	Capacitance	
R _d	Dynamic resistance	

	N N	/ _{BR} @	I _R	I _{RM} @	₽ V _{RM}	R _d	αΤ	С	V _F @	₽ I _F
Turne	min.	max.		max.		typ.	max.	typ.	max.	
Туре						note 2	note 3	0V bias		
	V	V	mA	μA	V	mΩ	10 ⁻⁴ /°C	pF	V	mA
ESDA6V1-5SC6	6.1	7.2	1	1	3	590	6	50	1.25	200

Note 2: Square pulse, IPP = 15A, $t_p=2.5\mu s$.

Note 3: Δ V_{BR} = α T* (T_{amb} -25°C) * V_{BR} (25°C).

Figure 3: Peak power dissipation versus initial junction temperature

Figure 4: Peak pulse power versus exponential pulse duration (T_j initial = 25 °C)

57

Figure 5: Clamping voltage versus peak pulse current (T_j initial = 25 °C). Rectangular waveform (t_p = 2.5 µs)

Figure 7: Relative variation of leakage current versus junction temperature (typical values)

Figure 9: Ordering information scheme

57

Figure 8: Peak forward voltage drop versus peak forward current (typical values)

ESDA6V1-5SC6

	DIMENSIONS							
REF.	Mi	Millimeters In			Inches	nches		
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	0.90		1.45	0.035		0.057		
A1	0		0.10	0		0.004		
A2	0.90		1.30	0.035		0.051		
b	0.35		0.50	0.014		0.02		
С	0.09		0.20	0.004		0.008		
D	2.80		3.05	0.110		0.120		
Е	1.50		1.75	0.059		0.069		
е		0.95			0.037			
Н	2.60		3.00	0.102		0.118		
L	0.10		0.60	0.004		0.024		
θ			10°			10°		

57

Figure 10: SOT23-6L Package Mechanical Data

Figure 11: Foot Print Dimensions (in millimeters)

Table 4: Ordering Information

Part Number	Marking	Package	Weight	Base qty	Delivery mode
ESDA6V1-5SC6	EC62	SOT23-6L	16.7 mg	3000	Tape & reel

Table 5: Revision History

Date	Revision	Description of Changes
Feb-2002	2B	Last update.
4-Nov-2004	3	SOT23-6L package dimensions change for reference "D" from 3.0 millimeters (0.118 inches) to 3.05 millimeters (0.120 inches).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

57.