

SynJet[®] Downlight Cooler 120, 40W

SynJet cooling technology provides the most reliable thermal management solution available. This LED cooler has been developed by Aavid for cooling downlight modules and arrays.

- Cools up to 40 W⁴
- L10 of 100K Hours at 60°C
- **Energy Efficient**

- 5 Yr Warranty
- Small Form Factor
- **Quiet Acoustics**

Specifications¹ **Thermal & Acoustic**

SynJet Setting ²	Θs-a ³	TDP ⁴ (W)	SPL (dBA) ⁵	Wire Connections
High Performance	0.75	40	30	Red to +VDC Black & Blue to Ground
Standard	0.94	32	22	Red to +VDC Black only to Ground
Silent	1.06	28	19	Red to +VDC Black & Purple to Ground
PWM at 100% duty cycle	0.75	40	30	Red to +VDC +VDC Black only to Ground GND Blue to PWM Signal PWM
Heatsink Only	2.0	15	N/A	N/A N/A

Electrical

2	Voltage	Current (mA) ⁶			Voltag	Current (mA) ⁶				
SynJet Setting ²	(VDC) +/- 10%	Imin	lavg	Ipeak	Pavg (mW)	e (VDC)	Imin	lavg	Ipeak	Pavg (mW)
High Performance			90	180	450			58	116	700
Standard	5	20	70	140	350	12	10	46	92	550
Silent	5	20	80	160	400	12	10	50	100	600
PWM at 100% duty cycle			90	180	450			58	116	700

Environmental

All Settings	Min	Max	Units	Conditions
Operating Temperature	-40	70	°C	Air temperature surrounding cooler
Storage Temperature	-50	85	°C	Air temperature surrounding cooler
Storage Altitude		15K	m	Above sea level
Operating RelativeHumidity	5	95	%	Non-condensing
Weight		490	g	SynJet with Heatsink
Reliability		100K	hrs	L10 @ 60°C
Regulatory Compliance				RoHS, UL, FCC Part 15 Class B, CE

¹ All values are typical at 25°C unless otherwise stated.

³ Thermal resistance values are given as reference only and are measured in free air without airflow obstructions. Thermal resistance is measured from the bottom middle of the heat sink to ambient air measured at the inlet to the SynJet, with a heat source at least 15cm² using the 40W reference heat sink. Actual thermal performance may vary by application and final product design should be tested to assure proper thermal performance. ¹ Thermal Design Power is based on a 30°C temperature rise of heat sink mounting surface above ambient temperature around cooler.

⁵ Sound Pressure Level is measured at 1 meter distance per ISO 7779.

⁶ The SynJet has a time varying current. The current waveform is sinusoidal and the average current (lavg) is used to calculate the average power consumption (Pavg) at nominal input voltage (VDC). See the Electrical section in the Product Design Guide for a detailed explanation.

Phone: 1.855.322.2843 www.aavid.com

MKTG-DOC-00096	
Revision	

A02

March 2018

² The Level Select model should be used for discrete performance settings. Follow the instructions in the Product Design Guide for adjusting settings.

Mechanical SynJet Cooling Solution shown with HSSLS-CALBL-005

SynJet Wire Harness

Connector Pinout

Pin	Wire Color	Symbol	Description				
1	Red	+VDC	5 V or 12 V depending on model				
2	Black	GND	Ground				
3	Purple	CTRL2	Input for Level Select model Status signal for PWM model				
4	Blue	CTRL1	Input for Level Select model PWM input for PWM model				

56.6

46.8

IMPORTANT: SynJets should be completely wired to the power supply before the power supply is energized. The power supply should be turned off before the SynJet Cooler is disconnected. SynJet Coolers are not designed for "hot swap" or "hot plug" applications.

Part Numbers

Part Number	Description	Notes
SSSLS-CM005-008	SynJet, ZFlow 100 Cooler, Level Select, 5V, Black	Configurable to discrete performance settings
SSSLS-CM005-009	SynJet, ZFlow 100 Cooler, PWM, 5V, Black	Use with PWM input to control performance setting
SSSLS-CM012-017	SynJet, ZFlow 100 Cooler, Level Select, 12V, Black	Configurable to discrete performance settings
SSSLS-CM012-018	SynJet, ZFlow 100 Cooler, PWM, 12V, Black	Use with PWM input to control performance setting
HSSLS-CALBL-005	Heatsink, 40W, Philips Fortimo and Lexel, Stark DLE, Black	Contact sales for other heatsink options
WALLS-C4150-001	Wire Harness, 4-Wire, 150 mm Length	Contact sales for other wire harness options
WALLS-C4600-001	Wire Harness, 4-Wire, 600 mm Length	Contact sales for other wire harness options

Aavid reserves the right to make changes to the products or information contained herein without notice. No liability is assumed as a result of their use or applications. For additional information, please contact Aavid directly.

1 Aavid Circle Laconia, NH 03246 Phone: 1.855.322.2843 www.aavid.com MKTG-DOC-00096 Revision